首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The protein phosphatase 2A (PP2A) phosphatase activator (PTPA) is an essential protein involved in the regulation of PP2A and the PP2A-like enzymes. In this study we demonstrate that PTPA and its yeast homologues Ypa1 and Ypa2 can induce a conformational change in some model substrates. Using these model substrates in different assays with and without helper proteases, this isomerase activity is similar to the isomerase activity of FKBP12, the human cyclophilin A, and one of its yeast homologs Cpr7 but dissimilar to the isomerase activity of Pin1. However, neither FKBP12 nor Cpr7 can reactivate the inactive form of PP2A. Therefore, PTPA belongs to a novel peptidyl-prolyl cis/trans-isomerase (PPIase) family. The PPIase activity of PTPA correlates with its activating activity since both are stimulated by the presence of Mg2+ATP, and a PTPA mutant (Delta208-213) with 400-fold less activity in the activation reaction of PP2A also showed almost no PPIase activity. The point mutant Asp205 --> Gly (in Ypa1) identified this amino acid as essential for both activities. Moreover, PTPA dissociates the inactive form from the complex with the PP2A methylesterase. Finally, Pro190 in the catalytic subunit of PP2A (PP2AC) could be identified as the target Pro isomerized by PTPA/Mg2+ATP since among the 14 Pro residues present in 12 synthesized peptides representing the microenvironments of these prolines in PP2AC, only Pro190 could be isomerized by PTPA/Mg2+ATP. This Pro190 is present in a predicted loop structure near the catalytic center of PP2AC and, if mutated into a Phe, the phosphatase is inactive and can no longer be activated by PTPA/Mg2+ATP.  相似文献   

2.
In Saccharomyces cerevisiae, PTPA is encoded by two genes, YPA1 and YPA2. In order to examine the biological role of PTPA as potential regulator of protein phosphatase 2A (PP2A), we compared the phenotypes of the ypaDelta mutants with these of PP2A-deficient strains. While deletion of both YPA genes is lethal, deletion of YPA1 alone results in a phenotype resembling that of PP2A-deficient strains in specific aspects such as aberrant bud morphology, abnormal actin distribution, and similar growth defects under various growth conditions. These phenotypes were even more pronounced when YPA1 was deleted in a pph21Delta genetic background. Moreover, ypaDelta mutants are hypersensitive to nocodazole and show inappropriate mitotic spindle formation as previously described for mutants in the catalytic subunit of PP2A, suggesting that Ypa, like PP2A, has a function in mitotic spindle formation. These results are consistent with an in vivo role of Ypa as a regulator of PP2A. However, unlike a PP2A-deficient strain, ypaDelta mutants do not show a G2 arrest. Therefore, Ypa does not seem to play a role in the regulation of PP2A at this stage of the cell cycle. These results imply that Ypa regulates a specific subset of PP2A functions, possibly by controlling the subunit composition of PP2A.  相似文献   

3.
Proper activation of protein phosphatase 2A (PP2A) catalytic subunit is central for the complex PP2A regulation and is crucial for broad aspects of cellular function. The crystal structure of PP2A bound to PP2A phosphatase activator (PTPA) and ATPγS reveals that PTPA makes broad contacts with the structural elements surrounding the PP2A active site and the adenine moiety of ATP. PTPA-binding stabilizes the protein fold of apo-PP2A required for activation, and orients ATP phosphoryl groups to bind directly to the PP2A active site. This allows ATP to modulate the metal-binding preferences of the PP2A active site and utilize the PP2A active site for ATP hydrolysis. In vitro, ATP selectively and drastically enhances binding of endogenous catalytic metal ions, which requires ATP hydrolysis and is crucial for acquisition of pSer/Thr-specific phosphatase activity. Furthermore, both PP2A- and ATP-binding are required for PTPA function in cell proliferation and survival. Our results suggest novel mechanisms of PTPA in PP2A activation with structural economy and a unique ATP-binding pocket that could potentially serve as a specific therapeutic target.  相似文献   

4.
Structure and mechanism of the phosphotyrosyl phosphatase activator   总被引:1,自引:0,他引:1  
Chao Y  Xing Y  Chen Y  Xu Y  Lin Z  Li Z  Jeffrey PD  Stock JB  Shi Y 《Molecular cell》2006,23(4):535-546
Phosphotyrosyl phosphatase activator (PTPA), also known as PP2A phosphatase activator, is a conserved protein from yeast to human. Here we report the 1.9 A crystal structure of human PTPA, which reveals a previously unreported fold consisting of three subdomains: core, lid, and linker. Structural analysis uncovers a highly conserved surface patch, which borders the three subdomains, and an associated deep pocket located between the core and the linker subdomains. The conserved surface patch and the deep pocket are responsible for binding to PP2A and ATP, respectively. PTPA and PP2A A-C dimer together constitute a composite ATPase. PTPA binding to PP2A results in a dramatic alteration of substrate specificity, with enhanced phosphotyrosine phosphatase activity and decreased phosphoserine phosphatase activity. This function of PTPA strictly depends on the composite ATPase activity. These observations reveal significant insights into the function and mechanism of PTPA and have important ramifications for understanding PP2A function.  相似文献   

5.
Protein phosphatase 2A (PP2A) is a heterotrimeric Ser/Thr phosphatase that is involved in regulating a plethora of signaling pathways in the cell, making its regulation a critical part of the well being of the cell. For example, three of the non-catalytic PP2A subunits have been linked to carcinogenic events. Therefore, the molecular basis for the complicated protein-protein interaction pattern of PP2A and its regulators is of special interest. The PP2A phosphatase activator (PTPA) protein is highly conserved from humans to yeast. It is an activator of PP2A and has been shown to be essential for a fully functional PP2A, but its mechanism of activation is still not well defined. We have solved the crystal structure of human PTPA to 1.6A. It reveals a two-domain protein with a novel fold comprised of 13 alpha-helices. We have identified a highly conserved cleft as a potential region for interaction with peptide segments of other proteins. Binding studies with ATP and its analogs are not consistent with ATP being a cofactor/substrate for PTPA as had previously been proposed. The structure of PTPA can serve as a basis for structure-function studies directed at elucidating its mechanism as an activator of PP2A.  相似文献   

6.
FK506‐binding protein 22 (FKBP22) from the psychrotophic bacterium Shewanella sp. SIB1 (SIB1 FKBP22) is a homodimeric protein with peptidyl prolyl cis‐trans isomerase (PPIase) activity. Each monomer consists of the N‐terminal domain responsible for dimerization and C‐terminal catalytic domain. To reveal interactions at the dimer interface of SIB1 FKBP22, the crystal structure of the N‐domain of SIB1 FKBP22 (SN‐FKBP22, residues 1‐68) was determined at 1.9 Å resolution. SN‐FKBP22 forms a dimer, in which each monomer consists of three helices (α1, α2, and α3N). In the dimer, two monomers have head‐to‐head interactions, in which residues 8–64 of one monomer form tight interface with the corresponding residues of the other. The interface is featured by the presence of a Val‐Leu knot, in which Val37 and Leu41 of one monomer interact with Val41 and Leu37 of the other, respectively. To examine whether SIB1 FKBP22 is dissociated into the monomers by disruption of this knot, the mutant protein V37R/L41R‐FKBP22, in which Val37 and Leu41 of SIB1 FKBP22 are simultaneously replaced by Arg, was constructed and biochemically characterized. This mutant protein was indistinguishable from the SIB1 FKBP22 derivative lacking the N‐domain in oligomeric state, far‐UV CD spectrum, thermal denaturation curve, PPIase activity, and binding ability to a folding intermediate of protein, suggesting that the N‐domain of V37R/L41R‐FKBP22 is disordered. We propose that a Val‐Leu knot at the dimer interface of SIB1 FKBP22 is important for dimerization and dimerization is required for folding of the N‐domain.  相似文献   

7.
The L-type Ca(2+) channel Ca(v)1.2 forms macromolecular signaling complexes that comprise the β(2) adrenergic receptor, trimeric G(s) protein, adenylyl cyclase, and cAMP-dependent protein kinase (PKA) for efficient signaling in heart and brain. The protein phosphatases PP2A and PP2B are part of this complex. PP2A counteracts increase in Ca(v)1.2 channel activity by PKA and other protein kinases, whereas PP2B can either augment or decrease Ca(v)1.2 currents in cardiomyocytes depending on the precise experimental conditions. We found that PP2A binds to two regions in the C-terminus of the central, pore-forming α(1) subunit of Ca(v)1.2: one region spans residues 1795-1818 and the other residues 1965-1971. PP2B binds immediately downstream of residue 1971. Injection of a peptide that contained residues 1965-1971 and displaced PP2A but not PP2B from endogenous Ca(v)1.2 increased basal and isoproterenol-stimulated L-type Ca(2+) currents in acutely isolated cardiomyocytes. Together with our biochemical data, these physiological results indicate that anchoring of PP2A at this site of Ca(v)1.2 in the heart negatively regulates cardiac L-type currents, likely by counterbalancing basal and stimulated phosphorylation that is mediated by PKA and possibly other kinases.  相似文献   

8.
Phosphotyrosyl phosphatase activator PTPA is a type 2A phosphatase regulatory protein that possesses an ability to stimulate the phosphotyrosyl phosphatase activity of PP2A in vitro. In yeast Saccharomyces cerevisiae, PTPA is encoded by two related genes, RRD1 and RRD2, whose products are 38 and 37% identical, respectively, to the mammalian PTPA. Inactivation of either gene renders yeast cells rapamycin resistant. In this study, we investigate the mechanism underling rapamycin resistance associated with inactivation of PTPA in yeast. We show that the yeast PTPA is an integral part of the Tap42-phosphatase complexes that act downstream of the Tor proteins, the target of rapamycin. We demonstrate a specific interaction of Rrd1 with the Tap42-Sit4 complex and that of Rrd2 with the Tap42-PP2Ac complex. A small portion of PTPA also is found to be associated with the AC dimeric core of PP2A, but the amount is significantly less than that associated with the Tap42-containing complexes. In addition, our results show that the association of PTPA with Tap42-phosphatase complexes is rapamycin sensitive, and importantly, that rapamycin treatment results in release of the PTPA-phosphatase dimer as a functional phosphatase unit.  相似文献   

9.
The three closely related groups of serine/threonine protein phosphatases PP2A, PP4 and PP6 are conserved throughout eukaryotes. The catalytic subunits are present in trimeric and dimeric complexes with scaffolding and regulatory subunits that control activity and confer substrate specificity to the protein phosphatases. In Arabidopsis, three scaffolding (A subunits) and 17 regulatory (B subunits) proteins form complexes with five PP2A catalytic subunits giving up to 255 possible combinations. Three SAP‐domain proteins act as regulatory subunits of PP6. Based on sequence similarities with proteins in yeast and mammals, two putative PP4 regulatory subunits are recognized in Arabidopsis. Recent breakthroughs have been made concerning the functions of some of the PP2A and PP6 regulatory subunits, for example the FASS/TON2 in regulation of the cellular skeleton, B′ subunits in brassinosteroid signalling and SAL proteins in regulation of auxin transport. Reverse genetics is starting to reveal also many more physiological functions of other subunits. A system with key regulatory proteins (TAP46, TIP41, PTPA, LCMT1, PME‐1) is present in all eukaryotes to stabilize, activate and inactivate the catalytic subunits. In this review, we present the status of knowledge concerning physiological functions of PP2A, PP4 and PP6 in Arabidopsis, and relate these to yeast and mammals.  相似文献   

10.
Evans DR  Hemmings BA 《Genetics》2000,156(1):21-29
PP2A is a central regulator of eukaryotic signal transduction. The human catalytic subunit PP2Acalpha functionally replaces the endogenous yeast enzyme, Pph22p, indicating a conservation of function in vivo. Therefore, yeast cells were employed to explore the role of invariant PP2Ac residues. The PP2Acalpha Y127N substitution abolished essential PP2Ac function in vivo and impaired catalysis severely in vitro, consistent with the prediction from structural studies that Tyr-127 mediates substrate binding and its side chain interacts with the key active site residues His-118 and Asp-88. The V159E substitution similarly impaired PP2Acalpha catalysis profoundly and may cause global disruption of the active site. Two conditional mutations in the yeast Pph22p protein, F232S and P240H, were found to cause temperature-sensitive impairment of PP2Ac catalytic function in vitro. Thus, the mitotic and cell lysis defects conferred by these mutations result from a loss of PP2Ac enzyme activity. Substitution of the PP2Acalpha C-terminal Tyr-307 residue by phenylalanine impaired protein function, whereas the Y307D and T304D substitutions abolished essential function in vivo. Nevertheless, Y307D did not reduce PP2Acalpha catalytic activity significantly in vitro, consistent with an important role for the C terminus in mediating essential protein-protein interactions. Our results identify key residues important for PP2Ac function and characterize new reagents for the study of PP2A in vivo.  相似文献   

11.
In the context of fibroblast growth factor (FGF) signaling, Sprouty2 (Spry2) is the most profound inhibitor of the Ras/ERK pathway as compared with other Spry isoforms. An exclusive, necessary, but cryptic PXXPXR motif in the C terminus of Spry2 is revealed upon stimulation. The activation of Spry2 appears to be linked to sequences in the N-terminal half of the protein and correlated with a bandshifting seen on SDS-PAGE. The band-shifting is likely caused by changes in the phosphorylation status of key Ser and Thr residues following receptor stimulation. Dephosphorylation of at least two conserved Ser residues (Ser-112 and Ser-115) within a conserved Ser/Thr sequence is accomplished upon stimulation by a phosphatase that binds to Spry2 around residues 50-60. We show that human Spry2 co-immunoprecipitates with both the catalytic and the regulatory subunits of protein phosphatase 2A (PP2A-C and PP2A-A, respectively) in cells upon FGF receptor (FGFR) activation. PP2A-A binds directly to Spry2, but not to Spry2Delta50-60 (Delta50-60), and the activity of PP2A increases with both FGF treatment and FGFR1 overexpression. c-Cbl and PP2A-A compete for binding centered around Tyr-55 on Spry2. We show that there are at least two distinct pools of Spry2, one that binds PP2A and another that binds c-Cbl. c-Cbl binding likely targets Spry2 for ubiquitin-linked destruction, whereas the phosphatase binding and activity are necessary to dephosphorylate specific Ser/Thr residues. The resulting change in tertiary structure enables the Pro-rich motif to be revealed with subsequent binding of Grb2, a necessary step for Spry2 to act as a Ras/ERK pathway inhibitor in FGF signaling.  相似文献   

12.
X Wu  K Tatchell 《Biochemistry》2001,40(25):7410-7420
Protein phosphatase type 1 (PP1) is a major Ser/Thr protein phosphatase that is involved in many cellular processes. The activity of PP1 is controlled by regulatory subunits, many of which are thought to bind to a hydrophobic groove in PP1 via a short consensus sequence termed the V/IXF motif. To test this hypothesis, 11 variants of yeast PP1 (Glc7) were constructed in which one or more of the residues comprising the groove were changed to alanine. These variants were tested for their biological activity in vivo, for their biochemical activity in vitro, and for their ability to associate with three PP1 binding proteins. Five variants are unable to complement the essential function of PP1 in vivo although they are catalytically active in vitro. Many of the mutants are deficient in binding two V/IXF-containing subunits, Gac1 and Reg1, which regulate glycogen accumulation and glucose repression, respectively, but all retain the ability to associate with Sds22, a regulatory subunit that lacks this motif. The subcellular locations at which PP1 normally accumulates (bud neck, nucleolus, spindle pole body) were not occupied by one PP1 variant. Additionally, we provide evidence that mutations in the hydrophobic groove of PP1 affect substrate specificity. Together, these results demonstrate the importance of the hydrophobic groove for the interaction with regulatory subunits, for the proper subcellular localization of PP1 and for the substrate specificity of PP1.  相似文献   

13.
Peptidyl-prolyl isomerases (PPIases) are emerging as key regulators of many diverse biological processes. Elucidating the role of PPIase activity in vivo has been challenging because mutagenesis of active-site residues not only reduces the catalytic activity of these enzymes but also dramatically affects substrate binding. Employing the cyclophilin A PPIase together with its biologically relevant and natively folded substrate, the N-terminal domain of the human immunodeficiency virus type 1 capsid (CAN) protein, we demonstrate here how to dissect residue-specific contributions to PPIase catalysis versus substrate binding utilizing NMR spectroscopy. Surprisingly, a number of cyclophilin A active-site mutants previously assumed to be strongly diminished in activity toward biological substrates based only on a peptide assay catalyze the human immunodeficiency virus capsid with wild-type activity but with a change in the rate-limiting step of the enzymatic cycle. The results illustrate that a quantitative analysis of catalysis using the biological substrates is critical when interpreting the effects of PPIase mutations in biological assays.  相似文献   

14.
Diverse functions of protein Ser/Thr phosphatases depend on the distribution of the catalytic subunits among multiple regulatory subunits. In cells protein phosphatase 2A catalytic subunit (PP2Ac) mostly binds to a scaffold subunit (A subunit or PR65); however, PP2Ac alternatively binds to alpha-4, a subunit related to yeast Tap42 protein, which also associates with phosphatases PP4 or PP6. We mapped alpha-4 binding to PP2Ac to the helical domain, residues 19-165. We mutated selected residues and transiently expressed epitope-tagged PP2Ac to assay for association with A and alpha-4 subunits by co-precipitation. The disabling H118N mutation at the active site or the presence of the active site inhibitor microcystin-LR did not interfere with binding of PP2Ac to either the A subunit or alpha-4, showing that these are allosteric regulators. Positively charged side chains Lys(41), Arg(49), and Lys(74) on the back surface of PP2Ac are unique to PP2Ac, compared with phosphatases PP4, PP6, and PP1. Substitution of one, two, or three of these residues with Ala produced a progressive loss of binding to the A subunit, with a corresponding increase in binding to alpha-4. Conversely, mutation of Glu(42) in PP2Ac essentially eliminated PP2Ac binding to alpha-4, with an increase in binding to the A subunit. Reciprocal changes in binding because of mutations indicate competitive distribution of PP2Ac between these regulatory subunits and demonstrate that the mutated catalytic subunits retained a native conformation. Furthermore, neither the Lys(41)-Arg(49)-Lys(74) nor Glu(42) mutations affected the phosphatase-specific activity or binding to microcystin-agarose. Binding of PP2Ac to microcystin and to alpha-4 increased with temperature, consistent with an activation energy barrier for these interactions. Our results reveal that the A subunit and alpha-4 (mTap42) require charged residues in separate but overlapping surface regions to associate with the back side of PP2Ac and modulate phosphatase activity.  相似文献   

15.
The PrsA protein of Bacillus subtilis is an essential membrane-bound lipoprotein that is assumed to assist post-translocational folding of exported proteins and stabilize them in the compartment between the cytoplasmic membrane and cell wall. This folding activity is consistent with the homology of a segment of PrsA with parvulin-type peptidyl-prolyl cis/trans isomerases (PPIase). In this study, molecular modeling showed that the parvulin-like region can adopt a parvulin-type fold with structurally conserved active site residues. PrsA exhibits PPIase activity in a manner dependent on the parvulin-like domain. We constructed deletion, peptide insertion, and amino acid substitution mutations and demonstrated that the parvulin-like domain as well as flanking N- and C-terminal domains are essential for in vivo PrsA function in protein secretion and growth. Surprisingly, none of the predicted active site residues of the parvulin-like domain was essential for growth and protein secretion, although several active site mutations reduced or abolished the PPIase activity or the ability of PrsA to catalyze proline-limited protein folding in vitro. Our results indicate that PrsA is a PPIase, but the essential role in vivo seems to depend on some non-PPIase activity of both the parvulin-like and flanking domains.  相似文献   

16.
Peptidyl-prolyl isomerase (PPIase) activity is exhibited by many proteins belonging to the PPIase family. However, the catalytic mechanism of this activity remains to be completely elucidated. Here, we selected human FK506-binding protein 12 (FKBP12) as the model PPIase and investigated the nature of amino acid residues essential for the activity. The crystal structures of several complexes of PPIase with short peptides revealed that the residues Asp37, Arg42, Phe46, Val55, Trp59, and Tyr82 in the substrate-binding cavity of FKBP12 appear to play key roles in the PPIase activity. Each of these six residues was substituted by 20 common amino acid residues. The activity of each mutant protein was measured using a peptide analog by the chymotrypsin digestion assay and then compared with wild-type FKBP12. It was found that site-specific interactions by the side chains of amino acid residues constituting the substrate-binding cavity were not essential for the PPIase activity, although the 37th, 55th, and 82nd amino acid residues significantly contributed to the activity. This suggests that the PPIase activity requires only the hydrophobic cavity that captures the Pro-containing peptide.  相似文献   

17.
Kang H  Sayner SL  Gross KL  Russell LC  Chinkers M 《Biochemistry》2001,40(35):10485-10490
Protein phosphatase 5 (PP5) exhibits low basal activity due to the autoinhibitory properties of its N-terminal and C-terminal domains but can be activated approximately 40-fold in vitro by polyunsaturated fatty acids. To identify residues involved in regulating PP5 activity, we performed scanning mutagenesis of its N-terminal tetratricopeptide repeat (TPR) domain and deletion mutagenesis of its C-terminal domain. Mutating residues in a groove of the TPR domain that binds to heat shock protein 90 had no effect on basal phosphatase activity. Mutation of Glu-76, however, whose side chain projects away from this groove, resulted in a 10-fold elevation of basal activity without affecting arachidonic acid-stimulated activity. Thus, the interface of the TPR domain involved in PP5 autoinhibition appears to be different from that involved in heat shock protein 90 binding. We also observed a 10-fold elevation of basal phosphatase activity upon removing the C-terminal 13 amino acids of PP5, with a concomitant 50% decrease in arachidonic acid-stimulated activity. These two effects were accounted for by two distinct amino acid deletions: deleting the four C-terminal residues (496-499) of PP5 had no effect on its activity, but removing Gln-495 elevated basal activity 10-fold. Removal of a further three amino acids had no additional effect, but deleting Asn-491 resulted in a 50% reduction in arachidonic acid-stimulated activity. Thus, Glu-76 in the TPR domain and Gln-495 at the C-terminus were implicated in maintaining the low basal activity of PP5. While the TPR domain alone has been thought to mediate fatty acid activation of PP5, our data suggest that Asn-491, near its C-terminus, may also be involved in this process.  相似文献   

18.
Protein phosphatase 2A (PP2A) accounts for the majority of total Ser/Thr phosphatase activities in most cell types and regulates many biological processes. PP2A holoenzymes contain a scaffold A subunit, a catalytic C subunit, and one of the regulatory/targeting B subunits. How the B subunit controls PP2A localization and substrate specificity, which is a crucial aspect of PP2A regulation, remains poorly understood. The kinetochore is a critical site for PP2A functioning, where PP2A orchestrates chromosome segregation through its interactions with BubR1. The PP2A-BubR1 interaction plays important roles in both spindle checkpoint silencing and stable microtubule-kinetochore attachment. Here we present the crystal structure of a PP2A B56-BubR1 complex, which demonstrates that a conserved BubR1 LxxIxE motif binds to the concave side of the B56 pseudo-HEAT repeats. The BubR1 motif binds to a groove formed between B56 HEAT repeats 3 and 4, which is quite distant from the B56 binding surface for PP2A catalytic C subunit and thus is unlikely to affect PP2A activity. In addition, the BubR1 binding site on B56 is far from the B56 binding site of shugoshin, another kinetochore PP2A-binding protein, and thus BubR1 and shugoshin can potentially interact with PP2A-B56 simultaneously. Our structural and biochemical analysis indicates that other proteins with the LxxIxE motif may also bind to the same PP2A B56 surface. Thus, our structure of the PP2A B56-BubR1 complex provides important insights into how the B56 subunit directs the recruitment of PP2A to specific targets.  相似文献   

19.
20.
The PP2A serine/threonine phosphatase regulates a plethora of cellular processes. In the cell the predominant form of the enzyme is a heterotrimer, formed by a core dimer composed of a catalytic and a scaffolding subunit, which assemble together with one of a range of different regulatory B subunits. Here, we present the first structure of a free non-complexed B subunit, B56 gamma. Comparison with the recent structures of a heterotrimeric complex and the core dimer reveals several significant conformational changes in the interface region between the B56 gamma and the core dimer. These allow for an assembly scheme of the PP2A holoenzyme to be put forth where B56 gamma first complexes with the scaffolding subunit and subsequently binds to the catalytic subunit and this induces the formation of a binding site for the invariant C-terminus of the catalytic subunit that locks in the complex as a last step of assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号