共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Beta-structure in glyceraldehyde-3-phosphate dehydrogenase 总被引:1,自引:0,他引:1
5.
Identification of tissue transglutaminase-reactive lysine residues in glyceraldehyde-3-phosphate dehydrogenase 下载免费PDF全文
Stefania Orru Margherita Ruoppolo Simona Francese Luigi Vitagliano Gennaro Marino Carla Esposito 《Protein science : a publication of the Protein Society》2002,11(1):137-146
Polyglutamine domains are excellent substrates for tissue transglutaminase resulting in the formation of cross-links with polypeptides containing lysyl residues. This finding suggests that tissue transglutaminase may play a role in the pathology of neurodegenerative diseases associated with polyglutamine expansion. The glycolytic enzyme GAPDH previously was shown to tightly bind several proteins involved in such diseases. The present study confirms that GAPDH is an in vitro lysyl donor substrate of tissue transglutaminase. A dansylated glutamine-containing peptide was used as probe for labeling the amino-donor sites. SDS gel electrophoresis of a time-course reaction mixture revealed the presence of both fluorescent GAPDH monomers and high molecular weight polymers. Western blot analysis performed using antitransglutaminase antibodies reveals that tissue transglutaminase takes part in the formation of heteropolymers. The reactive amino-donor sites were identified using mass spectrometry. Here, we report that of the 26 lysines present in GAPDH, K191, K268, and K331 were the only amino-donor residues modified by tissue transglutaminase. 相似文献
6.
Mechanism of glyceraldehyde-3-phosphate transfer from aldolase to glyceraldehyde-3-phosphate dehydrogenase 总被引:3,自引:0,他引:3
The catalytic interaction of glyceraldehyde-3-phosphate dehydrogenase with glyceraldehyde 3-phosphate has been examined by transient-state kinetic methods. The results confirm previous reports that the apparent Km for oxidative phosphorylation of glyceraldehyde 3-phosphate decreases at least 50-fold when the substrate is generated in a coupled reaction system through the action of aldolase on fructose 1,6-bisphosphate, but lend no support to the proposal that glyceraldehyde 3-phosphate is directly transferred between the two enzymes without prior release to the reaction medium. A theoretical analysis is presented which shows that the kinetic behaviour of the coupled two-enzyme system is compatible in all respects tested with a free-diffusion mechanism for the transfer of glyceraldehyde 3-phosphate from the producing enzyme to the consuming one. 相似文献
7.
Hybridization of glyceraldehyde-3-phosphate dehydrogenase 总被引:2,自引:0,他引:2
M Kochman J Golebiowska T Baranowski J R Dedman D W Fodge B G Harris 《FEBS letters》1974,41(1):104-107
8.
Grant A. Bitter Kenneth K. H. Chang Kevin M. Egan 《Molecular & general genetics : MGG》1991,231(1):22-32
Summary The majority of the activation potential of the Saccharomyces cerevisiae TDH3 gene promoter is contained within nucleotides –676 to –381 (relative to the translation initiation codon). An upstream activation sequence (UAS) in this region has been characterized by in vitro and in vivo assays and demonstrated to be composed of two small, adjacent DNA sequence elements. The essential determinant of this upstream UAS is a general regulatory factor 1 (GRF1) binding site at nucleotides –513 to –501. A synthetic DNA element comprising this sequence, or an analogue in which two of the degenerate nucleotides of the GRF1 site consensus sequence were altered, activated 5 deleted TDH3 and CYC1 promoters. The second DNA element of the UAS is a 7 by sequence which is conserved in the promoters of several yeast genes encoding glycolytic enzymes and occurs at positions –486 to –480 of the TDH3 promoter. This DNA sequence represents a novel promoter element: it contains no UAS activity itself, yet potentiates the activity of a GRF1 UAS. The potentiation of the GRFl UAS by this element occurs when placed upstream from the TATA box of either the TDH3 or CYC1 promoters. The characteristics of this element (termed GPE for GRF1 site potentiator element) indicate that it represents a binding site for a different yeast protein which increases the promoter activation mediated by the GRF1 protein. Site-specific deletion and promoter reconstruction experiments suggest that the entire activation potential of the –676 to –381 region of the TDH3 gene promoter may be accounted for by a combination of the GRF1 site and the GPE. 相似文献
9.
10.
The formation of binary complexes between sturgeon apoglyceralddhyde-3-phosphate dehydrogenase, coenzymes (NAD+ and NADH) and substrates (phosphate, glyceraldehyde 3-phosphate and 1,3-bisphosphoglycerate) has been studied spectrophotometrically and spectrofluorometrica-ly. Coenzyme binding to the apoenzyme can be characterized by several distinct spectroscopic properties: (a) the low intensity absorption band centered at 360 nm which is specific of NAD+ binding (Racker band); (b) the quenching of the enzyme fluorescence upon coenzyme binding; (c) the quenching of the fluorescence of the dihydronicotinamide moiety of the reduced coenzyme (NADH); (D) the hypochromicity and the red shift of the absorption band of NADH centered at 338 nm; (e) the coenzyme-induced difference spectra in the enzyme absorbance region. The analysis of these spectroscopic properties shows that up to four molecules of coenzyme are bound per molecule of enzyme tetramer. In every case, each successively bound coenzyme molecule contributes identically to the total observed change. Two classes of binding sites are apparent at lower temperatures for NAD+ Binding. Similarly, the binding of NADH seems to involve two distinct classes of binding sites. The excitation fluorescence spectra of NADH in the binary complex shows a component centered at 260 nm as in aqueous solution. This is consistent with a "folded" conformation of the reduced coenzyme in the binary complex, contradictory to crystallographic results. Possible reasons for this discrepancy are discussed. Binding of phosphorylated substrates and orthophosphate induce similar difference spectra in the enzyme absorbance region. No anticooperativity is detectable in the binding of glyceraldehyde 3-phosphate. These results are discussed in light of recent crystallographic studies on glyceraldehyde-3-phosphate dehydrogenases. 相似文献
11.
Mikhail Kuravsky Kseniya Barinova Aleksandra Marakhovskaya Mikhail Eldarov Pavel Semenyuk Vladimir Muronetz Elena Schmalhausen 《Biochimica et Biophysica Acta - Proteins and Proteomics》2014,1844(10):1820-1826
Sperm-specific glyceraldehyde-3-phosphate dehydrogenase (GAPDS) exhibits enhanced stability compared to the somatic isoenzyme (GAPD). A comparative analysis of the structures of these isoenzymes revealed characteristic features, which could be important for the stability of GAPDS: six specific proline residues and three buried salt bridges. To evaluate the impact of these structural elements into the stability of this isoenzyme, we obtained two series of mutant GAPDS: 1) six mutants each containing a substitution of one of the specific prolines by alanine, and 2) three mutants each containing a mutation breaking one of the salt bridges. Stability of the mutants was evaluated by differential scanning calorimetry and by their resistance towards guanidine hydrochloride (GdnHCl). The most effect on thermostability was observed for the mutants P326A and P164A: the Tm values of the heat-absorption curves decreased by 6.0 and 3.3 °C compared to the wild type protein, respectively. The resistance towards GdnHCl was affected most by the mutation D311N breaking the salt bridge between the catalytic and NAD+-binding domains: the inactivation rate constant in the presence of GdnHCl increased six-fold, and the value of GdnHCl concentration corresponding to the protein half-denaturation decreased from 1.83 to 1.35 M. Besides, the mutation D311N enhanced the enzymatic activity of the protein two-fold. The results suggest that the residues P164 (β-turn), P326 (first position of α-helix), and the interdomain salt bridge D311–H124 are significant for the enhanced stability of GAPDS. The salt bridge D311–H124 enhances stability of the active site of GAPDS at the expense of the catalytic activity. 相似文献
12.
Maehara T Tomita S Takabatake K Kaneko S 《Bioscience, biotechnology, and biochemistry》2010,74(12):2523-2525
To improve the expression level of heterologous genes in Flammulina velutipes Fv-1, we constructed new vectors having glyceraldehydes-3-phosphate dehydrogenase (gpd) gene promoter to control the expression of target genes. When the hygromycin B phosphotransferase (hph) gene from Escherichia coli was controlled by the gpd promoter, transformation efficiency was 3-fold higher than the case of that controlled by the tryptophan synthetase gene (trp1) promoter. 相似文献
13.
Schmalhausen EV Pleten' AP Muronetz VI 《Biochemical and biophysical research communications》2003,308(3):492-496
Oxidation of the essential cysteins of glyceraldehyde-3-phosphate dehydrogenase into the sulfenic acid derivatives was observed in the presence of ascorbate, resulting in a decrease in the dehydrogenase activity and the appearance of the acylphosphatase activity. The oxidation was promoted by EDTA, NAD(+), and phosphate, and blocked in the presence of deferoxamine. The ascorbate-induced oxidation was suppressed in the presence of catalase, suggesting the accumulation of hydrogen peroxide in the conditions employed. The data indicate the metal-mediated mechanism of the oxidation due to the presence of metal traces in the reaction medium. Physiological importance of the mildly oxidized GAPDH is discussed in terms of its ability to uncouple glycolysis and to decrease the ATP level in the cell. 相似文献
14.
Molecular symmetry of glyceraldehyde-3-phosphate dehydrogenase 总被引:2,自引:0,他引:2
15.
16.
17.
The GPD gene encoding glyceraldehyde-3-phosphate dehydrogenase was isolated from Cryptococcus neoformans, a heterobasidiomycetous yeast that is pathogenic to humans. The gene contains 11 introns, differing from the conserved intron positions found in the GPD genes of Basidiomycetes. The predicted amino-acid sequence of this gene is extremely similar to that reported from GPD proteins of other basidiomycetes. The promoter region of the C. neoformans GPD gene was similar to those of other basidiomycetes. Plasmid constructs containing up to 1600 base pairs upstream of the native GPD open reading frame were used to express either the native URA5 gene in a ura5 mutant or the heterologous hphI gene (a bacterial gene that confers resistance to the aminoglycoside hygromycin) in a wild-type strain of C. neoformans. Transformation frequencies resulting from the plasmid-borne Gpdp::URA5 gene were at levels similar to those of the native URA5, which suggested that all the sequences necessary for proper expression were present. Transformation frequencies using the Gpdp::hphI gene constructs were poor. However, addition of DNA sequences flanking the 3'-end of an native C. neoformans gene significantly improved the transformation frequencies resulting from the expression of the heterologous hphI gene. 相似文献
18.
S. Riad-El Sabrouty J-M Blanchard L. Marty P. Jeanteur M. Piechaczyk 《Journal of molecular evolution》1989,29(3):212-222
Summary Although only one gene is known to be functional, numerous glyceraldehyde-3-phosphate dehydrogenase (GAPDH) related sequences are scattered throughoutMus musculus andRattus rattus genomes. In this report we show that: (1) GAPDH pseudogenes are repeated to comparable extents, at least 400 copies, in 12 other Muridae species; (2) the complete, or nearly so, sequence of GAPDH messenger RNA is amplified, and a high proportion, if not all of these copies, are intronless; (3) GAPDH pseudogenes are preferentially located in heavily methylated and DNAse I-insensitive regions of chromatin; and (4) the presence of atypical GAPDH-related mRNAs in different cellular contexts raises the possibility that more than one GAPDH gene is transcribed. 相似文献
19.
20.