首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The marine dinoflagellate Erythropsidinium possesses an ocelloid, the most elaborate photoreceptor organelle known in a unicellular organism, and a piston, a fast contractile appendage unknown in any other organism. The ocelloid is able to rotate, often before the cell swims. The ocelloid contains lenses that function to concentrate light. The flagellar propulsion is atrophied, and the piston is responsible for locomotion through successive extensions and contractions. During the “locomotion mode”, the contraction is ~4 times faster than the extension. The piston attained up to 50 mm · s?1 and the cell jumps backwards at ?4 mm · s?1, while during the piston extension the cell moves forwards. The net speed of ~?1 mm · s?1 is faster than other dinoflagellates. The piston usually moved in the “static mode” without significant cell swimming. This study suggests that the piston is also a tactile organelle that scans the surrounding waters for prey. Erythropsidinium feeds on copepod eggs by engulfing. The end of the piston possesses a “suction cup” able to attach the prey and place it into the posterior cavity for engulfing. The cylindrical shape of Erythropsidinium, and the anterior position of the ocelloid and nucleus, are morphological adaptations that leave space for the large vacuole. Observations are provided on morphological development during cell division. Most of the described species of Erythropsidinium apparently correspond to distinct life stages of known species, and the genus Greuetodinium (=Leucopsis) corresponds to an earlier division stage.  相似文献   

3.
Dinophysoid dinoflagellates are usually considered a large monophyletic group. Large subunit and small subunit (SSU) rDNA phylogenies suggest a basal position for Amphisoleniaceae (Amphisolenia,Triposolenia) with respect to two sister groups, one containing most Phalacroma species plus Oxyphysis and the other Dinophysis,Ornithocercus, Dinophysoid dinoflagellates are usually considered a large monophyletic group. Large subunit and small subunit (SSU) rDNA phylogenies suggest a basal position for Amphisoleniaceae (Amphisolenia,Triposolenia) with respect to two sister groups, one containing most Phalacroma species plus Oxyphysis and the other Dinophysis,Ornithocercus, Histioneis,Citharistes and some Phalacroma species. We provide here new SSU rDNA sequences of Pseudophalacroma (pelagic) and Sinophysis (the only benthic dinophysoid genus). Molecular phylogenies support that they are very divergent with respect to the main clade of Dinophysales. Additional molecular markers of these two key genera are needed to elucidate the evolutionary relations among the dinophysoid dinoflagellates. Histioneis,Citharistes and some Phalacroma species. We provide here new SSU rDNA sequences of Pseudophalacroma (pelagic) and Sinophysis (the only benthic dinophysoid genus). Molecular phylogenies support that they are very divergent with respect to the main clade of Dinophysales. Additional molecular markers of these two key genera are needed to elucidate the evolutionary relations among the dinophysoid dinoflagellates.  相似文献   

4.
5.
The complete life history of Chorda tomentosa Lyngbye from northern Norway has been followed in culture. Under relatively high temperatures (10–15°C) or low irradiance, zoospores develop into filamentous monoecious gametophytes with unlimited vegetative growth. Formation of oogonia and antheridia was induced by transfer to strong white fluorescent light and low temperatures (1–5°C). By variation of these environmental factors the degree of fertility can be controlled. In a light-dark regime, egg release occurs exclusively during the dark periods. Freshly released eggs secrete a sexual hormone which effects explosive discharge of spermatozoids from the antheridia and subsequent chemotaxis towards the egg. Plasmogamy occurs immediately. Chromosome staining reveals interesting nuclear activities during karyogamy. Frequently, unfertilized eggs develop parthenogenetically. The resulting sporophytes are haploid and show the same developmental pattern as those originating from fertilized eggs. All sporophytes produce sporangia and release zoospores within 60 to 90 days after egg discharge.  相似文献   

6.
7.
8.
Abstract Nuclear-encoded SSU rDNA sequences have been obtained from 64 strains of conjugating green algae (Zygnemophyceae, Streptophyta, Viridiplantae). Molecular phylogenetic analyses of 90 SSU rDNA sequences of Viridiplantae (inciuding 78 from the Zygnemophyceae) were performed using complex evolutionary models and maximum likelihood, distance, and maximum parsimony methods. The significance of the results was tested by bootstrap analyses, deletion of long-branch taxa, relative rate tests, and Kishino–Hasegawa tests with user-defined trees. All results support the monophyly of the class Zygnemophyceae and of the order Desmidiales. The second order, Zygnematales, forms a series of early-branching clades in paraphyletic succession, with the two traditional families Mesotaeniaceae and Zygnemataceae not recovered as lineages. Instead, a long-branch Spirogyra/Sirogonium clade and the later-diverging Netrium and Roya clades represent independent clades. Within the order Desmidiales, the families Gonatozygaceae and Closteriaceae are monophyletic, whereas the Peniaceae (represented only by Penium margaritaceum) and the Desmidiaceae represent a single weakly supported lineage. Within the Desmidiaceae short internal branches and varying rates of sequence evolution among taxa reduce the phylogenetic resolution significantly. The SSU rDNA-based phylogeny is largely congruent with a published analysis of the rbcL phylogeny of the Zygnemophyceae (McCourt et al. 2000) and is also in general agreement with classification schemes based on cell wall ultrastructure. The extended taxon sampling at the subgenus level provides solid evidence that many genera in the Zygnemophyceae are not monophyletic and that the genus concept in the group needs to be revised.  相似文献   

9.
Although trachelocercid ciliates are common in marine sandy intertidal zones, methodological difficulties mean that their biodiversity and evolutionary relationships have not been well documented. This paper investigates the morphology and infraciliature of two novel Trachelolophos and one rarely known form, Tracheloraphis similis Raikov and Kovaleva, 1968, collected from the coastal waters of southern and eastern China. The small subunit (SSU) rRNA gene sequences of two of the species are presented, allowing the phylogenetic position of the genus Trachelolophos to be revealed for the first time. Phylogenetic analyses based on SSU rRNA gene sequences indicate that Trachelolophos branches with Kovalevaia and forms a sister clade with the group including Prototrachelocerca, Trachelocerca and Tracheloraphis. The monophyly of Trachelocerca is not rejected by the approximately unbiased (AU) test (P = 0.209, > 0.05) but that of Tracheloraphis is rejected (P = 3e‐033, < 0.05). The newly sequenced genus Trachelolophos, and recent studies on the morphology and phylogeny of the family Trachelocercidae, suggest two new hypotheses about the evolution of the seven genera within Trachelocercidae, based on either infraciliature or molecular evidence. Both hypotheses suppose the compound circumoral kineties in the oral apparatus is a plesiomorphic feature while the single circumoral kinety is synapomorphic. More evidence is still needed, however, as to whether the closed circumoral kinety with no brosse feature in Trachelocerca is ancestral or secondarily reduced. © 2015 The Linnean Society of London  相似文献   

10.
11.
A new species of benthic marine dinoflagellate, Pyramidodinium spinulosum Horiguchi, Moriya, Pinto & Terada is described from the deep (36 m) seafloor off Mageshima Island, Kagoshima Prefecture, Japan in the subtropical region of the northwest Pacific. The life cycle of the dinoflagellate consists of a dominant, attached, dome‐shaped, vegetative form and short‐lasting, motile cell. Asexual reproduction takes place by the formation of two motile cells within each non‐motile cell. The released motile cells swim only for a short period and transform directly into the dome‐shaped vegetative form. The duration of the cell cycle varies and can be extremely long, ranging 5–38 days under culture conditions. The non‐motile cell is enclosed by a cell wall and its surface is covered with many (80 – 130) spines of various length. The dinoflagellate is photosynthetic and contains many (more than 50) discoidal chloroplasts. Phylogenetic analysis reveals that the dinoflagellate is closely related to the type species of the genus Pyramidodinium, P. atrofuscum which also possesses a dominant, attached, non‐motile form. However, P. spinulosum can be clearly distinguished from P. atrofuscum by the cell shape (dome‐shaped vs. pyramid‐shaped) and surface ornamentation (spines vs. wart‐like processes) of the non‐motile form. Based on these morphological differences together with molecular evidence, it was concluded that this organism from a deep water sand sample should be described as a second species of the genus Pyramidodinium, P. spinulosum.  相似文献   

12.
13.
Two marine urostylid ciliates, Anteholosticha multicirrata n. sp. and Anteholosticha pulchra (Kahl, 1932) Berger, 2003, were collected from South Korea. These species were identified based on morphology, morphogenesis, and SSU rRNA gene sequence comparison. Anteholosticha multicirrata n. sp. is characterized by the following features: body size 90–125 × 30–45 μm in vivo, shape slender to ellipsoidal in outline, with yellow‐greenish cortical granules distributed along and between dorsal kineties and cirri; single contractile vacuole positioned on left at mid‐body; three frontal, five to seven frontoterminal, one buccal, one to two pretransverse and four to six transverse cirri; three complete dorsal kineties; one left and one right marginal cirral row; about 117 macronuclear nodules; and three to four micronuclei observed during morphogenesis. In addition, based on the observations of morphogenesis, we found that A. pulchra has pretransverse cirri, which were not described in detail in previous studies. Nuclear small subunit ribosomal RNA (SSU rRNA) gene was used to analyse their phylogenetic relationship, and the gene tree supports that the genus Anteholosticha is a highly polyphyletic group.  相似文献   

14.
The phylogenetic relationships and species identification of pufferfishes of the genus Takifugu were examined by use of randomly amplified polymorphic DNA (RAPD) and sequencing of the amplified partial mitochondrial 16S ribosomal RNA genes. Amplifications with 200 ten-base primers under predetermined optimal reaction conditions yielded 1962 reproducible amplified fragments ranging from 200 to 3000 bp. Genetic distances between 5 species of Takifugu and Lagocephalus spadiceus as the outgroup were calculated from the presence or absence of the amplified fragments. Approximately 572 bp of the 16S ribosomal RNA gene was amplified, using universal primers, and used to determine the genetic distance values. Topological phylogenic trees for the 5 species of Takifugu and outgroup were generated from neighbor-joining analysis based on the data set of RAPD analysis and sequences of mitochondrial 16S rDNA. The genetic distance between Takifugu rubripes and Takifugu pseudommus was almost the same as that between individuals within each species, but much smaller than that between T. rubripes, T. pseudommus, and the other species. The molecular data gathered from both analysis of mitochondria and nuclear DNA strongly indicated that T. rubripes and T. pseudommus should be regarded as the same species. A fragment of approximately 900 bp was amplified from the genome of all 26 T. pseudommus individuals examined and 4 individuals of intermediate varieties between T. rubripes and T. pseudommus. Of the 32 T. rubripes individuals, only 3 had the amplified fragment. These results suggest that this fragment may be useful in distinguishing between T. rubripes and T. pseudommus. Received September 29, 2000; accepted February 26, 2001.  相似文献   

15.
The planktonic dinoflagellate Ptychodiscus noctiluca combined distinctive morphological features such as a disk‐shaped anteroposteriorly compressed cell body and an apical carina, together with a flexible and tough cell covering, suggesting intermediate characteristics between thecate and naked dinoflagellates. Ptychodiscus noctiluca was examined by light, epifluorescence, and scanning electron microscopy from specimens collected in the Mediterranean Sea and the North and South Atlantic Ocean. Ptychodiscus noctiluca showed a straight apical groove that bisected the carina, a cell covering with a polygonal surface reticulum, nucleus without capsule, sulcal intrusion in the episome, sulcal ventral flange, and yellowish‐green chloroplasts that are shared characters with Brachidinium/Karenia. The cell division was the typical binary fission of gymnodinioid dinoflagellates, although exceptionally in an oblique transversal axis. We examined the intraspecific variability during incubation experiments. In the fattened cells, termed as Ptychodiscus carinatus, chloroplasts transformed into dark granules, and the cell acquired the swollen and smaller stage, termed as P. inflatus. Ptychodiscus carinatus, P. inflatus, and Diplocystis antarctica are synonyms of P. noctiluca. Molecular phylogeny based on the SSU rDNA sequence revealed that Ptychodiscus branched within the short‐branching dinokaryotic dinoflagellates as an independent lineage with affinity to Brachidinium/Karenia and Karlodinium/Takayama in a generally poorly resolved clade. Our results indicated that the order Ptychodiscales, established for unarmored dinoflagellates with a strongly developed pellicle, has artificially grouped thecate dinoflagellates (Kolkwitziella, Herdmania), naked dinoflagellates with thick cell covering (Balechina, Cucumeridinium) and other insufficiently known unarmored genera with typical cell coverings (Brachidinium, Ceratoperidinium).  相似文献   

16.
17.
18.
Abstract

Molecular sequence data have become prominent tools for phylogenetic relationship inference, particularly useful in the analysis of highly diverse taxonomic orders. Ribosomal RNA sequences provide markers that can be used in the study of phylogeny, because their function and structure have been conserved to a large extent throughout the evolutionary history of organisms. These sequences are inferred from cloned or enzymatically amplified gene sequences, or determined by direct RNA sequencing. The first step of the phylogenetic interpretation of nucleic acid sequence variations implies proper alignment of corresponding sequences from various organisms. Best alignment based on similarity criteria is greatly reinforced, in the case of ribosomal RNAs, by secondary structure homologies. Distance matrix methods to infer evolutionary trees are based on the assumption that the phylogenetic distance between each pair of organisms is proportional to the number of nucleotide substitution events. Computed tree inference methods usually take into consideration the possibility of unequal mutation rates among lineages. Divergence times can be estimated on the tree, provided that at least one lineage has been dated by fossil records. We have utilized this approach based on ribosomal RNA sequence comparison to investigate the phylogenetic relationship between dinoflagellated and other eukaryote protists, and to refine controverse phylogenies of the class Dinophycae.  相似文献   

19.
Comparative electron microscopic studies of Collodictyon triciliatum and Diphylleia rotans (=Aulacomonas submarina) showed that they share a distinctive flagellar transitional zone and a very similar flagellar apparatus. In both species, the basic couple of basal bodies and flagella #1 and #2 are connected to the dorsal and ventral roots, respectively. Collodictyon triciliatum has two additional basal bodies and flagella, #3 and #4, situated on each side of the basic couple, each of which also bears a dorsal root. The horseshoe-shaped arrangement of dictyosomes, mitochondria with tubular cristae and the deep ventral groove are very similar to those of Diphylleia rotans. These two genera have very specific features and are placed in a new family, Collodictyonidae, distinct from other eukaryotic groups. Electron microscopic observation of mitotic telophase in Diphylleia rotans revealed two chromosomal masses, surrounded by the nuclear envelope, within the dividing parental nucleus, as in the telophase stage of the heliozoan Actinophrys and the helioflagellate Dimorpha. Spindle microtubules arise from several MTOCs outside the nucleus, and several microtubules penetrate within the dividing nucleus, via pores at the poles. This semi-open type of orthomitosis is reminiscent of that of actinophryids. The SSU rDNA sequence of Diphylleia rotans was compared with that of all the eukaryotic groups that have a slow-evolving rDNA. Diphylleia did not strongly assemble with any group and emerged in a very poorly resolved part of the eukaryotic phylogenetic tree.  相似文献   

20.
Comparative electron microscopic studies of Collodictyon triciliatum and Diphylleia rotans (=Aulacomonas submarina) showed that they share a distinctive flagellar transitional zone and a very similar flagellarapparatus. In both species, the basic couple of basal bodies and flagella #1 and #2 are connected to the dorsal and ventral roots, respectively. Collodictyon triciliatum has two additional basal bodies and flagella, #3 and #4, situated on each side of the basic couple, each of which also bears a dorsal root. The horseshoe-shaped arrangement of dictyosomes, mitochondria with tubular cristae and the deep ventral groove are very similar to those of Diphylleia rotans. These two genera have very specific features and are placed in a new family, Collodictyonidae, distinct from other eukaryotic groups. Electron microscopic observation of mitotic telophase in Diphylleia rotans revealed two chromosomal masses, surrounded by the nuclear envelope, within the dividing parental nucleus, as in the telophase stage of the heliozoan Actinophrys and the helioflagellate Dimorpha. Spindle microtubules arise from several MTOCs outside the nucleus, and several microtubules penetrate within the dividing nucleus, via pores at the poles. This semi-open type of orthomitosis is reminiscent of that of actinophryids. The SSU rDNA sequence of Diphylleia rotans was compared with that of all the eukaryotic groups that have a slow-evolving rDNA. Diphylleia did not strongly assemble with any group and emerged in a very poorly resolved part of the eukaryotic phylogenetic tree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号