首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Salmonellae, the lipopolysaccharide of which differ in the chemical structure of their O-antigenic side chains, were previously shown to activate C3 at differential rates via the alternative pathway. We wanted to test whether lipopolysaccharide isolated from these strains yields identical results, and also the effect of the polysaccharide chain length, which varies from 0 to 40 or more repeating units in a single strain. Lipopolysaccharide was purified from the above strains, hydrolyzed (0.1 N NaOH, 56 degrees C, 30 min), and used to coat sheep erythrocytes to different densities, and C3 activation in C4-deficient guinea pig serum was measured. C3 activation was proportional to lipopolysaccharide density and time, and the relative rates and extents of activation by this bacteria-free system were the same as for the original bacteria. Activation was reduced 10 to 15% when the serum was preabsorbed with strains either containing or lacking O-antigen side chain, suggesting augmentation by antibody; however, even after multiple absorptions, activation varied with O-antigen structure as expected. This differential activation was not due to differences in the average length of the O-antigenic polysaccharide chains, because the size was similar for all three lipopolysaccharides. Moreover, the extent of activation by lipopolysaccharide that had been fractionated on a column of Sephadex G-200 was independent of the polysaccharide chain length for lengths greater than 3 repeating units. The results prove that C3 activation by lipopolysaccharide via the alternative pathway is sensitive to slight variations in the chemical structure, but not to large variations in length of the O-antigen polysaccharide side chain of lipopolysaccharide.  相似文献   

2.
Activation of complement via the alternative pathway   总被引:3,自引:0,他引:3  
Activation of complement via the alternative pathway represents one means of natural resistance to infection because it is capable of neutralizing a wide variety of potential pathogens in the total absence of antibody. The pathway involves six serum proteins and possesses a unique amplification system capable of depositing large numbers of C3b molecules on the surfaces of activating particles. C3b deposition enhances phagocytosis and results in activation of the membrane attack pathway of complement. C3b attachment is covalent, arising from a reaction between an intramolecular thiolester bond in nascent C3b and nucleophiles such as hydroxyl groups on surface carbohydrates. The reactions that initiate C3b attachment are not specific interactions like those initiating other biological cascade systems, but involve slow, spontaneous hydrolysis of the thiolester bond in C3 and subsequent random deposition of C3b onto all nearby surfaces. Once bound, C3b is capable of discriminating between host-derived cells and activating particles. Recognition is evidenced by a lower affinity between activator-bound C3b and the complement control protein factor H. Measurements of the association constant between unbound, soluble C3b and factor H suggest that activator-bound C3b recognizes structures on activators that inhibit factor H binding.  相似文献   

3.
The effect of glycophorin on complement activation via the alternative pathway was examined by incorporating it into the liposome membrane with trinitrophenylaminocaproyldipalmitoylphosphatidylethanolamine (TNP-Cap-DPPE). Liposomes having incorporated TNP-Cap-DPPE onto the membrane activate the alternative complement pathway of guinea pig as reported previously, and the additional insertion of glycophorin was found to reduce their activating capacity on the alternative complement pathway. This inhibitory effect was cancelled by pretreatment of the glycophorin-containing liposomes with neuraminidase indicating that the sialic acid in glycophorin is playing a role in the regulation of alternative complement pathway-activation on the biological membrane.  相似文献   

4.
MBL is a serum lectin that activates the lectin pathway of the complement system. MBL forms complexes with three types of MASPs. Upon binding to Salmonella serogroup C-specific oligosaccharide, MBL activates the alternative pathway via a C2-bypass pathway without involving MASP-2, C2 or C4. We demonstrate that mannan-bound MBL activates the alternative pathway via a C2-bypass pathway that requires MASP-2 and C4. Thus, depending on the ligands to which MBL binds, there may be two distinct MBL-mediated C2-bypass pathways.  相似文献   

5.
6.
Bacteria whose lipopolysaccharide contains O-antigen side chains activate complement via the alternative pathway. We have shown previously that three strains of Salmonella, differing in the chemical structure of their O-antigens, consumed C3 to different extents when incubated in C4-deficient guinea pig serum. Moreover, sheep erythrocytes coated with lipopolysaccharide purified from these strains mimicked whole cells in C3 consumption, proving that lipopolysaccharide alone could account for these results. We have now measured the deposition of 125I-C3 in this system, and found that C3 deposition parallels C3 consumption in rate and extent, and differs for surfaces bearing different O-antigens, whether tested with bacteria or with erythrocytes coated with purified lipopolysaccharide. We have also examined the fate of C3 on these Salmonellae by measuring the size and quantity of 125I-C3 breakdown fragments by SDS-PAGE, and have determined the kinetics of conversion of C3b to iC3b by using conglutinin, a molecule that binds specifically to iC3b. There is no difference in breakdown of C3b deposited on cells with different O-antigens: all show partial conversion to iC3b and C3dg as indicated by 68,000, 44,000, and 41,000 m.w. bands on reduced SDS gels. Furthermore, for all strains, the Ka of conglutinin binding to iC3b is similar (0.49 to 0.69 X 10(8) M-1), as is the rate of generation of iC3b and the final ratio of iC3b:C3b + iC3b (0.62 to 0.72). We therefore postulate that the fine structure of the O-antigen in lipopolysaccharide determines the magnitude of alternative pathway activation on the bacterial surface by affecting the rate and extent of C3b deposition, but not the rate and extent of breakdown of C3b.  相似文献   

7.
The glycans used in an earlier study to define the ligand specificity of the human monocyte phagocytic receptor for unopsonized particulate activators were assessed for their capacities to activate the proteins of the human alternative complement pathway. Normal human serum was preincubated with glycans under conditions of chelation to prevent activation of the classical complement pathway, and the activation-depletion of the alternative complement pathway was determined by the subsequent capacity of the serum to lyse rabbit erythrocytes (Er). When serum was preincubated at a 1/2 dilution in 8 mM EGTA/2 mM Mg with increasing numbers of yeast glucan or zymosan particles, and was evaluated at final serum dilutions of 1/8, its capacity to lyse Er was found to be reduced by 50% with 1.9 X 10(6)/ml yeast glucan particles and 1.4 X 10(6)/ml zymosan particles. At 2 mg/ml of serum diluted 1/2 in 8 mM EGTA/2 mM Mg, nonturbid preparations of mannan, laminarin, or pyrogen-free inulin and turbid suspensions of cellulose, Sephadex, agarose, or purified inulin failed to activate the alternative complement pathway. In contrast, activation-depletion of the alternative pathway was induced by turbid preparations of crude inulin, nigeran, pachyman, barley beta-glucan, and pustulan, which at 700 micrograms/ml, 500 micrograms/ml, 350 micrograms/ml, 60 micrograms/ml, and 27 micrograms/ml, respectively, effected 50% reductions in the subsequent lysis of Er. After centrifugation of 2 mg/ml suspensions of barley beta-glucan at 1100 X G for 5 min and at 15,000 X G for 15 min, the supernatants contained 90 to 92% and 65% of the barley beta-glucan, respectively, as determined by the anthrone method. On a weight basis, the 1100 X G supernatant exhibited the same capacity to activate the alternative pathway as the corresponding original suspension, whereas the 15,000 X G supernatants had less than 3% of the original anti-complementary activity. Preincubation of adherent human monocytes with increasing concentrations of barley beta-glucan suspensions, 100,000 X G supernatants containing 64% of the original beta-glucan, and laminarin all decreased subsequent ingestion of 1.25 X 10(6) zymosan particles in a dose-related fashion. The numbers of monocytes from three different donors phagocytosing zymosan were reduced by 50% after pretreatment with 30 to 65 micrograms/ml, 25 to 48 micrograms/ml, and 12 to 15 micrograms/ml of barley beta-glucan suspensions, 100,000 X G supernatants of barley beta-glucan, and laminarin, respectively, even though the latter two preparations were fully soluble and had no capacity to activate the alternative pathway.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Regulation of the alternative pathway of complement by pH   总被引:2,自引:0,他引:2  
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired hemolytic anemia. The abnormal PNH erythrocytes are highly susceptible to complement-mediated lysis in vitro, especially at pH 6.4. Lysis has been shown to be due to alternative pathway activation. The purpose of this study was to determine why lysis of PNH erythrocytes is increased at acidic pH. The results presented demonstrate that at pH 6.4: binding of C5 and Factor B to C3b deposited on human erythrocytes is markedly enhanced; generation of the two C3 convertases, C3(H2O), Bb and C3b,Bb is increased; and control of C3b on human erythrocytes by CR1 and Factor I is diminished. In addition, it was found that rabbit erythrocytes, which activate the human alternative pathway, are also lysed much better at pH 6.4 than at pH 7.4. These results indicate that the optimal pH for the initiation and amplification of the alternative complement pathway, and probably also for the activation of the membrane attack complex, is 6.4.  相似文献   

9.
Although some of the membrane glycoproteins that serve as activators or regulators of C activation have been identified, the influence of membrane lipids has not been studied extensively. A model of alternative C pathway activation was established using liposomes composed of cholesterol and synthetic phospholipids. Liposomes containing phosphatidylcholine (PC) as the sole phospholipid did not activate C as measured by C3 binding after incubation in normal human serum containing 2.5 mM MgCl2 and 10 mM EGTA. When phosphatidylethanolamine (PE) was included as 20% or more of the phospholipid, C3 binding was observed. C3 binding to liposomes was inhibited by salicylhydroxamic acid indicating binding through the C3 thioester bond. The phospholipid composition did not influence C3 binding to liposomes in an unregulated system of C3, B, D, and P indicating equivalent C3b binding sites on activating and nonactivating liposomes. When the regulatory proteins H and I were added to the other components, liposomes containing PE bound three times more C3 than PC liposomes suggesting that the phospholipid affects C3 regulation. This was tested directly in a radiolabeled H binding assay. In the presence of equal amounts of C3b, PC liposomes showed a greater number of high affinity H binding sites than PE liposomes. Using different PE derivatives, C activation could be directly related to the phospholipid polar head group. Liposomes containing PE, trinitrophenyl-PE or monomethyl-PE did activate the alternative C pathway, whereas those containing dimethyl-PE, PC, or phosphatidylserine did not. These studies provide evidence that primary and secondary amino groups on lipid membranes can decrease the interaction between H and C3b and provide sites for alternative pathway activation.  相似文献   

10.
Guinea pig erythrocytes that had been exposed to influenza A virus activated the alternative complement pathway in whole human serum in the absence of natural antibodies. Because all virus particles were eluted from the treated cells, activation was not dependent on antiviral antibodies or on virus particles themselves. The relative capacity of treated erythrocytes to activate the alternative pathway was dependent on the amount of virus to which the cells had been exposed and was directly related to the amount of sialic acid removed from the erythrocyte membrane during incubation with either whole virus particles or purified viral sialidase. C3b bound to cells that had been treated with virus, and P-stabilized amplification convertase sites P,C3b,Bb formed on these cells, exhibited increased resistance to the action of the regulatory proteins beta-1H and C3b Ina compared with C3b and P,C3b,Bb on untreated, nonactivating cells. The acquired resistance of the cell-bound, P-stabilized amplification convertase to decay-dissociation by beta-1H was directly related to the activating capacity of the treated cells in whole serum (r = 0.95) and to the amount of sialic acid removed from the cells by the virus (r = 0.98). Desialation represents a specific alteration of the cell surface by which a nonimmune host, through activation of the alternative pathway, may deposit C3b on a target cell that had been exposed to influenza virus and may lyse virus virus-modified cells during orthomyxovirus infections.  相似文献   

11.
Liposomes as defined model membranes were used to quantitatively study the effects of specific sialic acid containing glycolipids on activation of the alternative pathway of human C. Liposomes containing dimyristoylphosphatidylethanolamine, cholesterol, and cerebrosides at molar ratios of 1.0/0.75/0.33 activated the alternative pathway in human serum treated with MgEGTA. Activation was measured by C3 conversion and the deposition of total C3 and functional C3b on the liposome surface. The monosialoganglioside GM1, when incorporated into the activating liposome membrane at molar ratios between 10(-5) and 10(-2), inhibited activation in a dose-dependent manner. Sialosylparagloboside also inhibited activation in human serum, and inhibition was completely reversed after neuraminidase treatment. The degree of inhibition by GM1 correlated with the relative amount of GM1 exposed on the liposome surface. Sialic acid did not directly inhibit the binding of C3b when liposomes containing gangliosides were incubated with the purified components C3, B, D, and P. GM1 did inhibit activation when liposomes were incubated with a mixture of purified C3, B, D, P, H, and I. Binding assays with radiolabeled H showed increased binding of H to liposome-bound C3b in the presence of GM1. These results establish the ability of sialic acid on glycolipids to promote H binding to C3b and thereby regulate alternative pathway activation on a defined lipid membrane.  相似文献   

12.
Species specificity of recognition by the alternative pathway of complement   总被引:12,自引:0,他引:12  
The recognition function of the alternative complement pathway was studied with isolated human and rabbit components. Zymosan and homologous and heterologous erythrocytes were used as representative activators or nonactivators. The binding affinity of Factor B and Factor H for particle-bound C3b was measured. In both species, the average affinity of Factor H for bound C3b on homologous cells (nonactivators) was eight to 10 times higher than on zymosan particles (activators). The interaction between Factor H and C3b on rabbit erythrocytes was species-specific: rabbit Factor H bound strongly to rabbit C3b on rabbit erythrocytes and also on human erythrocytes, which are nonactivators for the rabbit alternative pathway. Human Factor H bound strongly to human C3b on human erythrocytes but seven times weaker on rabbit erythrocytes, which are activators of the human alternative pathway. No substantial differences were found in the binding of Factor B to bound C3b regardless of the nature of the particle to which C3b was bound. The results indicate that in the two species studied, the molecular mechanism of recognition is analogous and that recognition is species-specific.  相似文献   

13.
Rabbit factor H, a control protein of the alternative complement pathway, was isolated from rabbit serum by polyethylene glycol precipitation, DEAE-Sephacel chromatography, and gel chromatography on Sephadex G200. The protein migrated as a single-chain polypeptide with a molecular weight of 160,000 on sodium dodecyl sulfate-gel electrophoresis with Laemmli's buffer system, but hardly migrated into the gel with Fairbanks' buffer system. Physical and chemical properties of rabbit H were similar to those of human H, except that fragments produced by limited tryptic digestion from rabbit H had different molecular sizes from those produced from human H. Significant species-specificity was observed in the functional activity of factor H; activation of the alternative complement pathway was inhibited more efficiently with homologous H than with heterologous H. In contrast, factor H inhibited the hemolysis of homologous erythrocytes less than that of heterologous erythrocytes.  相似文献   

14.
15.
Flavobacterium psychrophilum, a Gram-negative bacterium, is the etiological agent of rainbow trout fry syndrome and bacterial cold water disease, septicemic infections in reared salmonids. In humans Flavobacterium spp. have been associated with neonatal meningitis and septicemia, catheter-associated bacteremia, and pneumonia. Recently, several F. psychrophilum surface molecules, including lipopolysaccharide (LPS), have been implicated in its pathogenesis and identified as potential vaccine and diagnostic candidate macromolecules. Studies on the LPS produced by the bacterium are reported herein. The structure of the antigenic O-polysaccharide contained in the LPS of F. psychrophilum was deduced by the application of analytical NMR spectroscopy, mass spectrometry, glycose and methylation analysis, and partial hydrolysis degradations, and was found to be an unbranched polymer of trisaccharide repeating units composed of L-rhamnose (L-Rhap), 2-acetamido-2-deoxy-L-fucose (L-FucpNAc) and 2-acetamido-4-((3S,5S)-3,5-dihydroxyhexanamido)-2,4-dideoxy-D-quinovose (D-Quip2NAc4NR, 2-N-acetyl-4-N-((3S,5S)-3,5-dihydroxyhexanoyl)-D-bacillosamine) (1 : 1 : 1) and having the structure: -->4)-alpha-L-FucpNAc-(1-->3)-alpha-D-Quip2NAc4NR-(1-->2)- alpha-L-Rhap-(1--> where R is (3S,5S)-CH3CH(OH)CH2CH(OH)CH2CO-.  相似文献   

16.
Amino acid sequence of human D of the alternative complement pathway   总被引:4,自引:0,他引:4  
The primary structure of human D, the serine protease activating the C3 convertase of the alternative complement pathway, has been deduced by sequencing peptides derived from various chemical (CNBr and o-iodosobenzoic acid) and enzymatic (trypsin, lysine protease, Staphylococcus aureus V8 protease, and chymotrypsin) cleavages. Carboxypeptidase A was also used to confirm the COOH-terminal sequence. The peptides were purified by high-pressure liquid chromatography. The proposed sequence of human D contains 222 amino acids and has a calculated molecular weight of 23 748. It exhibits a high degree of homology with other serine proteases, especially around the NH2-terminus as well as the three residues corresponding to the active-site His-57, Asp-102, and Ser-195 (chymotrypsinogen numbering). This sequence homology is highest (40%) with plasmin, intermediate (35%) with pancreatic serine proteases, such as elastase, trypsin, chymotrypsin, and kallikrein, and least (30%) with the serum enzymes thrombin and factor X. D, however, exhibits only minimal amino acid homology with the other sequenced complement serine proteases, Clr (25%) and Bb (20%). The substitution of a basic lysine for a neutral amino acid three residues NH2-terminal to the active-site serine as well as a small serine residue for a bulky aromatic amino acid at position 215 (chymotrypsinogen numbering) in the binding pocket may be important in determining the exquisite substrate specificity of D. The presence of His-40 which interacts with Asp-194 (chymotrypsinogen numbering) to stabilize other serine protease zymogens [Freer, S. T., Kraut, J., Robertus, J. D., Wright, H. T., & Xuong, N. H. (1970) Biochemistry 9, 1997] argues in favor of such a D precursor molecule.  相似文献   

17.
The central role of the alternative complement pathway in human disease   总被引:11,自引:0,他引:11  
The complement system is increasingly recognized as important in the pathogenesis of tissue injury in vivo following immune, ischemic, or infectious insults. Within the complement system, three pathways are capable of initiating the processes that result in C3 activation: classical, alternative, and lectin. Although the roles that proinflammatory peptides and complexes generated during complement activation play in mediating disease processes have been studied extensively, the relative contributions of the three activating pathways is less well understood. Herein we examine recent evidence that the alternative complement pathway plays a key and, in most instances, obligate role in generating proinflammatory complement activation products in vivo. In addition, we discuss new concepts regarding the mechanisms by which the alternative pathway is activated in vivo, as recent clinical findings and experimental results have provided evidence that continuous active control of this pathway is necessary to prevent unintended targeting and injury to self tissues.  相似文献   

18.
Activation of the alternative complement pathway by Agaricus blazei Murill.   总被引:5,自引:0,他引:5  
Components of Agaricus blazei Murill have been demonstrated to have a wide range of immunopotentiating activities. The present study was designed to evaluate the effect of A. blazei Murill upon activation of the complement system in human serum in vitro. Additional studies were performed to determine the cytotoxic effect of complement-opsonized particles of A. blazei Murill against human tumor cells in culture. A fine particle of A. blazei Murill (ABP), prepared by mechanical disruption, was used throughout the experiments. ABP activated the human complement system via the alternative pathway in human serum. Activation of the alternative pathway was both time- and dose-dependent. When the particles from fruiting bodies of A. blazei Murill (ABP-F) were reacted with human serum, the formation of complement-opsonized ABP, iC3b-ABP-F complexes, and binding of the complexes to human peripheral blood monocytes, were demonstrated in vitro by immunofluorescence. Further, the resident human peripheral nucleated cells incubated in the presence of iC3b-ABP-F complexes inhibited the proliferation of human tumor cell line TPC-1 in vitro.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号