首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang DW  Gu HM  Vasa M  Muredda M  Cole SP  Deeley RG 《Biochemistry》2003,42(33):9989-10000
Human multidrug resistance protein (MRP) 3 is the most closely related homologue of MRP1. Like MRP1, MRP3 confers resistance to etoposide (VP-16) and actively transports 17 beta-estradiol 17-(beta-D-glucuronide) (E(2)17 beta G), cysteinyl leukotriene 4 (LTC(4)), and methotrexate, although with generally lower affinity. Unlike MRP1, MRP3 also transports monovalent bile salts. We have previously demonstrated that hydrogen-bonding residues predicted to be in the inner-leaflet spanning segment of transmembrane (TM) 17 of MRP1 are important for drug resistance and E(2)17 beta G transport. We have now examined the importance of the hydrogen-bonding potential of residues in TM17 of MRP3 on both substrate specificity and overall activity. Mutation S1229A reduced only methotrexate transport. Mutations S1231A and N1241A decreased resistance to VP-16 and transport of E(2)17 beta G and methotrexate but not taurocholate. Mutation Q1235A also reduced resistance to VP-16 and transport of E(2)17beta G but increased taurocholate transport without affecting transport of methotrexate. Mutations Y1232F and S1233A reduced resistance to VP-16 and the transport of all three substrates tested. In contrast, mutation T1237A markedly increased VP-16 resistance and transport of all substrates. On the basis of the substrates analyzed, residues Ser(1229), Ser(1231), Gln(1235), and Asn(1241) play an important role in determining the specificity of MRP3, while mutation of Tyr(1232), Ser(1233), and Thr(1237) affects overall activity. Unlike MRP1, the involvement of polar residues in determining substrate specificity extends throughout the TM helix. Furthermore, elimination of the hydrogen-bonding potential of a single amino acid, Thr(1237), markedly enhanced the ability of the protein to confer drug resistance and to transport all substrates examined.  相似文献   

2.
In view of the importance of Candida Drug Resistance Protein (Cdr1p) of pathogenic Candida albicans in azole resistance, we have characterized its ability to efflux variety of substrates by subjecting its entire transmembrane segment (TMS) 5 to site directed mutagenesis. All the mutant variants of putative 21 amino acids of TMS 5 and native CaCdr1p were over expressed as a GFP-tagged protein in a heterologous host Saccharomyces cerevisiae. Based on the drug susceptibility pattern, the mutant variants could be grouped into two categories. The variants belonging to first category were susceptible to all the tested drugs, as compared to those belonging to second category which exhibited resistance to selective drugs. The mutant variants of both the categories were analyzed for their ATP catalysis and drug efflux properties. Irrespective of the categories, most of the mutant variants of TMS 5 showed an uncoupling between ATP hydrolysis and drug efflux. The mutant variants such as M667A, F673A, I675A and P678A were an exception since they reflected a sharp reduction in both Km and Vmax values of ATPase activity when compared with WT CaCdr1p-GFP. Based on the competition experiments, we could identify TMS 5 residues which are specific to interact with select drugs. TMS 5 residues of CaCdr1p thus not only impart substrate specificity but also selectively act as a communication link between ATP hydrolysis and drug transport.  相似文献   

3.
The human multidrug resistance protein MRP1 (or ABCC1) is one of the most important members of the large ABC transporter family, in terms of both its biological (tissue defense) and pharmacological functions. Many studies have investigated the function of MRP1, but structural data remain scarce for this protein. We investigated the structure and dynamics of predicted transmembrane fragment 17 (TM17, from Ala(1227) to Ser(1251)), which contains a single Trp residue (W(1246)) involved in MRP1 substrate specificity and transport function. We synthesized TM17 and a modified peptide in which Ala(1227) was replaced by a charged Lys residue. Both peptides were readily solubilized in dodecylmaltoside (DM) or dodecylphosphocholine (DPC) micelles, as membrane mimics. The interaction of these peptides with DM or DPC micelles was studied by steady-state and time-resolved Trp fluorescence spectroscopy, including experiments in which Trp was quenched by acrylamide or by two brominated analogs of DM. The secondary structure of these peptides was determined by circular dichroism. Overall, the results obtained indicated significant structuring ( approximately 50% alpha-helix) of TM17 in the presence of either DM or DPC micelles as compared to buffer. A main interfacial location of TM17 is proposed, based on significant accessibility of Trp(1246) to brominated alkyl chains of DM and/or acrylamide. The comparison of various fluorescence parameters including lambda(max), lifetime distributions and Trp rotational mobility with those determined for model fluorescent transmembrane helices in the same detergents is also consistent with the interfacial location of TM17. We therefore suggest that TM17 intrinsic properties may be insufficient for its transmembrane insertion as proposed by the MRP1 consensus topological model. This insertion may also be controlled by additional constraints such as interactions with other TM domains and its position in the protein sequence. The particular pattern of behavior of this predicted transmembrane peptide may be the hallmark of a fragment involved in substrate transport.  相似文献   

4.
The human multidrug resistance protein MRP1 (or ABCC1) is one of the most important members of the large ABC transporter family, in terms of both its biological (tissue defense) and pharmacological functions. Many studies have investigated the function of MRP1, but structural data remain scarce for this protein. We investigated the structure and dynamics of predicted transmembrane fragment 17 (TM17, from Ala1227 to Ser1251), which contains a single Trp residue (W1246) involved in MRP1 substrate specificity and transport function. We synthesized TM17 and a modified peptide in which Ala1227 was replaced by a charged Lys residue. Both peptides were readily solubilized in dodecylmaltoside (DM) or dodecylphosphocholine (DPC) micelles, as membrane mimics. The interaction of these peptides with DM or DPC micelles was studied by steady-state and time-resolved Trp fluorescence spectroscopy, including experiments in which Trp was quenched by acrylamide or by two brominated analogs of DM. The secondary structure of these peptides was determined by circular dichroism. Overall, the results obtained indicated significant structuring (∼50% α-helix) of TM17 in the presence of either DM or DPC micelles as compared to buffer. A main interfacial location of TM17 is proposed, based on significant accessibility of Trp1246 to brominated alkyl chains of DM and/or acrylamide. The comparison of various fluorescence parameters including λmax, lifetime distributions and Trp rotational mobility with those determined for model fluorescent transmembrane helices in the same detergents is also consistent with the interfacial location of TM17. We therefore suggest that TM17 intrinsic properties may be insufficient for its transmembrane insertion as proposed by the MRP1 consensus topological model. This insertion may also be controlled by additional constraints such as interactions with other TM domains and its position in the protein sequence. The particular pattern of behavior of this predicted transmembrane peptide may be the hallmark of a fragment involved in substrate transport.  相似文献   

5.
Murine multidrug resistance protein 1 (mrp1), differs from its human ortholog (MRP1) in that it fails to confer anthracycline resistance and transports the MRP1 substrate, 17beta-estradiol 17-(beta-d-glucuronide) (E(2)17betaG), very poorly. By mutating variant residues in mrp1 to those present in MRP1, we identified Glu(1089) of MRP1 as being critical for anthracycline resistance. However, Glu(1089) mutations had no effect on E(2)17betaG transport. We have now identified a nonconserved amino acid within the highly conserved COOH-proximal transmembrane helix of MRP1/mrp1 that is important for transport of the conjugated estrogen. Converting Ala(1239) in mrp1 to Thr, as in the corresponding position (1242) in MRP1, increased E(2)17betaG transport 3-fold. Any mutation of mrp1 Ala(1239), including substitution with Thr, decreased resistance to vincristine and VP-16 without altering anthracycline resistance. However, introduction of a second murine to human mutation, Q1086E, which alone selectively increases anthracycline resistance, into mrp1A1239T restored resistance to both vincristine and VP-16. To confirm the importance of MRP1 Thr(1242) for E(2)17betaG transport and drug resistance, we mutated this residue to Ala, Cys, Ser, Leu, and Lys. These mutations decreased E(2)17betaG transport 2-fold. Conversion to Asp eliminated transport of the estrogen conjugate and also decreased leukotriene C(4) transport approximately 2-fold. The mutations also reduced the ability of MRP1 to confer resistance to all drugs tested. As with mrp1, introduction of a second mutation based on the murine sequence to create MRP1E1089Q/T1242A restored resistance to vincristine and VP-16, but not anthracyclines, without affecting transport of leukotriene C(4) and E(2)17betaG. These results demonstrate the important role of Thr(1242) for E(2)17betaG transport. They also reveal a highly specific functional relationship between nonconserved amino acids in TM helices 14 and 17 of both mrp1 and MRP1 that enables both proteins to confer similar levels of resistance to vincristine and VP-16.  相似文献   

6.
Human multidrug resistance protein 1 (MRP1) confers resistance to many chemotherapeutic agents and transports diverse conjugated organic anions. We previously demonstrated that Glu1089 in transmembrane (TM) 14 is critical for the protein to confer anthracycline resistance. We have now assessed the functional importance of all polar and charged amino acids in this TM helix. Asn1100, Ser1097, and Lys1092, which are all predicted to be on the same face of the helix as to Glu1089, are involved in determining the substrate specificity of the protein. Notably, elimination of the positively charged side chain of Lys1092, increased resistance to the cationic drugs vincristine and doxorubicin, but not the electroneutral drug etoposide (VP-16). In addition, mutations S1097A and N1100A selectively decreased transport of 17beta-estradiol 17-(beta-d-glucuronide) (E217betaG) but not cysteinyl leukotriene 4 (LTC4), demonstrating the importance of multiple residues in this helix in determining substrate specificity. In contrast, mutations of Asp1084 that eliminate the carboxylate side chain markedly decreased resistance to all drugs tested, as well as transport of both E217betaG and LTC4, despite the fact that LTC4 binding was unaffected. We show that these mutations prevent the ATP-dependent transition of the protein from a high to low affinity substrate binding state and drastically diminish ADP trapping at nucleotide binding domain 2. Based on results presented here and crystal structures of prokaryotic ATP binding cassette transporters, Asp1084 may be critical for interaction between the cytoplasmic loop connecting TM13 and TM14 and a region of nucleotide binding domain 2 between the conserved Walker A and ABC signature motifs.  相似文献   

7.
Multidrug resistance protein (MRP) confers resistance to a number of natural product chemotherapeutic agents. It is also a high affinity transporter of some physiological conjugated organic anions such as cysteinyl leukotriene C(4) and the cholestatic estrogen, 17beta-estradiol 17(beta-D-glucuronide) (E(2)17betaG). We have shown that the murine orthologue of MRP (mrp), unlike the human protein, does not confer resistance to common anthracyclines and is a relatively poor transporter of E(2)17betaG. We have taken advantage of these functional differences to identify region(s) of MRP involved in mediating anthracycline resistance and E(2)17betaG transport by generating mrp/MRP hybrid proteins. All hybrid proteins conferred resistance to the Vinca alkaloid, vincristine, when transfected into human embryonic kidney cells. However, only those in which the COOH-terminal third of mrp had been replaced with the corresponding region of MRP-conferred resistance to the anthracyclines, doxorubicin, and epirubicin. Exchange of smaller segments of the COOH-terminal third of the mouse protein by replacement of either amino acids 959-1187 or 1188-1531 with those of MRP produced proteins capable of conferring some level of resistance to the anthracyclines tested. All hybrid proteins transported cysteinyl leukotriene C(4) with similar efficiencies. In contrast, only those containing the COOH-terminal third of MRP transported E(2)17betaG with an efficiency comparable with that of the intact human protein. The results demonstrate that differences in primary structure of the highly conserved COOH-terminal third of mrp and MRP are important determinants of the inability of the murine protein to confer anthracycline resistance and its relatively poor ability to transport E(2)17betaG.  相似文献   

8.
The multidrug resistance protein, MRP1 (ABCC1), is an ATP-binding cassette transporter that confers resistance to chemotherapeutic agents. MRP1 also mediates transport of organic anions such as leukotriene C(4) (LTC(4)), 17beta-estradiol 17-(beta-d-glucuronide) (E(2)17betaG), estrone 3-sulfate, methotrexate (MTX), and GSH. We replaced three charged amino acids, Lys(332), His(335), and Asp(336), predicted to be in the sixth transmembrane (TM6) helix of MRP1 with neutral and oppositely charged amino acids and determined the effect on substrate specificity and transport activity. All mutants were expressed in transfected human embryonic kidney cells at levels comparable with wild-type MRP1, and confocal microscopy showed that they were correctly routed to the plasma membrane. Vesicular transport studies revealed that the MRP1-Lys(332) mutants had lost the ability to transport LTC(4), and GSH transport was reduced; whereas E(2)17betaG, estrone 3-sulfate, and MTX transport were unaffected. E(2)17betaG transport was not inhibited by LTC(4) and could not be photolabeled with [(3)H]LTC(4), indicating that the MRP1-Lys(332) mutants no longer bound this substrate. Substitutions of MRP1-His(335) also selectively diminished LTC(4) transport and photolabeling but to a lesser extent. Kinetic analyses showed that V(max) (LTC(4)) of these mutants was decreased but K(m) was unchanged. In contrast to the selective loss of LTC(4) transport in the Lys(332) and His(335) mutants, the MRP1-Asp(336) mutants no longer transported LTC(4), E(2)17betaG, estrone 3-sulfate, or GSH, and transport of MTX was reduced by >50%. Lys(332), His(335), and Asp(336) of TM6 are predicted to be in the outer leaflet of the membrane and are all capable of forming intrahelical and interhelical ion pairs and hydrogen bonds. The importance of Lys(332) and His(335) in determining substrate specificity and of Asp(336) in overall transport activity suggests that such interactions are critical for the binding and transport of LTC(4) and other substrates of MRP1.  相似文献   

9.
Multidrug resistance protein 3 (MRP3) is an ATP-dependent transporter of 17beta-estradiol 17beta(d-glucuronide) (E(2)17betaG), leukotriene C(4) (LTC(4)), methotrexate, and the bile salts taurocholate and glycocholate. In the present study, the role of a highly conserved Trp residue at position 1242 on MRP3 transport function was examined by expressing wild-type MRP3 and Ala-, Cys-, Phe-, Tyr-, and Pro-substituted mutants in human embryonic kidney 293T cells. Four MRP3-Trp(1242) mutants showed significantly increased E(2)17betaG uptake, whereas transport by the Pro mutant was undetectable. Similarly, the Pro mutant did not transport LTC(4). By comparison, LTC(4) transport by the Ala, Cys, Phe, and Tyr mutants was reduced by approximately 35%. The Ala, Cys, Phe, and Tyr mutants all showed greatly reduced methotrexate and leucovorin transport, except the Tyr mutant, which transported leucovorin at levels comparable with wild-type MRP3. In contrast, the MRP3-Trp(1242) substitutions did not significantly affect taurocholate transport or taurocholate and glycocholate inhibition of E(2)17betaG uptake. Thus Trp(1242) substitutions markedly alter the substrate specificity of MRP3 but leave bile salt binding and transport intact.  相似文献   

10.
The multidrug resistance protein, MRP1, is a clinically important ATP-binding cassette transporter in which the three membrane-spanning domains (MSDs), which contain up to 17 transmembrane (TM) helices, and two nucleotide binding domains (NBDs) are configured MSD1-MSD2-NBD1-MSD3-NBD2. In tumor cells, MRP1 confers resistance to a broad spectrum of drugs, but in normal cells, it functions as a primary active transporter of organic anions such as leukotriene C(4) and 17beta-estradiol 17beta-(D-glucuronide). We have previously shown that mutation of TM17-Trp(1246) eliminates 17beta-estradiol 17beta-(D-glucuronide) transport and drug resistance conferred by MRP1 while leaving leukotriene C(4) transport intact. By mutating the 11 remaining Trp residues that are in predicted TM segments of MRP1, we have now determined that five of them are also major determinants of MRP1 function. Ala substitution of three of these residues, Trp(445) (TM8), Trp(553) (TM10), and Trp(1198) (TM16), eliminated or substantially reduced transport levels of five organic anion substrates of MRP1. In contrast, Ala substitutions of Trp(361) (TM7) and Trp(459) (TM9) caused a more moderate and substrate-selective reduction in MRP1 function. More conservative substitutions (Tyr and Phe) of the Trp(445), Trp(553), and Trp(1198) mutants resulted in substrate selective retention of transport in some cases (Trp(445) and Trp(1198)) but not others (Trp(553)). Our findings suggest that the bulky polar aromatic indole side chain of each of these five Trp residues contributes significantly to the transport activity and substrate specificity of MRP1.  相似文献   

11.
Escherichia coli EmrE is a small multidrug resistance protein encompassing four transmembrane (TM) sequences that oligomerizes to confer resistance to antimicrobials. Here we examined the effects on in vivo protein accumulation and ethidium resistance activity of single residue substitutions at conserved and variable positions in EmrE transmembrane segment 2 (TM2). We found that activity was reduced when conserved residues localized to one TM2 surface were replaced. Our findings suggest that conserved TM2 positions tolerate greater residue diversity than conserved sites in other EmrE TM sequences, potentially reflecting a source of substrate polyspecificity.  相似文献   

12.
The transmembrane helix of glycophorin A contains a seven-residue motif, LIxxGVxxGVxxT, that mediates protein dimerization. Threonine is the only polar amino acid in this motif with the potential to stabilize the dimer through hydrogen-bonding interactions. Polarized Fourier transform infrared spectroscopy is used to establish a robust protocol for incorporating glycophorin A transmembrane peptides into membrane bilayers. Analysis of the dichroic ratio of the 1655-cm(-1) amide I vibration indicates that peptides reconstituted by detergent dialysis have a transmembrane orientation with a helix crossing angle of <35 degrees. Solid-state nuclear magnetic resonance spectroscopy is used to establish high resolution structural restraints on the conformation and packing of Thr-87 in the dimer interface. Rotational resonance measurement of a 2.9-A distance between the gamma-methyl and backbone carbonyl carbons of Thr-87 is consistent with a gauche- conformation for the chi1 torsion angle. Rotational-echo double-resonance measurements demonstrate close packing (4.0 +/- 0.2 A) of the Thr-87 gamma-methyl group with the backbone nitrogen of Ile-88 across the dimer interface. The short interhelical distance places the beta-hydroxyl of Thr-87 within hydrogen-bonding range of the backbone carbonyl of Val-84 on the opposing helix. These results refine the structure of the glycophorin A dimer in membrane bilayers and highlight the complementary role of small and polar residues in the tight association of transmembrane helices in membrane proteins.  相似文献   

13.
Zhang DW  Nunoya K  Vasa M  Gu HM  Theis A  Cole SP  Deeley RG 《Biochemistry》2004,43(29):9413-9425
Human multidrug resistance protein 1 (MRP1) is an ATP binding cassette (ABC) transporter that confers resistance to many natural product chemotherapeutic agents and can transport structurally diverse conjugated organic anions. MRP1 has three polytopic transmembrane domains (TMDs) and a total of 17 TM helices. Photolabeling and mutagenesis studies of MRP1 indicate that TM11, the last helix in the second TMD, may form part of the protein's substrate binding pocket. We have demonstrated that certain polar residues within a number of TM helices, including Arg(593) in TM11, are determinants of MRP1 substrate specificity or overall activity. We have now extended these analyses to assess the functional consequences of mutating the remaining seven polar residues within and near TM11. Mutations Q580A, T581A, and S585A in the predicted outer leaflet region of the helix had no detectable effect on function, while mutation of three residues close to the membrane/cytoplasm interface altered substrate specificity. Two of these mutations affected only drug resistance. N597A increased and decreased resistance to vincristine and VP-16, respectively, while S605A decreased resistance to vincristine, VP-16 and doxorubicin. The third, S604A, selectively increased 17beta-estradiol 17-(beta-d-glucuronide) (E(2)17betaG) transport. In contrast, elimination of the polar character of the residue at position 590 (Asn in the wild-type protein) uniformly impaired the ability of MRP1 to transport potential physiological substrates and to confer resistance to three different classes of natural product drugs. Kinetic and photolabeling studies revealed that mutation N590A not only decreased the affinity of MRP1 for cysteinyl leukotriene 4 (LTC(4)) but also substantially reduced the binding of ATP to nucleotide binding domain 1 (NBD1). Thus, polar interactions involving residues in TM11 influence not only the substrate specificity of MRP1 but also an early step in the proposed catalytic cycle of the protein.  相似文献   

14.
Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-binding cassette transporter that confers resistance to drugs and mediates the transport of organic anions. MRP1 has a core structure of two membrane spanning domains (MSDs) each followed by a nucleotide binding domain. This core structure is preceded by a third MSD with five transmembrane (TM) helices, whereas MSD2 and MSD3 each contain six TM helices. We investigated the consequences of Ala substitution of 18 Pro residues in both the non-membrane and TM regions of MSD2 and MSD3 on MRP1 expression and organic anion transport function. All MRP1-Pro mutants except P1113A were expressed in human embryonic kidney cells at levels comparable with wild-type MRP1. In addition, five mutants containing substitutions of Pro residues in or proximal to the TM helices of MSD2 (TM6-Pro(343), TM8-Pro(448), TM10-Pro(557), and TM11-Pro(595)) and MSD3 (TM14-Pro(1088)) exhibited significantly reduced transport of five organic anion substrates. In contrast, mutation of Pro(1150) in the cytoplasmic loop (CL7) linking TM15 to TM16 caused a substantial increase in 17beta-estradiol-17-beta-(D-glucuronide) and methotrexate transport, whereas transport of other organic anions was reduced or unchanged. Significant substrate-specific changes in the ATP dependence of transport and binding by the P1150A mutant were also observed. Our findings demonstrate the importance of TM6, TM8, TM10, TM11, and TM14 in MRP1 transport function and suggest that CL7 may play a differential role in coupling the activity of the nucleotide binding domains to the translocation of different substrates across the membrane.  相似文献   

15.
Ding PZ  Wilson TH 《Biochemistry》2001,40(18):5506-5510
The melibiose carrier of Escherichia coli is a sugar-cation cotransport system that utilizes Na(+), Li(+), or H(+). This membrane transport protein consists of 12 transmembrane helices. Starting with the cysteine-less melibiose carrier, cysteine has been substituted individually for amino acids 17-37, which includes all of the residues in membrane helix I. The carriers with cysteine substitutions were studied for their transport activity and the effect of the water soluble sulfhydryl reagent p-chloro- mercuribenzenesulfonic acid (PCMBS). Cysteine substitution caused loss of transport activity in six of the mutants (G17C, K18C, D19C, Y32C, T34C, and D35C). PCMBS caused greater than 50% inhibition in eleven mutants (F20C, A21C, I22C, G23C, I24C, V25C, Y26C, M27C, Y28C, M30C, and Y31C). We suggest that the residues whose cysteine derivatives were inhibited by PCMBS face the aqueous channel and that helix I is completely surrounded by aqueous environment. Second site revertants were isolated from K18C and Y31C. The revertants were found to have mutations in helices I, IV, and VII.  相似文献   

16.
Cytochromes P450 comprise a large superfamily and several of their isoforms play a crucial role in metabolism of xenobiotics, including drugs. Although these enzymes demonstrate broad and cross‐substrate specificity, different cytochrome P450 subfamilies exhibit certain selectivity for some types of substrates. Analysis of amino acid residues of the active sites of six cytochrome subfamilies (CYP1А, CYP2А, CYP2С, CYP2D, CYP2E and CYP3А) enables to define subfamily‐specific patterns that consist of four residues. These residues are located on the periphery of the active sites of these cytochromes. We suggest that they can form a primary binding site at the entrance to the active site, defining cytochrome substrate recognition. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
18.
Lysine decarboxylase (LDC, EC 4.1.1.18) from Selenomonas ruminantium has decarboxylating activities towards both L-lysine and L-ornithine with similar K(m) and Vmax. Here, we identified four amino acid residues that confer substrate specificity upon S. ruminantium LDC and that are located in its catalytic domain. We have succeeded in converting S. ruminantium LDC to an enzyme with a preference in decarboxylating activity for L-ornithine when the four-residue of LDC were replaced by the corresponding residues of mouse ornithine decarboxylase (EC 4.1.1.17).  相似文献   

19.
Murine multidrug resistance protein 1 (mrp1), unlike human MRP1, does not confer resistance to anthracyclines. Previously, we have shown that a human/murine hybrid protein containing amino acids 959-1187 of MRP1 can confer resistance to these drugs. We have now examined the functional characteristics of mutant proteins in which we have converted individual amino acids in the comparable region of mrp1 to those present at the respective locations in MRP1. These mutations had no effect on the drug resistance profile conferred by mrp1 with the exception of converting glutamine 1086 to glutamate, as it is in the corresponding position (1089) in MRP1. This mutation created a protein that conferred resistance to doxorubicin without affecting vincristine resistance, or the ability of mrp1 to transport leukotriene C(4) (LTC(4)) and 17beta-estradiol 17-(beta-d-glucuronide) (E(2)17betaG). Furthermore, mutation Q1086D conferred the same phenotype as mutation Q1086E while the mutation Q1086N did not detectably alter the drug resistance profile of mrp1, suggesting that an anionic side chain was required for anthracycline resistance. To confirm the importance of MRP1 E1089 for conferring resistance to anthracyclines, we mutated this residue to Gln, Asp, Ala, Leu, and Lys in the human protein. The mutation E1089D showed the same phenotype as MRP1, while the E1089Q substitution markedly decreased resistance to anthracyclines without affecting LTC(4) and E(2)17betaG transport. Conversion of Glu-1089 to Asn, Ala, or Leu had a similar effect on resistance to anthracyclines, while conversion to a positive amino acid, Lys, completely eliminated resistance to anthracyclines and vincristine without affecting transport of LTC(4), E(2)17betaG, and the GSH-dependent substrate, estrone-3-sulfate. These results demonstrate that an acidic amino acid residue at position 1089 in predicted TM14 of MRP1 is critical for the ability of the protein to confer drug resistance particularly to the anthracyclines, but is not essential for its ability to transport conjugated organic anions such as LTC(4) and E(2)17betaG.  相似文献   

20.
The gene encoding the endo-beta-N-acetylglucosaminidase from Flavobacterium sp. (Endo-Fsp) was sequenced. The Endo-Fsp gene was overexpressed in Escherichia coli cells, and was purified from inclusion bodies after denaturation by 8 M urea. The renatured Endo-Fsp had the same optimum pH and substrate specificity as the native enzyme. Endo-Fsp had 60% sequence identity with the endo-beta-N-acetylglucosaminidase from Streptomyces plicatus (Endo-H), and the putative catalytic residues were conserved. Site-directed mutagenesis was done at conserved residues based on the three-dimensional structure and mutagenesis of Endo-H. The mutant of Glu-128, corresponding to Glu-132 in Endo-H and identified as an active site residue, was inactivated. Mutagenesis around the predicted active site of Endo-Fsp reduced the enzymatic activity. Moreover, the hydrolytic activity toward hybrid-type oligosaccharides was decreased compared to that toward high-mannose type oligosaccharides by mutagenesis of Asp-126 and Asp-127. Therefore, site-directed mutagenesis of some of these conserved residues indicates that the predicted active sites are essential to the enzymatic activity of Endo-Fsp, and may have similar roles in catalysis as their counterparts in Endo-H.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号