首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of various inhibitors of aryl hydrocarbon hydroxylase (AHH), antioxidants, inhibitors of DNA, RNA, and protein synthesis, and protease inhibitors on the binding of [7,12-3H]dimethylbenz[a]anthracene ([3H] DMBA) to DNA of murine epidermal cells in culture have been investigated. 7,8-Benzoflavone, 5,6-benzoflavone and methyrapone (inhibitors of AAH) and antioxidants, butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT), efficiently reduced the binding of [3H] DMBA to cellular DNA. Inhibitors of DNA and RNA synthesis did not affect this process whereas inhibitors of protein synthesis suppressed the binding of [3H] DMBA to cellular DNA. Protease inhibitors p-tosylamide-2-phenylchloromethyl ketone (TPCK) and p-tosyl-L-lysine chloromethyl ketone (TLCK) also reduced the interaction between DMBA and DNA. Thus, it appears that binding of DMBA to cellular DNA is regulated at the level of translation or/and post translation.  相似文献   

2.
Protein kinases are involved in a variety of cellular functions and cell proliferation in eyes. We have explored the involvement of protein kinase C (PKC) in cell proliferation and melanin synthesis by chick retinal pigment epithelial (RPE) cells in vitro. This was achieved by incubation of confluent RPE cells with known inhibitors of protein kinase, H-7, W-7, H-8, and staurosporine. Chick RPE cells were cultured in the presence or absence of the protein kinase inhibitors for a 10-day period. Effects of the inhibitors on cell proliferation and melanin synthesis, as an indication of cell differentiation, were assessed by counting the number of surviving cells and by measuring the melanin content in the cells, respectively. H-7, W-7, and staurosporine inhibited cell proliferation and increased melanin synthesis in a concentration-dependent manner during culture; however, H-8 did not produce these cellular effects. These findings indicate that PKC and calcium/calmodulin-dependent kinase pathways are involved in the proliferation and differentiation of chick RPE cells.  相似文献   

3.
4.
Protease inhibitors affecting the activity of the proteasome were reported to induce programmed cell death (apoptosis) in some mammalian cell lines. Proteasome activity can be suppressed by specific peptide derivatives and by N‐tosyl‐lysine‐chloromethyl‐ketone (TLCK) and N‐tosyl‐phenylalanine‐chloromethyl‐ketone (TPCK), which affect the trypsine‐ and chymotrypsine‐like activities of the proteasome, respectively. Particularly TLCK and TPCK caused necrotic cell death in the unicellular green alga Chlamydomonas reinhardtii. As a control, the effects of these protease inhibitors on the survival of human WISH cells were also studied. Bleaching of the Chlamydomonas cells after addition of TLCK or TPCK indicated that reactive oxygen species (ROS) were involved in this process. Indeed, increased levels of ROS were detected in Chlamydomonas cells treated with TLCK or TPCK. Furthermore, cell death induced by these protease inhibitors was accelerated by illumination and prevented or slowed down by scavengers of ROS.  相似文献   

5.
The prostacyclin (PGI2) production in rat liver cells by treatment by N-tosyl-L-phenylalanine chloromethyl ketone (TPCK) and 12-O-tetradecanoylphorbol-13-acetate (TPA) is not dependent upon the simultaneous presence of both ligands. Preincubation of the rat liver cells with TPA followed by addition of TPCK, as well as preincubation of the cells with TPCK followed by addition of TPA, results in PGI2 production. Maximum production is found after a 10 min incubation with TPA or after a 120 min incubation with TPCK. Preincubation with TPA for longer than 10 min or preincubation with TPCK for longer than 2 h results in reduced stimulation of PGI2 production. Dexamethasone does not eliminate the effects of either preincubation or simultaneous addition of TPCK and TPA. EGTA does not affect either preincubation reaction but does completely inhibit PGI2 production after simultaneous addition of the agents. Preincubation of the cells for 30 min with aspirin completely inhibits the TPCK-TPA-stimulated PGI2 synthesis. The PGI2 production following exogenous addition of arachidonic acid to the cells is unaffected by prior treatment of the cells with TPA, TPCK, or TPA plus TPCK. Taken together the data suggest that TPA stimulates the production of an intermediate which activates a Ca2+-dependent phospholipase activity. The intermediate is inactivated by a protease which is inhibited by the SH-reactive agent TPCK. The released arachidonic acid is oxygenated by the constitutively expressed cyclooxygenase (prostaglandin H synthase-1).  相似文献   

6.
The role of protease in streptolysin S formation   总被引:4,自引:0,他引:4  
Production of streptolysin S by streptococci was found to be inhibited by treatment with protease inhibitors, tosylphenylalanine chloromethyl ketone (TPCK), tosyllysine chloromethyl ketone (TLCK), or phenylmethylsulfonyl fluoride (PMSF), even in the presence of the inducer oligonucleotides. Other protease inhibitors, antipain, leupeptin, or pepstatin were found to have little or no effect. Trypsin reversed the effect of TPCK or TLCK. The reversal was dependent upon the amount of added trypsin and the incubation time at 37 degrees C, suggesting that a protease activity was involved in the hemolysin formation. The effect of trypsin was not observed if chloramphenicol was also added, suggesting that a precursor of streptolysin S was processed as it was synthesized and released into medium as the active hemolysin, by the concerted action of a protease and inducer oligonucleotides. Experiments with the subcellular fractions of streptococci indicated that the streptolysin precursor was localized in the insoluble fraction and the "processing" protease in the supernatant fraction.  相似文献   

7.
We report here by using stopped-flow fluorometry with three different fluorescent probes that a serine protease triggers the initial step of transmembrane signalling in cytotoxic T cells. When cytotoxic T cells (mouse LC7, H-2b anti H-2d) bound to the specific target cells (mouse mastocytoma P815, H-2d), cytotoxic T cells first increased their membrane fluidity, and calcium then was released from intracellular stores. After that, there was a calcium influx from the external medium into the T cells. All of these steps, however, were blocked by serine protease inhibitors (soybean trypsin inhibitor, N alpha-p-tosyl-L-lysine chloromethyl ketone and tosylphenylalanyl chloromethyl ketone). Bovine pancreatic trypsin and chymotrypsin in the external medium mimicked the signalling events which were triggered by the serine protease on the T cell surfaces. From the reaction time (within 1 s) and its specificity, this serine protease in cytotoxic T cells was considered to be different from a protease which works at the killing stage.  相似文献   

8.
Abstract

The characterization of cell death induced by 1-(3-C-ethynyl-β-D-ribo-pentofuranosyl)cytosine(ECyd), a potent inhibitor of RNA synthesis, was performed using mouse mammary tumor FM3A cells in vitro. Accompanied with the cell death induced by ECyd (3.0 μM)-treatment, about 100–200 kbp-sized and internucleosomal DNA fragmentation were observed by orthogonal-field-alternation gel electrophoresis (OFAGE) and conventional gel electrophoresis, respectively. Protease inhibitors, carbobenzoxy-L-aspart-1-yl[(2,6-dichlorobenzoyl)oxy]methane (Z-Asp-CH2-DCB), Nα-p-tosyl-L-lysine chloromethyl ketone (TLCK) and N-p-tosyl-L-phenylalanine chloromethyl ketone (TPCK), effectively blocked the cell death, suggesting that the proteases inhibited by Z-Asp-CH2-DCB, TLCK or TPCK were involved in the process of the cell death.  相似文献   

9.
N-Tosyl-L-phenylalanyl chloromethyl ketone (TPCK), a chymotrypsin-like serine protease inhibitor, affected apoptosis in human monocytic THP.1 cells differently dependent on both the concentration used and the apoptotic stimulus. TPCK (50 - 75 microM) induced both biochemical and ultrastructural changes characteristic of apoptosis, including proteolysis of poly (ADP-ribose) polymerase (PARP) and lamins together with formation of large kilobase pair fragments of DNA, particularly of 30 - 50 and 200 - 300 kilobase pairs in length but without internucleosomal cleavage of DNA. The induction of apoptosis by TPCK also involved the processing of CPP32 and Mch 3 to their catalytically active subunits. Benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethyl ketone (Z-VAD.FMK), an ICE-like protease inhibitor, completely prevented all the biochemical and morphological changes induced by TPCK demonstrating the involvement of ICE-like proteases in the execution phase of apoptosis. Lower concentrations of TPCK (5 - 20 microM) prevented internucleosomal cleavage of DNA induced by other apoptotic stimuli. TPCK (10 microM) inhibited cell death induced by etoposide but potentiated that induced by cycloheximide demonstrating that it differentially affected apoptosis in THP.1 cells dependent on the stimulus used. These results are consistent with at least three distinct TPCK targets, one being important for cell survival, the second in facilitating internucleosomal cleavage of DNA and the third in the modulation of apoptosis induced by different apoptotic stimuli.  相似文献   

10.
The intracellular signal transduction mechanism leading to desmosome formation in low-calcium-grown keratinocytes after addition of calcium to the medium was studied by immunofluorescence using antibodies to desmoplakins I and II (cytoplasmic desmosomal proteins) and by electron microscopy before and after addition of calcium; protein kinase C (PKC) activators 12-O-tetradecanoylphorbol-13-acetate (TPA), phorbol-12,13-dibutyrate (PDBu), and 1,2-dioctanoylglycerol (DOG); calcium ionophore A23187; selective PKC inhibitors 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7) and staurosporine; and a Ca2+/calmodulin-dependent kinase inhibitor, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7). In previous studies using a low-calcium-grown human epidermal squamous cell carcinoma, we have shown that an increase in extracellular Ca2+ caused a four-fold increase in PKC activity and addition of TPA (10 ng/ml) induced a transient increase in membrane-bound PKC activity in association with cell-cell contact formation. The present study showed that TPA (10 ng/ml). PDBu (10 ng/ml), and DOG (1 mg/ml) induced a rapid cell-cell contact and redistribution of desmoplakins from cytoplasm to the plasma membrane with desmosome formation within 60-120 min, which was similar, although less marked, to the effect of increased Ca2+. The TPA-induced desmosome formation was inhibited by selective PKC inhibitors, H-7 (20 microM) or staurosporine (100 nM). On the other hand, calcium ionophore A23187 induced only a temporary increase in the number of desmoplakin-containing fluorescent spots in the cytoplasm and a temporary cell-cell attachment without desmosome formation. The calcium-induced desmosome formation was partially inhibited by 20-100 microM H-7 or 100 nM staurosporine; however, it was not inhibited by W-7 at a concentration of 25 microM, at which this agent selectively inhibits calmodulin-dependent protein kinase. These results suggest that PKC activation plays an important role in desmoplakin translocation from the cytoplasm to the plasma membrane as one of the processes of calcium-induced desmosome formation.  相似文献   

11.
The role of proteases in the invasion of host cells by Eimeria tenella (Wisconsin strain) was studied in vitro. Protease inhibitors were used to treat sporozoites before inoculation or were applied to cultured chicken kidney cells before infection. The inhibitors antipain, leupeptin, aprotinin, L-1-tosylamide-2-phenyl-ethyl chloromethyl ketone (TPCK), or N-alpha-p-tosyl-L-lysine chloromethyl ketone (TLCK) reduced parasite invasion to 16-66% of control after treatment of cultured cells or sporozoites with 5- or 50-micrograms/ml concentrations of inhibitors in the culture medium. Phenylmethylsulfonyl fluoride (PMSF) reduced invasion to 32-57.7% at concentrations of 1-4 mM. The optimum pH for hydrolysis of azocasein by intact sporozoites or merozoites was determined over a range of pH 5.0 to pH 9.0. Sporozoites were highly active over a broad range from pH 5.5 to pH 9.0, with an apparent optimum at pH 8.0. Merozoites had a much lower specific activity with pH optima at 7.0 and 8.5. The protease activity of sporozoites or merozoites could be inhibited completely by the addition of 50 micrograms/ml of leupeptin, TPCK, or TLCK or of 4 mM PMSF. Antipain inhibited proteases of sporozoites but not of merozoites. Pepstatin had little effect on either sporozoites or merozoites. The results suggest that parasite proteases of Eimeria may be necessary for invasion of host cells.  相似文献   

12.
Down regulation of phorbol diester receptors was studied with respect to proteolysis of protein kinase C, which is activated by Ca2+, phospholipids, and diacylglycerols and which binds to phorbol diesters. We used FRSK cells, a cell line derived from fetal rat skin keratinocytes, because in these cells specific binding of phorbol 12,13-dibutyrate decreased rapidly (50% decrease in 30 min). This decrease (down regulation) was inhibited by some protease inhibitors, such as N-tosyl-L-phenylalanine chloromethyl ketone (TPCK), N-p-tosyl-L-lysine chloromethyl ketone (TLCK), and leupeptin, but not by inhibitors of lysosomal hydrolases. On treatment with 12-O-tetradecanoylphorbol 13-acetate, protein kinase C was rapidly translocated from the cytosol to the membranes and then decreased. This decrease in protein kinase C was also inhibited by TPCK, TLCK, and leupeptin. The decrease in membrane activity of protein kinase C was associated with increase in cytosolic activity of a protein kinase that was smaller in molecular weight (Mr 40,000-60,000) than protein kinase C, did not depend on Ca2+/phosphatidylserine/diacylglycerol, and did not bind to phorbol 12,13-dibutyrate. These results indicate that down regulation of phorbol diester receptors is probably caused by nonlysosomal proteolysis of protein kinase C. The kinase formed by cleavage may be an active catalytic site of protein kinase C.  相似文献   

13.
We have previously demonstrated that activation of protein kinase C (PKC) by phorbol esters induces selectively IgA synthesis by mouse B cells. In this study, we investigated the effects of a number of protein kinase inhibitors on IgA secretion induced by a recombinant murine IL-5 in LPS-stimulated mouse B cells. The results show that PKC inhibitors, such as sphingosine (SPH), staurosporine (STP) and H-7, blocked IL-5-induced IgA synthesis; the protein kinase A inhibitor HA-1004 and the inhibitor of calcium/calmodulin dependent protein kinase W-7 had no effect on IgA secretion induced by IL-5. The proliferation of the IL-5 sensitive B13 cell line in response to IL-5 was also inhibited by addition of SPH or STP or H-7. The data suggest an involvement of the PKC pathway in IL-5-induced B cell differentiation into IgA secreting cells.  相似文献   

14.
Tosyllysine chloromethyl ketone and tosylphenylalanine chloromethyl ketone in vitro are active-site specific and irreversible inhibitors of trypsin (EC 3.4.21.4) and chymotrypsin (EC. 3.4.21.1) respectively. Using rat hepatoma cells in suspension culture, both inhibitors were found to partially inhibit breakdown of prelabelled cell proteins ot amino acids, the effect being greastest in the absence of serum. Protein synthesis in rat hepatoma cells, reticulocytes and reticulyte lysates was also irreversibly inhibited by these compounds. Reduction of ATP levels with antimycin a inhibited protein degradation, but neither tosylphenylalanine chloromethyl ketone nor tosyllysine chloromethyl ketone had any effect on ATP concentration in rat hepatoma cells. These results suggest that the degradation of at least some proteins in animal cells may involve the action of serine protease(s).  相似文献   

15.
Tosyllysine chloromethyl ketone and tosylphenylalanine chloromethyl ketone in vitro are active-site specific and irreversible inhibitors of trypsin (EC 3.4.21.4) and chymotrypsin (EC. 3.4.21.1) respectively. Using rat hepatoma cells in suspension culture, both inhibitors were found to partially inhibit breakdown of prelabelled cell proteins ot amino acids, the effect being greastest in the absence of serum. Protein synthesis in rat hepatoma cells, reticulocytes and reticulyte lysates was also irreversibly inhibited by these compounds. Reduction of ATP levels with antimycin a inhibited protein degradation, but neither tosylphenylalanine chloromethyl ketone nor tosyllysine chloromethyl ketone had any effect on ATP concentration in rat hepatoma cells. These results suggest that the degradation of at least some proteins in animal cells may involve the action of serine protease(s).  相似文献   

16.
Nα-p-tosyl-L-lysine chloromethyl ketone (TLCK) stimulates lipid synthesis in locust fat body in vitro, and is able to reverse the inhibitory effects of AKH-I on lipid synthesis. Effective stimulatory concentrations of TLCK were in the range of 0.2–1.0 mM. Similar stimulatory effects were also achieved with phenylalanine chloromethyl ketone (PheCK) and leucine chloromethyl ketone (LeuCK), but not with tosyl-phenylalanine chloromethyl ketone (TPCK), dansyl-glu-gly-arg-CK, chloroacetone, chloroacetic acid, chloroacetamide, chloroacetaldehyde, chloroacetyl-L-leucine or acetylated or fluorescamine-labelled TLCK, PheCK, and LeuCK. The level of stimulation caused by TLCK was dependent on incubation time, so that after a 5-h preincubation of fat body tissue with TLCK the stimulated rate was severalfold higher than the control. TLCK also increased the rate of uptake of trehalose and uridine, but not glucose, deoxyglucose or glycine. Increasing concentrations of bovine serum albumin (BSA) in the incubation medium caused a reduction in the rate of TLCK-stimulated acetate uptake, such that levels of uptake were no higher with 1% BSA than in the controls. A range of more specific protease and kinase inhibitors was tested, but none caused stimulation; thus the mode of action of TLCK on the stimulation of acetate uptake has yet to be identified. Elucidation of the mode of action of TLCK may facilitate the development of novel compounds for insect pest control. Arch. Insect Biochem. Physiol. 39:9–17, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
In this report we propose a model in which after the herpes simplex virus (HSV) capsid docks at the nuclear pore, the tegument protein attached to the capsid must be cleaved by a serine or a cysteine protease in order for the DNA to be released into the nucleus. In support of the model are the following results. (i) Exposure of cells at the time of or before infection to l-(tosylamido-2-phenyl) ethyl chloromethyl ketone (TPCK), a serine-cysteine protease inhibitor, prevents the release of viral DNA or expression of viral genes. TPCK does not block viral gene expression after entry of viral DNA into the nucleus. (ii) The tegument protein VP1-2, the product of the U(L)36 gene, is cleaved shortly after the entry of the HSV 1 (HSV-1) virion into the cell. (iii) The proteolytic cleavage of VP1-2 does not occur in cells that are infected with HSV-1 under conditions that prevent the release of the viral DNA into the nucleus. (iv) The proteolytic cleavage of VP1-2 occurs only after the capsid is attached to the nuclear pore. Thus, TPCK prevented the release of HSV-1 DNA into the nucleus when added to medium 1 hour after infection with tsB7 at 39.5 degrees C followed by a shift down to the permissive temperature. The ts lesion maps in the U(L)36 gene. At the nonpermissive temperature, the capsids accumulate at the nuclear pore but the DNA is not released into the nucleus.  相似文献   

18.
A search for alternative sterilants in parasitic fish encouraged us to explore the usefulness of proteinase inhibitors for this purpose. Fertilization in sea lamprey species (Petromyzon marinus L.) was inhibited by chymotrypsin and trypsin inhibitors 4'-acetamidophenyl 4-guanidinobenzoate (AGB), chymostatin, tosyl-L-lysine chloromethyl ketone (TLCK), and N-tosyl-L-phenylalanine chloromethyl ketone (TPCK) when these substances were added into a fertilization medium at the time of fertilization. Preincubation of eggs before fertilization with 100 microM TPCK, but not TLCK, resulted in inhibition of fertilization. Conversely, preincubation of spermatozoa with TLCK, but not TPCK, produced inhibition of fertilization. These data suggest the involvement of the chymotrypsin-like activity of eggs and trypsin-like activity of spermatozoa in fertilization. However, enzymes present in sperm suspensions were able to hydrolyze a chymotrypsin substrate N-glutaryl-L-phenylalanine-p-nitroanilide (GPNA) but not trypsin substrate N-alpha-benzoyl-DL-arginine-p-nitroanilide (BAPNA). The nature of this activity can be characterized as serine protease and our results indicate the involvement of serine proteinases in the fertilization of sea lamprey.  相似文献   

19.
The effect of protease inhibitors on invasion of rhesus erythrocytes by Plasmodium knowlesi merozoites was evaluated. Chymostatin, N-alpha-p-tosyl-L-lysine chloromethyl ketone (TLCK), and L-1-tosylamide-2-phenylethylchloromethyl ketone (TPCK) inhibited invasion. Leupeptin, antipain, pepstatin, and phenylmethylsulfonyl fluoride (PMSF) had no effect. TLCK and TPCK inhibited attachment of merozoites to host erythrocytes. Chymostatin had no adverse effect on attachment, and in its presence junction formation between the merozoite and host erythrocyte occurred. Both chymostatin and leupeptin inhibited normal rupture of schizont-infected erythrocytes. It is suggested that proteolytic activity may be important both in the rupture of schizont-infected erythrocytes and in the invasion of erythrocytes by malaria parasites.  相似文献   

20.
In poliovirus-infected HeLa-S3 cells, the protease inhibitors tolylsulfonyl-phenylalanyl chloromethyl ketone and iodoacetamide cause an accumulation of large precursor proteins, and they block viral RNA synthesis most probably via these products. Viral RNA polymerase activity can, however, be extracted by detergent containing buffer (Tris/Nonidet P-40, deoxycholate) from the inhibited cells. Only cytoplasmic extracts from infected cells treated with tolylsulfonyl-phenylalanyl chloromethyl ketone or iodoacetamide contain a protein which inhibits the in vitro polymerase reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号