首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
When platelets are stimulated by thrombin they immediately undergo inositol lipid hydrolysis via phospholipase C activation. However, subsequently an increased production of phosphatidylinositol 4,5-bisphosphate is observed. Phospholipases C were inhibited by lowering the cytoplasmic free calcium concentration by preincubation with Quin-2-tetra(acetoxymethyl) ester. Aggregation and secretion were also totally suppressed. Under these conditions we observed an increased labeling of phosphatidylinositol 4,5-bisphosphate, indicating a stimulation of inositol lipid kinases, independent of lipid hydrolysis by phospholipase C. Conversely the production of phosphatidylinositol 3,4-bisphosphate was totally abolished. These results suggest a different regulation of the kinases/phosphatases responsible for the production of phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4-bisphosphate.  相似文献   

4.
The atrioventricular node (AVN) is a vital component of the pacemaker-conduction system of the heart, co-ordinating conduction of electrical excitation from cardiac atria to ventricles and acting as a secondary pacemaker. The electrical behaviour of the AVN is modulated by vagal activity via activation of muscarinic potassium current, IKACh. However, it is not yet known if this response exhibits 'fade' or desensitization in the AVN, as established for the heart's primary pacemaker--the sinoatrial node. In this study, acute activation of IKACh in rabbit single AVN cells was investigated using whole-cell patch clamp at 37 °C. 0.1-1 μM acetylcholine (ACh) rapidly activated a robust IKACh in AVN myocytes during a descending voltage-ramp protocol. This response was inhibited by tertiapin-Q (TQ; 300 nM) and by the M2 muscarinic ACh receptor antagonist AFDX-116 (1 μM). During sustained ACh exposure the elicited IKACh exhibited bi-exponential fade (τf of 2.0 s and τs 76.9 s at -120 mV; 1 μM ACh). 10 nM ET-1 elicited a current similar to IKACh, which faded with a mono-exponential time-course (τ of 52.6 s at -120 mV). When ET-1 was applied following ACh, the ET-1 activated response was greatly attenuated, demonstrating that ACh could desensitize the response to ET-1. For neither ACh nor ET-1 was the rate of current fade dependent upon the initial response magnitude, which is inconsistent with K+ flux mediated changes in electrochemical driving force as the underlying mechanism. Collectively, these findings demonstrate that TQ sensitive inwardly rectifying K+ current in cardiac AVN cells, elicited by M2 muscarinic receptor or ET-1 receptor activation, exhibits fade due to rapid desensitization.  相似文献   

5.
G protein-gated inwardly rectifying K(+) (GIRK) channels are parasympathetic effectors in cardiac myocytes that act as points of integration of signals from diverse pathways. Neurotransmitters and hormones acting on the Gq protein regulate GIRK channels by phosphatidylinositol 4,5-bisphosphate (PIP(2)) depletion. In previous studies, we found that endothelin-1, but not bradykinin, inhibited GIRK channels, even though both of them hydrolyze PIP(2) in cardiac myocytes, showing receptor specificity. The present study assessed whether the spatial organization of the PIP(2) signal into caveolar microdomains underlies the specificity of PIP(2)-mediated signaling. Using biochemical analysis, we examined the localization of GIRK and Gq protein-coupled receptors (GqPCRs) in mouse atrial myocytes. Agonist stimulation induced a transient co-localization of GIRK channels with endothelin receptors in the caveolae, excluding bradykinin receptors. Such redistribution was eliminated by caveolar disruption with methyl-β-cyclodextrin (MβCD). Patch clamp studies showed that the specific response of GIRK channels to GqPCR agonists was abolished by MβCD, indicating the functional significance of the caveolae-dependent spatial organization. To assess whether low PIP(2) mobility is essential for PIP(2)-mediated signaling, we blocked the cytoskeletal restriction of PIP(2) diffusion by latrunculin B. This abolished the GIRK channel regulation by GqPCRs without affecting their targeting to caveolae. These data suggest that without the hindered diffusion of PIP(2) from microdomains, PIP(2) loses its signaling efficacy. Taken together, these data suggest that specific targeting combined with restricted diffusion of PIP(2) allows the PIP(2) signal to be compartmentalized to the targets localized closely to the GqPCRs, enabling cells to discriminate between identical PIP(2) signaling that is triggered by different receptors.  相似文献   

6.
Inward rectifier K(+) (Kir) channels are activated by phosphatidylinositol-(4,5)-bisphosphate (PIP(2)), but G protein-gated Kir (K(G)) channels further require either G protein βγ subunits (Gβγ) or intracellular Na(+) for their activation. To reveal the mechanism(s) underlying this regulation, we compared the crystal structures of the cytoplasmic domain of K(G) channel subunit Kir3.2 obtained in the presence and the absence of Na(+). The Na(+)-free Kir3.2, but not the Na(+)-plus Kir3.2, possessed an ionic bond connecting the N terminus and the CD loop of the C terminus. Functional analyses revealed that the ionic bond between His-69 on the N terminus and Asp-228 on the CD loop, which are known to be critically involved in Gβγ- and Na(+)-dependent activation, lowered PIP(2) sensitivity. The conservation of these residues within the K(G) channel family indicates that the ionic bond is a character that maintains the channels in a closed state by controlling the PIP(2) sensitivity.  相似文献   

7.
Aluminum fluoride (AlF4-) activates the heterotrimeric G protein Gs (stimulatory G protein of adenylylcyclase) (Sternweis, P. C., and Gilman, A. G. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 4888-4891) and GT (transducin), and for GT, Bigay et al. (Bigay, J., Deterre, P., Pfister, C., and Chabre, M. (1985) FEBS Lett. 191, 181-185) have made the intriguing proposal that AlF4- acts by mimicking the gamma-phosphate of GTP. The endogenous G protein (probably G alpha i-2 or G alpha i-3 (Yatani, A., Mattera, R., Codina, J., Graf, R., Okabe, K., Padrell, E., Iyengar, R., Brown, A. M., and Birnbaumer, L. (1988) Nature 336, 680-682) that stimulates the muscarinic atrial K+ (K+[ACh]) channel is also thought to be activated by AlF4- (Kurachi, Y., Nakajima, T., and Ito, H. (1987) Circulation 76, 105P). To investigate the AlF4- mechanism, we applied potassium fluoride (KF) to the cytoplasmic face of inside-out membrane patches excised from guinea pig atria. We found that KF activated single K+[ACh] channel currents in both a concentration- and a Mg(2+)-dependent manner. Activation persisted following removal of KF, but unlike activation by guanosine 5'-(3-thiotriphosphate) (GTP gamma S), was fully reversed by removal of Mg2+. Evidence for Al3+ involvement was that the Al3+ chelator deferoxamine (500 microM) inhibited KF activation and that at low concentrations of KF (less than 1 mM), micromolar AlCl3 concentrations potentiated KF stimulation. The rate of activation produced by KF was far slower than the rate produced by GTP or GTP gamma S, and unlike these guanine nucleotides, the rate was unchanged in the presence of agonist. To test the gamma-phosphate-mimicking hypothesis, we evaluated the requirement for GDP; and to accomplish this, it was necessary to establish a condition that ensured exchange of guanine nucleotides. This condition was satisfied by using the muscarinic agonist carbachol because both the rate and the extent of activation of the K+[ACh] channels produced by GTP were much faster in carbachol, and both were greatly slowed when GDP was added along with GTP. By contrast, the effects of KF were unchanged by carbachol in the presence or absence of GDP. Further evidence that GDP is not essential for activation by AlF4- was provided by the observation that during carbachol activation and following extensive washing with GMP, guanosine 5'-O-(2-thiodiphosphate) at blocking concentrations had no effect on activation produced by KF.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
G protein-activated inwardly rectifying K(+) (GIRK) channels, expressed in atrial myocytes, various neurons, and endocrine cells, represent the paradigmatic target of beta gamma subunits released from activated heterotrimeric G proteins. These channels contribute to physiological slowing of cardiac frequency and synaptic inhibition. They are activated by beta gamma dimers released upon stimulation of receptors coupled to pertussis toxin-sensitive G proteins (G(i/o)), whereas beta gamma released from G(s) do not converge on the channel subunits. This is in conflict with the finding that dimeric combinations of various beta and gamma subunits can activate GIRK channels with little specificity. In the present study, we have overexpressed the major subtypes of cardiac beta-adrenergic receptors (beta(1)-AR and beta(2)-AR) in atrial myocytes by transient transfection. Whereas in native cells beta-adrenergic stimulation with isoproterenol failed to induce measurable GIRK current, robust currents were recorded from myocytes overexpressing either beta(1)-AR or beta(2)-AR. Whereas the beta(2)-AR-induced current showed the same sensitivity to pertussis toxin as the current evoked by the endogenous G(i/o)-coupled muscarinic M(2) receptor, isoproterenol-activated currents were insensitive to pertussis toxin treatment in beta(1)-AR-overexpressing myocytes. In contrast to a recent publication (Leaney, J. L., Milligan, G., and Tinker, A. (2000) J. Biol. Chem. 275, 921-929), sizable GIRK currents could also be activated by isoproterenol when the signaling pathway was reconstituted by transient transfection in two different standard cell lines (Chinese hamster ovary and HEK293). These results demonstrate that specificity of receptor-G protein signaling can be disrupted by overexpression of receptors. Moreover, the alpha subunit of heterotrimeric G proteins does not confer specificity to G beta gamma-mediated signaling.  相似文献   

9.
Phosphatidylinositol 4,5-bisphosphate (PIP2) regulates Shaker K+ channels and voltage-gated Ca2+ channels in a bimodal fashion by inhibiting voltage activation while stabilizing open channels. Bimodal regulation is conserved in hyperpolarization-activated cyclic nucleotide–gated (HCN) channels, but voltage activation is enhanced while the open channel state is destabilized. The proposed sites of PIP2 regulation in these channels include the voltage-sensor domain (VSD) and conserved regions of the proximal cytoplasmic C terminus. Relatively little is known about PIP2 regulation of Ether-á-go-go (EAG) channels, a metazoan-specific family of K+ channels that includes three gene subfamilies, Eag (Kv10), Erg (Kv11), and Elk (Kv12). We examined PIP2 regulation of the Elk subfamily potassium channel human Elk1 to determine whether bimodal regulation is conserved within the EAG K+ channel family. Open-state stabilization by PIP2 has been observed in human Erg1, but the proposed site of regulation in the distal C terminus is not conserved among EAG family channels. We show that PIP2 strongly inhibits voltage activation of Elk1 but also stabilizes the open state. This stabilization produces slow deactivation and a mode shift in voltage gating after activation. However, removal of PIP2 has the net effect of enhancing Elk1 activation. R347 in the linker between the VSD and pore (S4–S5 linker) and R479 near the S6 activation gate are required for PIP2 to inhibit voltage activation. The ability of PIP2 to stabilize the open state also requires these residues, suggesting an overlap in sites central to the opposing effects of PIP2 on channel gating. Open-state stabilization in Elk1 requires the N-terminal eag domain (PAS domain + Cap), and PIP2-dependent stabilization is enhanced by a conserved basic residue (K5) in the Cap. Our data shows that PIP2 can bimodally regulate voltage gating in EAG family channels, as has been proposed for Shaker and HCN channels. PIP2 regulation appears fundamentally different for Elk and KCNQ channels, suggesting that, although both channel types can regulate action potential threshold in neurons, they are not functionally redundant.  相似文献   

10.
G protein-activated inwardly rectifying potassium channels (Kir3) are widely expressed throughout the brain, and regulation of their activity modifies neuronal excitability and synaptic transmission. In this study, we show that the neurotrophin brain-derived neurotrophic factor (BDNF), through activation of TrkB receptors, strongly inhibited the basal activity of Kir3. This inhibition was subunit dependent as functional homomeric channels of either Kir3.1 or Kir3.4 were significantly inhibited, whereas homomeric channels composed of Kir3.2 were insensitive. The general tyrosine kinase inhibitors genistein, G? 6976, and K252a but not the serine/threonine kinase inhibitor staurosporine blocked the BDNF-induced inhibition of the channel. BDNF was also found to directly stimulate channel phosphorylation because Kir3.1 immunoprecipitated from BDNF-stimulated cells showed enhanced labeling by anti-phosphotyrosine-specific antibodies. The BDNF effect required specific tyrosine residues in the amino terminus of Kir3.1 and Kir3.4 channels. Mutations of either Tyr-12, Tyr-67, or both in Kir3.1 or mutation of either Tyr-32, Tyr-53, or both of Kir3. 4 channels to phenylalanine significantly blocked the BDNF-induced inhibition. The insensitive Kir3.2 was made sensitive to BDNF by adding a tyrosine (D41Y) and a lysine (P32K) upstream to generate a phosphorylation site motif analogous to that present in Kir3.4. These results suggest that neurotrophin activation of TrkB receptors may physiologically control neuronal excitability by direct tyrosine phosphorylation of the Kir3.1 and Kir3.4 subunits of G protein-gated inwardly rectifying potassium channels.  相似文献   

11.
J Ibarra  G E Morley    M Delmar 《Biophysical journal》1991,60(6):1534-1539
The potassium selective, inward rectifier current (IK1) is known to be responsible for maintaining the resting membrane potential of quiescent ventricular myocytes. However, the contribution of this current to the different phases of the cardiac action potential has not been adequately established. In the present study, we have used the action potential clamp (APC) technique to characterize the dynamic changes of a cesium-sensitive (i.e., Ik1) current which occur during the action potential. Our results show that (a) Ik1 is present during depolarization, as well as in the final phase of repolarization of the cardiac action potential. (b) The current reaches the zone of inward-going rectification before the regenerative action potential ensues. (c) The maximal outward current amplitude during repolarization is significantly lower than during depolarization, which supports the hypothesis that in adult guinea pig ventricular myocytes, Ik1 rectification is accentuated during the action potential plateau. Our results stress the importance of Ik1 in the modulation of cell excitability in the ventricular myocyte.  相似文献   

12.
Using the patch clamp technique, we examined the agonist-free, basal interaction between the muscarinic acetylcholine (m-ACh) receptor and the G protein (GK)-gated muscarinic K+ channel (IK.ACh), and the modification of this interaction by ACh binding to the receptor in single atrial myocytes of guinea pig heart. In the whole cell clamp mode, guanosine-5'-O-(3-thiotriphosphate) (GTP-gamma S) gradually increased the IK.ACh current in the absence of agonists (e.g., acetylcholine). This increase was inhibited in cells that were pretreated with islet-activating protein (IAP, pertussis toxin) or N-ethylmaleimide (NEM). In inside-out patches, even in the absence of agonists, intracellular GTP caused openings of IK.ACh in a concentration-dependent manner in approximately 80% of the patches. Channel activation by GTP in the absence of agonist was much less than that caused by GTP-gamma S. The agonist-independent, GTP-induced activation of IK.ACh was inhibited by the A promoter of IAP (with nicotinamide adenine dinucleotide) or NEM. As the ACh concentration was increased, the GTP-induced maximal open probability of IK.ACh was increased and the GTP concentration for the half-maximal activation of IK.ACh was decreased. Intracellular GDP inhibited the GTP-induced openings of IK.ACh in a concentration-dependent fashion. The half-inhibition of IK.ACh openings occurred at a much lower concentration of GDP in the absence of agonists than in the presence of ACh. From these results, we concluded (a) that the interaction between the m-ACh receptor and GK is essential for basal stimulation of IK.ACh, and (b) that ACh binding to the receptor accelerates the turnover of GK and increases GK's affinity to GTP analogues over GDP.  相似文献   

13.
Ceramides inhibit phospholipase D (PLD) activity in several mammalian cell types. These effects have been related to preventing activation by ARF1, RhoA, and protein kinase C-alpha and -beta and therefore indicate that PLD1 is inhibited. In the present work, we investigated the effects of ceramides in inhibiting both PLD1 and PLD2 and the interaction with another activator, phosphatidylinositol 4,5-bisphosphate (PIP2). PLD1 and PLD2 were overexpressed separately in Sf9 insect cells using baculovirus vectors. In our cell-free system, PLD1 activity was inhibited completely by C2-ceramide at sub-optimum concentrations of PIP2 (3 and 6 microM), whereas at supra-optimum PIP2 concentrations (18 and 24 microM) C2-ceramide did not inhibit PLD1 activity. Partially purified PLD2 exhibited an absolute requirement for PIP2 when the activity was measured using Triton X-100 micelles. Ceramides inhibited PLD2 activity, and this inhibition was decreased as PIP2 concentrations increased. However, C2-ceramide also reversibly inhibited the activity of PLD1 and PLD2 mutants in which binding of PIP2 was decreased, indicating that ceramides are interacting with the catalytic core of the mammalian PLDs. By contrast, C2-ceramide failed to produce a significant inhibition of PLDs from bacteria and plants. Our results provide a novel demonstration that ceramides reversibly inhibit mammalian PLD2 as well as PLD1 activities and that both of these actions are more pronounced when PIP2 concentrations are rate-limiting.  相似文献   

14.
Elevation of intracellular Ca2+ by platelet-derived growth factor (PDGF) and other growth factors involves both release of Ca2+ from intracellular Ca2+ stores and Ca2+ entry from the extracellular medium. Release from intracellular stores is believed to be mediated by inositol 1,4,5-trisphosphate (IP3) and the heparin-sensitive IP3 receptor. We studied the mechanism by which entry of extracellular Ca2+ is induced by PDGF. Intracellular free Ca2+ (Ca2+i) was measured in single cultured rat vascular smooth muscle cells using fura 2 microspectrofluorometry. In nominally Ca2(+)-free medium, PDGF (recombinant BB, 10 ng/ml) raised intracellular Ca2+ transiently (less than 5 min); addition of 2 mM Ca2+ to the bathing medium after 5 min caused a second, prolonged increase in intracellular Ca2+. Repeated changes in extracellular Ca2+ from 0 to 2 mM over 90 min caused rapid, parallel changes in Ca2+i of approximately 200 nM. This change in Ca2+i in response to changes in extracellular Ca2+ was virtually undetectable in control or thrombin-treated cells. The intracellular response to changes in medium Ca2+ after PDGF was completely blocked by 10 mM CoCl2, but not by 10(-7) M nicardipine. Microinjection of monoclonal antibodies to phosphatidylinositol 4,5-bisphosphate (PIP2) (kt 10, 2 mg/ml) totally abolished both mobilization of intracellular Ca2+ stores and entry of extracellular Ca2+. Consistent with this finding, maintenance of Ca2+ entry required ongoing receptor occupancy, since displacement of PDGF from its receptor with suramin (1 mM) eradicated extracellular Ca2+ entry in less than 5 min. To determine whether extracellular Ca2+ entry involves the heparin-sensitive IP3 receptor, cells were microinjected with heparin (4 mg/ml) prior to addition of PDGF. Heparin, but not chondroitin sulfate, prevented mobilization of intracellular Ca2+ stores but did not affect extracellular Ca2+ entry. We PDGF requires ongoing receptor occupancy and involves PIP2 or PIP2 metabolism. However, the signal which mediates PDGF-induced Ca2+ entry does not require the heparin-sensitive IP3 receptor.  相似文献   

15.
The effects of leukotriene C4 (LTC4) on activation of muscarinic acetylcholine receptor (mAChR)-stimulated, inwardly rectifying K+ current (IK[ACh]) were examined in single bullfrog atrial myocytes using the whole-cell patch clamp technique. LTC4 produced a reversible, concentration-dependent increase in steady-state, guanosine-gamma- thiotriphosphate (GTP gamma S)-activated IK[ACh], with a K0.5 of 3.1 microM. LTC4 also increased the rate of GTP gamma S-mediated IK[ACh] activation, both in the absence and presence of 1 nM ACh, with comparable K0.5 values of 4.7 microM under basal conditions and 4.9 microM in the presence of 1 nM ACh. LTC4 did not alter the relative affinities of the G protein, Gk, for GTP gamma S and GTP. We hypothesize that all of the effects of LTC4 on the kinetics of Gk- mediated IK[ACh] activation are produced at a common site with a K0.5 of 3-5 microM. The effects of LTC4 on IK[ACh] activation are fully reversible in the presence of GTP gamma S. Under physiological conditions (i.e., intracellular GTP), 10 microM LTC4 increased the ACh- activated peak IK[ACh]. Inhibitors of cellular LTC4 production, including 5,8,11,14-eicosatetraynoic acid, baicalein, cinnamyl-3,4- dihydroxy-alpha-cyanocinnamate, and alpha-pentyl-4-(2- quinolinylmethoxy)-benzene methanol, greatly attenuated ACh-dependent IK[ACh] activation, preventing activation of peak, and producing a lower steady-state IK[ACh] (when compared with the control response in the same cell). Addition of exogenous LTC4 was able to overcome the effects of LTC4 synthesis inhibitors, restoring both the peak and steady-state IK[ACh] responses. Although the mechanism of LTC4-mediated modulation of IK[ACh] activation is not known, our results suggest that endogenously produced lipoxygenase metabolites of arachidonic acid, specifically LTC4, are involved in the physiological process of IK[ACh] activation.  相似文献   

16.
Synaptic cleft acidification occurs following vesicle release. Such a pH change may affect synaptic transmissions in which G-protein-coupled inward rectifier K(+) (GIRK) channels play a role. To elucidate the effect of extracellular pH (pH(o)) on GIRK channels, we performed experiments on heteromeric GIRK1/GIRK4 channels expressed in Xenopus oocytes. A decrease in pH(o) to 6.2 augmented GIRK1/GIRK4 currents by approximately 30%. The channel activation was reversible and dependent on pH(o) levels. This effect was produced by selective augmentation of single channel conductance without change in the open-state probability. To determine which subunit was involved, we took advantage of homomeric expression of GIRK1 and GIRK4 by introducing a single mutation. We found that homomeric GIRK1-F137S and GIRK4-S143T channels were activated at pH(o) 6.2 by approximately 20 and approximately 70%, respectively. Such activation was eliminated when a histidine residue in the M1-H5 linker was mutated to a non-titratable glutamine, i.e. H116Q in GIRK1 and H120Q in GIRK4. Both of these histidines were required for pH sensing of the heteromeric channels, because the mutation of one of them diminished but not abolished the pH(o) sensitivity. The pH(o) sensitivity of the heteromeric channels was completely lost when both were mutated. Thus, these results suggest that the GIRK-mediated synaptic transmission is determined by both neurotransmitter and protons with the transmitter accounting for only 70% of the effect on postsynaptic cell and protons released together with the transmitter contributing to the other 30%.  相似文献   

17.
Despite their physicochemical and mechanistic differences platelet activating factor (or acetylglycerylether phosphorylcholine; AGEPC) and thrombin, both platelet stimulatory agents, induce phosphoinositide turnover in platelets. We therefore investigated the stimulation of the phosphoinositide phosphodiesterase by these agents and questioned whether they evoked hydrolysis of the same or different pools of phosphoinositides. [3H]Inositol-labelled rabbit platelets were challenged with thrombin and/or AGEPC under a variety of protocols, and the phospholipase C mediated production of radioactive inositol monophosphate (IP); inositol bisphosphate (IP2) and inositol trisphosphate (IP3) was used as the parameter. AGEPC (1 X 10(-9) M) caused a transient maximum (5 to 6-fold) increase in [3H]IP3 at 5 s followed by a decrease. Thrombin (2 U/ml) elicited an increase in [3H]IP3 at a much slower rate than AGEPC; 2 fold at 5 s, 5 fold at 30 s and a maximum 6 to 8-fold at 2-5 min. Compared to AGEPC, thrombin stimulated generation of [3H]IP2 and [3H]IP were severalfold higher. When thrombin and AGEPC were added together to platelets there was no evidence for an additive increase in inositol polyphosphate levels except at earlier time points where increases were submaximal. When AGEPC was added at various time intervals after thrombin pretreatment, no additional increases in [3H]IP3 were observed over that maximally seen with thrombin or AGEPC alone. In another set of experiments, submaximal increases (about 1/4 and 1/2 of maximum) in [3H]IP3 were achieved by using selected concentrations of thrombin (0.1 U and 0.3 U, respectively) and then AGEPC (1 X 10(-9) M) was added for 5 s. Once again the increase in [3H]IP3 was close to the maximal level seen with thrombin or AGEPC individually. It is concluded that thrombin and AGEPC differentially activated phosphoinositide phosphodiesterase (phospholipase C) in rabbit platelets and that the stimulation of the phospholipase C by these two stimuli causes IP3 production via hydrolysis of a common pool of phosphatidylinositol 4,5-bisphosphate.  相似文献   

18.
Depolarization of pancreatic beta-cells is critical for stimulation of insulin secretion by acetylcholine but remains unexplained. Using voltage-clamped beta-cells, we identified a small inward current produced by acetylcholine, which was suppressed by atropine or external Na(+) omission, but was not mimicked by nicotine, and was insensitive to nicotinic antagonists, tetrodotoxin, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DiDS), thapsigargin pretreatment, and external Ca(2+) and K(+) removal. This suggests that muscarinic receptor stimulation activates voltage-insensitive Na(+) channels distinct from store-operated channels. No outward Na(+) current was produced by acetylcholine when the electrochemical Na(+) gradient was reversed, indicating that the channels are inward rectifiers. No outward K(+) current occurred either, and the reversal potential of the current activated by acetylcholine in the presence of Na(+) and K(+) was close to that expected for a Na(+)-selective membrane, suggesting that the channels opened by acetylcholine are specific for Na(+). Overnight pretreatment with pertussis toxin or the addition of guanosine 5'-O-(3-thiotriphosphate) (GTP-gamma-S) or guanosine-5'-O-(2-thiodiphosphate) (GDP-beta-S) instead of GTP to the pipette solution did not alter this current, excluding involvement of G proteins. Injection of a current of a similar amplitude to that induced by acetylcholine elicited electrical activity in beta-cells perifused with a subthreshold glucose concentration. These results demonstrate that muscarinic receptor activation in pancreatic beta-cells triggers, by a G protein-independent mechanism, a selective Na(+) current that explains the plasma membrane depolarization.  相似文献   

19.
Phospholipase D (PLD) is a major plant phospholipase family involved in many cellular processes such as signal transduction, membrane remodeling, and lipid degradation. Five classes of PLDs have been identified in Arabidopsis thaliana, and Ca(2+) and polyphosphoinositides have been suggested as key regulators for these enzymes. To investigate the catalysis and regulation mechanism of individual PLDs, surface-dilution kinetics studies were carried out on the newly identified PLDdelta from Arabidopsis. PLDdelta activity was dependent on both bulk concentration and surface concentration of substrate phospholipids in the Triton X-100/phospholipid mixed micelles. V(max), K(s)(A), and K(m)(B) values for PLDdelta toward phosphatidylcholine or phosphatidylethanolamine were determined; phosphatidylethanolamine was the preferred substrate. PLDdelta activity was stimulated greatly by phosphatidylinositol 4,5-bisphosphate (PIP(2)). Maximal activation was observed at a PIP(2) molar ratio around 0.01. Kinetic analysis indicates that PIP(2) activates PLD by promoting substrate binding to the enzyme, without altering the bulk binding of the enzyme to the micelle surface. Ca(2+) is required for PLDdelta activity, and it significantly decreased the interfacial Michaelis constant K(m)(B). This indicates that Ca(2+) activates PLD by promoting the binding of phospholipid substrate to the catalytic site of the enzyme.  相似文献   

20.
Addition of phytohaemagglutinin (PHA) to the [32P]Pi-prelabelled JURKAT cells, a human T-cell leukaemia line, resulted in a decrease of [32P]phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] to about 35% of the control value. The decrease was almost complete within 30s after the PHA addition. This decrease was followed by an increase in the 32P-labelling of phosphatidic acid (maximally 2.8-fold at 2 min). The stimulation of myo-[2-3H]inositol-prelabelled JURKAT cells by PHA induced an accumulation of [2-3H]inositol trisphosphate in the presence of 5 mM-LiCl. The result indicates hydrolysis of PtdIns (4,5)P2 by a phospholipase C. The PHA stimulation of JURKAT cells induced about 6-fold increase in the cytosolic free Ca2+ concentration, [Ca2+]i, which was reported by Quin-2, a fluorescent Ca2+ indicator. Studies with partially Ca2+-depleted JURKAT cells, with the Ca2+ ionophore A23187, and with 8-(diethylamino)-octyl-3,4,5-trimethoxybenzoate indicate that the breakdown of PtdIns(4,5)P2 is not mediated through changes of [Ca2+]i. These results therefore indicate that the PHA-induced breakdown of PtdIns(4,5)P2 in JURKAT cells is not dependent on the Ca2+ mobilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号