首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Teliospores were aerated and agitated in a mineral salts medium and their free amino acid contents were analyzed at eight different times, from shortly after imbibition of water until just before germ tube emergence. In addition to the common amino acids, eight unidentified ninhydrin-positive components were detected. About 50 % or more of nearly each of the amino acids diffused out of the spores during the initial phase of germination. These released amino acids were actively taken up by the spores during the latter stages of germination. The free amino acids in largest amounts in the dormant spores of T. caries were arginine 15.0, glutamic acid 6.3, and alanine 3.7 μmoles per g dry spores. Together these three amino acids accounted for about 71 % of the total free amino acids in dormant spores of T. caries and T. controversa. The total amounts of free amino acids in spores of common bunt were much higher than in spores of dwarf bunt.  相似文献   

2.
A gas chromatographic analysis method was employed to determine the cellular fatty acid (CFA) profiles of spores and vegetative cells of some aerobic endospore-forming bacilli. The harvests of experimental strains were processed to obtain pure spores and acquire whole cell fatty acid methyl esters for the subsequent gas chromatographic analysis, and the corresponding vegetative cells were set as control. Evaluation of reproducibility of spore CFA components revealed that, provided under standardized experimental procedure, spore CFA composition was stable enough for research purposes. Fatty acids recovered in spores in greater quantities were saturated branched-chain acids containing 15 and 17 carbon atoms, similar to the vegetative cells. Commonly, the proportions of saturated branched-chain acids in spores were greater than in vegetative cells. The dendrograms obtained by cluster analysis provided some meaningful taxonomic information of the experimental strains. The fatty acids analysis of spores seems to be a promising supplementary tool for the chemotaxonomic research of aerobic endospore-forming bacilli.  相似文献   

3.
The efficacy of different organic acids in decreasing the heat resistance of Paenibacillus polymyxa spores was assessed. The relationship between concentration of the undissociated form of different organic acids and decrease in heat resistance was also investigated. The heat resistance of P. polymyxa spores was tested in distilled water at 85, 90 and 95 degrees C, at pH4 and in the presence of 50, 100 and 200 mmol l(-1) of the undissociated form of lactic, citric or acetic acid and sodium citrate or acetate. The undissociated form of organic acids was responsible for increasing the heat sensitivity of spores. The most effective acid was lactic acid. The D values of the spores decreased rapidly (between 74 and 43%) in the presence of 50 mmol l(-1) of the undissociated form of organic acid, and increasing concentrations of these forms affected the heat resistance of spores less than proportionally. The heat resistance of the spores in milk was approximately threefold lower than in distilled water. This work has shown that the undissociated fraction of organic acids increases, albeit non-linearly, the sensitivity of spores to heat, even in complex substrates such as milk. By knowing the amount of organic acids added to a given substrate, their dissociation constants and the final pH, it could be possible to estimate the concentration of undissociated forms and the corresponding increase in lethality of heat treatments. This would help the food industry to maximize the lethality achieved by heat processes and/or safely reduce the heat treatments already in use.  相似文献   

4.
Polytrichum commune spores contained 5.61 ± 0.52 mg steryl and wax esters, including volatile compounds, per 100 mg dry weight of spores. Volatile compounds were not found in 3-h-old sporelings. The content of the steryl and wax ester fraction, excluding the volatile compounds, is slightly increased during the first 6 h of germination. Thereafter, the content is decreased throughout the germination. Thus, 3-day-old sporelings contained 0.52 ± 0.05 mg steryl and wax esters per 100 mg dry weight of spores. In connection with protonema growth, steryl and wax esters were produced, and the 7-day-old cultures contained 5.09 ± 0.37 mg steryl and wax esters per 100 mg dry weight of spores. The main fatty acids of the steryl and wax ester fraction of dry spores and germinating spores as well as of protonemata were palmitic, oleic, linoleic and linolenic acids. Polyunsaturated C 20 acids were present only in trace or small amounts. Phytanic and phytenic acids were found in small amounts in dry spores, in 3- to 72-h-old sporelings, and in protonemata.  相似文献   

5.
若干需氧芽孢杆菌芽孢脂肪酸成分分析   总被引:3,自引:0,他引:3  
51株需氧芽孢杆菌纯化后的芽孢培养物经处理抽提全细胞脂肪酸甲酯 ,用于气相色谱分析 ,同时以相应的繁殖体作为对照。芽孢脂肪酸成分的重现性实验发现 ,芽孢的脂肪酸成分比较稳定。将脂肪酸百分含量编制成原始数据矩阵 ,以 Statistica5.0统计软件进行聚类分析 ,得到两张分别基于芽孢脂肪酸成分和繁殖体脂肪酸成分的实验菌株树状聚类图。通过对比这两张图可以得出一些有意义的结论 ,同时也说明芽孢脂肪酸分析可望成为需氧芽孢杆菌化学分类的新手段。  相似文献   

6.

Background

The first step of the bacterial lifecycle is the germination of bacterial spores into their vegetative form, which requires the presence of specific nutrients. In contrast to closely related Bacillus anthracis spores, Bacillus cereus spores germinate in the presence of a single germinant, inosine, yet with a significant lag period.

Methods and Findings

We found that the initial lag period of inosine-treated germination of B. cereus spores disappeared in the presence of supernatants derived from already germinated spores. The lag period also dissipated when inosine was supplemented with the co-germinator alanine. In fact, HPLC-based analysis revealed the presence of amino acids in the supernatant of germinated B. cereus spores. The released amino acids included alanine in concentrations sufficient to promote rapid germination of inosine-treated spores. The alanine racemase inhibitor D-cycloserine enhanced germination of B. cereus spores, presumably by increasing the L-alanine concentration in the supernatant. Moreover, we found that B. cereus spores lacking the germination receptors gerI and gerQ did not germinate and release amino acids in the presence of inosine. These mutant spores, however, germinated efficiently when inosine was supplemented with alanine. Finally, removal of released amino acids in a washout experiment abrogated inosine-mediated germination of B. cereus spores.

Conclusions

We found that the single germinant inosine is able to trigger a two-tier mechanism for inosine-mediated germination of B. cereus spores: Inosine mediates the release of alanine, an essential step to complete the germination process. Therefore, B. cereus spores appear to have developed a unique quorum-sensing feedback mechanism to monitor spore density and to coordinate germination.  相似文献   

7.
Lipids were extracted from vegetative cells and spores of Clostridium botulinum. The total lipids extracted averaged approximately 3.8% of the dry weight of vegetative cells and 2.5% of the dry weight of spores of types 61E, “F,” and 115B. The fatty acids were analyzed in the form of their methyl esters by gas-liquid chromatography. Infrared spectroscopy, mercuric acetate fractionation, and silver nitratethin layer chromatography served as complementary means of analysis. The total fatty acids included straight chain, saturated, unsaturated, and cyclopropane acids. Hexadecanoic and tetradecanoic acids were the predominant acids in both the spores and vegetative cells. Together, they comprised over 50% of the total fatty acids. Unsaturated acids were the second major group. These were primarily 7,8-tetradecenoic, 9,10-hexadecenoic, 7,8-hexadecenoic, 11,12-octadecenoic, and 9,10-octadecenoic acids. Nonproteolytic types 61E and “F” possessed an 18-carbon diunsaturate, which was not found in the vegetative cells or spores of proteolytic type 115B. A mechanism for the synthesis of unsaturated and cyclopropane acids was proposed.  相似文献   

8.
Treatment of Bacillus cereus T spores with trichloroacetic acid delayed their germination. The extent of retardation depended on the concentration of trichloroacetic acid, and the temperature, pH and duration of treatment. The effect was completely reversed by subsequent heating, and this restoration of germination also depended on the temperature and duration of heat treatment. Fourteen compounds were examined for their ability to suppress germination of spores. The halogenated fatty acids tested, such as trifluoro-, tribromo-, and dichloroacetic acid, caused suppression of germination, whereas other compounds, i.e., free fatty acids and amino acids, did not. It is concluded that the charge distribution of fatty acid molecules is important for their effect in suppressing germination of spores.  相似文献   

9.
The levels of transfer ribonucleic acids (tRNAs) specific for 14 amino acids were almost identical in dormant spores and in spores germinated from 6 to 75 min. Germinated spore tRNAs specific for all amino acids tested were between 63 and 93% charged, and there was no significant change in this value from 6 to 75 min of germination. In contrast, tRNAs isolated from dormant spores specific for nine different amino acids were almost completely(>93%) uncharged. However, some dormant spore tRNAs, i.e., those for arginine, histidine, isoleucine, and valine, showed significant (21 to 72%) levels of aminoacylation. Dormant spores contained no detectable guanosine penta- (pppGpp), tetra- (ppGpp), or triphosphate (GTP). However, these nucleotides appeared in the first minutes of germination, and thereafter all increased in parallel with a ratio of pppGpp plus ppGpp to GTP of 0.07 to 0.11, which is characteristic of unstarved vegetative cells.  相似文献   

10.
Transfer ribonucleic acid (tRNA) fractions isolated from germinated and ungerminated spores of Botryodiplodia theobromae and Rhizopus stolonifer had acceptor activity for all 20 amino acids commonly found in protein, when tested with an enzyme fraction from germinated spores. Accordingly, it is unlikely that the absence of tRNA for a particular amino acid limits protein synthesis in fungal spores.  相似文献   

11.
The possible role of sialic acids in host cells–fungi interaction and their association with glycoproteins were evaluated using a clinical isolate of the dimorphic fungus Mucor polymorphosporus. Lectin-binding assays with spores and yeast cells denoted the presence of surface sialoglycoconjugates containing 2,3- and 2,6-linked sialylglycosyl groups. Western blotting with peroxidase-labeled Limulus polyphemus agglutinin revealed the occurrence of different sialoglycoprotein types in both cell lysates and cell wall protein extracts of mycelia, spores, and yeasts of M. polymorphosporus. Sialic acids contributed to the surface negative charge of spores and yeast forms as evaluated by adherence to a cationic substrate. Sialidase-treated spores were less resistant to phagocytosis by human neutrophils and monocytes from healthy individuals than control (untreated) fungal suspensions. The results suggest that sialic acids are terminal units of various glycoproteins of M. polymorphosporus, contributing to negative charge of yeasts and spore cells and protecting infectious propagules from destruction by host cells.  相似文献   

12.
Germination of spores of the fungus Botryodiplodia theobromae was inhibited by the antilipogenic antibiotic cerulenin. The spores remained viable in the presence of the antibiotic, however, and after prolonged incubation they were able to overcome the inhibition. Cerulenin inhibition of germination was reversed by Tween 40 and Tween 60 (derivatives of palmitate and stearate, respectively), but not by representatives of a range of free fatty acids or their soaps. Cerulenin abolished incorporation of [14C]acetate into sterols and triglycerides and reduced its incorporation into fatty acids by 69%. Cyanide-sensitive oxygen consumption by spores incubated in the presence of cerulenin was greatly reduced throughout germination, and the activity of cytochrome c oxidase was no more than 13% of the activity in untreated spores, even after prolonged incubation. However, low-temperature difference spectra of mitochondrial extracts showed that the cerulenin-treated spores accumulated a threefold excess of cytochrome a, whereas the cellular concentrations of cytochroms c and b were identical to those of untreated spores. Cerulenin treatment sharply reduced the rates of whole spore protein and RNA synthesis. Cerulenin had no effects upon mitochondrial morphology which could be discerned with an electron microscope.  相似文献   

13.
The synthesis of teichoic acids has been examined during germination in Bacillus licheniformis ATCC 9945 and in B. subtilis W-23. Teichoic acids are absent from the spores of both organisms. B. licheniformis spores lack the enzymes responsible for teichoic acid synthesis. The appearance of these enzymes during germination is correlated with the appearance of teichoic acids in the cell. The appearance of teichoic acid-synthesizing enzymes and of teichoic acids in the cell are inhibited by the addition of chloramphenicol to the germination medium. In B. subtilis W-23 the situation is similar for the synthesis of polyribitolphosphate. The synthesis of glucosyl polyribitolphosphate is only partially inhibited by chloramphenicol, puromycin, and penicillin, and uridine diphosphate-d-glucose polyribitol-phosphate glucosyl transferase can be demonstrated in spores. The possible implications of some of these observations are discussed.  相似文献   

14.
Lipids are the major form of carbon storage in arbuscular-mycorrhizal fungi. We studied fatty acid synthesis by Glomus intraradices and Gigaspora rosea. [(14)C]Acetate and [(14)C]sucrose were incorporated into a synthetic culture medium to test fatty acid synthetic ability in germinating spores (G. intraradices and G. rosea), mycorrhized carrot roots, and extraradical fungal mycelium (G. intraradices). Germinating spores and extraradical hyphae could not synthesize 16-carbon fatty acids but could elongate and desaturate fatty acids already present. The growth stimulation of germinating spores by root exudates did not stimulate fatty acid synthesis. 16-Carbon fatty acids (16:0 and 16:1) were synthesized only by the fungi in the mycorrhized roots. Our data strongly suggest that the fatty acid synthase activity of arbuscular-mycorrhizal fungi is expressed exclusively in the intraradical mycelium and indicate that fatty acid metabolism may play a major role in the obligate biotrophism of arbuscular-mycorrhizal fungi.  相似文献   

15.
The regulation exerted by ammonium and other nitrogen sources on amino acid utilization was studied in swollen spores of Penicillium chrysogenum. Ammonium prevented the L-lysine, L-arginine and L-ornithine utilization by P. chrysogenum swollen spores seeded in complete media, but not in carbon-deficient media. Transport of L-[14C]lysine into spores incubated in presence of carbon and nitrogen sources was fully inhibited by ammonium ions (35 mM). However, in carbon-derepressed conditions (growth in absence of sugars, with amino acids as the sole carbon source) L-[14C]lysine transport was only partially inhibited. Competition experiments showed that L-lysine (1 mM) inhibits the utilization of L-arginine, and vice versa, L-arginine inhibits the L-lysine uptake. High concentrations of L-ornithine (100 mM) prevented the L-lysine and L-arginine utilization in P. chrysogenum swollen spores. In summary, ammonium seems to prevent the utilization of basic amino acids in P. chrysogenum spores by inhibiting the transport of these amino acids through their specific transport system(s), but not through the general amino acid transport system that is operative under carbon-derepression conditions.  相似文献   

16.
The biochemical and physiological basis of density heterogeneity in Renografin of Bacillus subtilis W23 spores was determined by analysis of metals, macromolecules, and dipicolinic acid in the two density classes of the population. Germination rate and heat resistance were measured in both density classes. Atomic absorption spectrophotometry revealed that heavy spores (density = 1.335 g/ml) have 30% more calcium than light spores (density = 1.290 g/ml). Other metals found in greater amounts in heavy spores were manganese and potassium. However, light spores had more sodium than heavy spores. The amounts of carbohydrates, nucleic acids, and proteins were the same in both types of spores, but light spores contained more lipids, whereas heavy spores had 30% more dipicolinic acid than light spores. Calcium and lipid were excluded as causes of the heterogeneity in density in that alteration of their contents in spores did not detectably affect the density of these spores. Spores of two densities were genetically similar. Furthermore, light density spores arose earlier during sporulation than heavy spores as determined by releasing refractile forespores at various times during sporulation. We concluded that light spores represent an incomplete stage in development because they became heavy when reinoculated into spent sporulation medium. This must involve the additional accretion or synthesis of dipicolinic acid.  相似文献   

17.
The composition of lipids and fatty acids was studied in the spores of exogenously dormant (spores 0) and germinating (spores G) spores in distilled water for sporangiospores of zygomycetous fungi Cunninghamella echinulata VKM F-663 and Umbelopsis ramanniana VKM F-582 and for conidia of ascomycetous fungi Aspergillus tamarii VKM F-64 and A. sydowii VKM F-441. Compared to spores 0, the lipids of spores G contained higher shares of unsaturated fatty acids, lower levels of massive phospholipids (phosphatidylcholine and phosphatidylethanolamine), and elevated levels of phosphatidylglycerol and phosphatidic acid. The level of cardiolipin, the main phospholipid of the mitochondrial membranes, increased when the spores of both zygomycetes exited from the dormant state. While a certain increase in the content of free and esterified sterols in the neutral lipids of the slowly germinating U. ramanniana G spores was observed, germination of sporangiospores and conidia of the studied fungi generally did not result in significant changes in the composition of the neutral lipid classes, which may be due to the fact that they are not the major reserve mobilized at the stage of exit from the dormant state.  相似文献   

18.
Formation of pool amino acids in germinating spores of Aspergillusniger strain 1617 was investigated. The pool amino acids comprisedmainly glutamic acid and alanine. Small amounts of pyruvateand -ketoglutarate were found to increase almost in parallelwith the course of increase in the amount of free amino acidsup to the stage of onset of active protein synthesis. Asparticglutamictransaminase activity was exhibited even in dormant spores andit developed in response to the increase in cellular protein.Alanine-glutamic transaminase activity, on the other hand, waslacking in dormant spores and appeared at the stage of accumulationof amino acids preceding protein synthesis. It was revealed from the experiments with 35S-labeled sporesthat the dormant spores of this fungus contain two unidentifiedsulfur substances, and the sulfur of these substances is incorporatedinto the sulfur amino acids of the protein synthesized in germinatingspores. 1Present address: Institute of Applied Microbiology, Universityof Tokyo, Tokyo (Received September 11, 1959; )  相似文献   

19.
AIMS: To determine if treatment of Bacillus subtilis spores with a variety of oxidizing agents causes damage to the spore's inner membrane. METHODS AND RESULTS: Spores of B. subtilis were killed 80-99% with wet heat or a variety of oxidizing agents, including betadine, chlorine dioxide, cumene hydroperoxide, hydrogen peroxide, Oxone, ozone, sodium hypochlorite and t-butylhydroperoxide, and the agents neutralized and/or removed. Survivors of spores pretreated with oxidizing agents exhibited increased sensitivity to killing by a normally minimal lethal heat treatment, while spores pretreated with wet heat did not. In addition, spores treated with wet heat or the oxidizing agents, except sodium hypochlorite, were more sensitive to high NaCl in plating media than were untreated spores. The core region of spores treated with at least two oxidizing agents was also penetrated much more readily by methylamine than was the core of untreated spores, and spores treated with oxidizing agents but not wet heat germinated faster with dodecylamine than did untreated spores. Spores of strains with very different levels of unsaturated fatty acids in their inner membrane exhibited essentially identical resistance to oxidizing agents. CONCLUSIONS: Treatment of spores with oxidizing agents has been suggested to cause damage to the spore's inner membrane, a membrane whose integrity is essential for spore viability. The sensitization of spores to killing by heat and to high salt after pretreatment with oxidizing agents is consistent with and supports this suggestion. Presumably mild pretreatment with oxidizing agents causes some damage to the spore's inner membrane. While this damage may not be lethal under normal conditions, the damaged inner membrane may be less able to maintain its integrity, when dormant spores are exposed to high temperature or when germinated spores are faced with osmotic stress. Triggering of spore germination by dodecylamine likely involves action by this agent on the spore's inner membrane allowing release of the spore core's depot of dipicolinic acid. Presumably dodecylamine more readily alters the permeability of a damaged inner membrane and thus more readily triggers germination of spores pretreated with oxidizing agents. Damage to the inner spore membrane by oxidizing agents is also consistent with the more rapid penetration of methylamine into the core of treated spores, as the inner membrane is likely the crucial permeability barrier to methylamine entry into the spore core. As spores of strains with very different levels of unsaturated fatty acids in their inner membrane exhibited essentially identical resistance to oxidizing agents, it is not through oxidation of unsaturated fatty acids that oxidizing agents kill and/or damage spores. Perhaps these agents work by causing oxidative damage to key proteins in the spore's inner membrane. SIGNIFICANCE AND IMPACT OF THE STUDY: The more rapid heat killing and germination with dodecylamine, the greater permeability of the spore core and the osmotic stress sensitivity in outgrowth of spores pretreated with oxidizing agents is consistent with such agents causing damage to the spore's inner membrane, even if this damage is not lethal under normal conditions. It may be possible to take advantage of this phenomenon to devise improved, less costly regimens for spore inactivation.  相似文献   

20.
对各种含氮基质、葡萄糖和(或)根浸出液中培养的丛枝菌根真菌Glomus intraradices孢子,在萌发过程中对不同氮素的利用及其氨基酸的生物合成进行了研究.用稳定同位素标记及质谱仪来分析不同氮素的利用和氨基酸的生物合成.以高效液相色谱测量氨基酸的浓度.在缺少外源氮素的情况下,丛枝菌根真菌孢子萌发时可以利用内部储存的含氮化合物生物合成游离氨基酸.其中,丝氨酸和甘氨酸是大量合成的氨基酸.合成的氨基酸浓度在2周内随着萌发时间的增加而增加.在有可利用的外源无机氮(铵盐、硝酸盐和尿素)和有机氮(氨基酸)时,铵盐和尿素比硝酸盐更容易被AM真菌萌发孢子利用,而其利用氨基酸中的氮比无机氮源慢的多.孢子吸收同化外源无机氮,且将其整合到游离氨基酸中,这些新生氨基酸浓度比无外源氮添加时要高得多.在无葡萄糖添加的硝酸盐培养液中,AM真菌孢子中积累大量天冬酰胺.然而,在含有葡萄糖的培养液中,萌发孢子因葡萄糖的吸收促进了对外源氮的吸收,产生的游离氨基酸是无葡萄糖时的5倍,并且发现精氨酸转为含量最多的游离氨基酸.并且,从外源氮吸收同化的氮可以储存于精氨酸中,随之,精氨酸被整合到AM真菌孢子储存的蛋白质中.此外,根浸出原液在AM真菌孢子萌发2周后对氮的吸收作用不明显.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号