首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim To infer the evolutionary history of Rana (Pelophylax) lessonae Camerano within its inferred Quaternary refugial range, and to shed light on the processes that have contributed to shaping the patterns of diversity within the southern European peninsulas. Location The Italian peninsula south of the Alps and Sicily. Methods Sequence analysis of a mitochondrial cytochrome b gene fragment in 149 individuals sampled from 25 localities. Results Three mitochondrial DNA (mtDNA) phylogroups were identified, distributed in northern Italy, the whole Italian peninsula south of the northern Apennines, and Sicily. Syntopy between the northern and peninsular lineages was observed close to the northern Apennines. The northern lineage was the most differentiated, showing a net sequence divergence of 4.8 ± 0.8% with respect to the two others, whereas the net divergence between peninsular and Sicilian lineages was 2.6 ± 0.6%. Analysis of molecular variance (amova ) revealed that 93% of the overall variation occurred between these three groups. Historical demographic statistics support a recent expansion for both the northern and peninsular groups, but not for the Sicilian group. In both northern and peninsular Italy, such an expansion was likely to have occurred during the last glaciation. Main conclusions Our results suggest that a number of microevolutionary processes were involved in shaping the present genetic structure of R. lessonae in Italy. These encompass allopatric differentiations in three distinct Pleistocene refugia, recent population expansions and secondary contacts. Our results, together with some previous work, support (1) the existence of a suture zone in the northern Apennines, and (2) the possibility of population expansions during the last glacial phase, when a vast widening of the lowland floodplain habitats followed sea‐level fall, particularly in northern Italy. When compared with previous analyses of allozyme data, it appears that the peninsular mtDNA lineage has recently replaced the Sicilian one in southern Calabria, and we suggest that this event occurred due to selective introgression. The implications of such an occurrence for the study of factors underlying the patterns of diversity within this southern European biodiversity hotspot are discussed. Taxonomic implications of the results are also evaluated.  相似文献   

2.
The current phylogeographic pattern of European brown bears (Ursus arctos) has commonly been explained by postglacial recolonization out of geographically distinct refugia in southern Europe, a pattern well in accordance with the expansion/contraction model. Studies of ancient DNA from brown bear remains have questioned this pattern, but have failed to explain the glacial distribution of mitochondrial brown bear clades and their subsequent expansion across the European continent. We here present 136 new mitochondrial sequences generated from 346 remains from Europe, ranging in age between the Late Pleistocene and historical times. The genetic data show a high Late Pleistocene diversity across the continent and challenge the strict confinement of bears to traditional southern refugia during the last glacial maximum (LGM). The mitochondrial data further suggest a genetic turnover just before this time, as well as a steep demographic decline starting in the mid‐Holocene. Levels of stable nitrogen isotopes from the remains confirm a previously proposed shift toward increasing herbivory around the LGM in Europe. Overall, these results suggest that in addition to climate, anthropogenic impact and inter‐specific competition may have had more important effects on the brown bear's ecology, demography, and genetic structure than previously thought.  相似文献   

3.
For most species in the Western Palaearctic region, southern Mediterranean peninsulas have been identified as major Quaternary refugia and hotspots of intraspecific diversity, and thus, as areas of particular relevance for the conservation of the evolutionary potential. We analysed the patterns of geographical variation among 26 populations of the Italian stream frog, using both nuclear (allozymes) and mitochondrial (partial cytochrome b sequences) markers. Phylogenetic, phylogeographical and population genetic analyses suggested that the species survived the last glacial–interglacial cycles in two distinct refugia, one restricted to the tip of the Calabrian peninsula, at the extreme south of the species' range, the other spanning from central Calabria to central Apennines and showing evidences for further population subdivision therein. Historical demographic tests suggested a significant population expansion from the latter, which most likely began around the last pleniglacial. This expansion would have led to the rapid colonization of the northern Apennines to the north, and to a secondary contact and population admixture with the population from the southern refugium in southern central Calabria. A comparison of the evolutionary history inferred for the Italian stream frog with the data emerging for other codistributed species suggests: (i) the generality of a multiple-refugia scenario for the Italian peninsula, (ii) the possible occurrence of at least one suture zone in southern Italy, and (iii) that for most species, this Pleistocene refugium is not only a hotspot, but also a melting pot of intraspecific genetic diversity. Finally, the conservation implications of these results are also briefly highlighted.  相似文献   

4.

Background  

Species that are widespread throughout historically glaciated and currently non-glaciated areas provide excellent opportunities to investigate the role of Pleistocene climatic change on the distribution of North American biodiversity. Many studies indicate that northern animal populations exhibit low levels of genetic diversity over geographically widespread areas whereas southern populations exhibit relatively high levels. Recently, paleoclimatic data have been combined with niche-based distribution modeling to locate possible refugia during the Last Glacial Maximum. Using phylogeographic, population, and paleoclimatic data, we show that the distribution and mitochondrial data for the millipede genus Narceus are consistent with classical examples of Pleistocene refugia and subsequent post-glacial population expansion seen in other organismal groups.  相似文献   

5.
Brito PH 《Molecular ecology》2005,14(10):3077-3094
The glacial refugia hypothesis indicates that during the height of the Pleistocene glaciations the temperate species that are today widespread in western Europe must have survived in small and climatically favourable areas located in the southern peninsulas of Iberia, Italy and Balkans. One such species is the tawny owl, a relatively sedentary, nonmigratory bird presently distributed throughout Europe. It is a tree-nesting species closely associated with deciduous and mixed coniferous woodlands. In this study I used control region mtDNA sequences from 187 individuals distributed among 14 populations to determine whether current genetic patterns in tawny owl populations were consistent with postglacial expansion from peninsular refugia. European, North African and Asian tawny owls were found to represent three distinct lineages, where North Africa is the sister clade to all European owls. Within Europe, I found three well-supported clades that correspond to each of the three allopatric refugia. Expansion patterns indicate that owls from the Balkan refugium repopulated most of northern Europe, while expansion out of Iberia and Italy had only regional effects leading to admixture in France. Estimates of population divergence times between refugia populations are roughly similar, but one order of magnitude smaller between Greece and northern Europe. Based on a wide range of mutation rates and generation times, divergence between refugia appears to date to the Pleistocene.  相似文献   

6.
Intraspecific phylogeography has been used widely as a tool to infer population history. However, little attention has been paid to Southeast Asia despite its importance in terms of biodiversity. Here we used the cytochrome oxidase I gene of mitochondrial DNA (mtDNA) for a phylogeographic study of 147 individuals of the black fly Simulium tani from Thailand. The mtDNA revealed high genetic differentiation between the major geographical regions of north, east and central/south Thailand. Mismatch distributions indicate population expansions during the mid-Pleistocene and the late Pleistocene suggesting that current population structure and diversity may be due in part to the species' response to Pleistocene climatic fluctuations. The genealogical structure of the haplotypes, high northern diversity and maximum-likelihood inference of historical migration rates, suggest that the eastern and central/southern populations originated from northern populations in the mid-Pleistocene. Subsequently, the eastern region had had a largely independent history but the central/southern population may be largely the result of recent (c. 100,000 years ago) expansion, either from the north again, or from a relictual population in the central region. Cytological investigation revealed that populations from the south and east have two overlapping fixed chromosomal inversions. Since these populations also share ecological characteristics it suggests that inversions are involved in ecological adaptation. In conclusion both contemporary and historical ecological conditions are playing an important role in determining population genetic structure and diversity.  相似文献   

7.
Genetic variation was investigated in 17 populations of the Italian endemic Apennine yellow-bellied toad using both mitochondrial (598 bp of the cytochrome b gene) and nuclear (21 allozyme loci) markers. Populations from central Calabria (southern Italy) showed the highest levels of intrapopulation genetic variation, whereas samples located north of this region were nearly lacking in variation. This appears to be a typical pattern of 'southern richness and northern purity', usually attributed to the prolonged population stability within southern refugia coupled with the loss of variation during postglacial northward expansion. However, the overall pattern of genetic variation observed has a strong geographical component, suggesting two Calabrian plains, Catanzaro and Crati-Sibari, as historical barriers to dispersal separating three population groups. These findings cannot be explained by the prolonged stability of southern populations alone, and suggest that the southern richness has been at least in part shaped by allopatric differentiation within the refugial range, followed by intermixing of previously differentiated lineages. From a conservation standpoint, Calabria is the major genetic diversity reservoir for this species, thus deserving particular conservation efforts. Furthermore, although the low intrapopulation genetic variation outside Calabria appears to be of clear historical origin, evidence of a current reduction of gene flow suggests that human disturbance has also played a part, particularly in the anthropogenic impacted Volturno river drainage basin.  相似文献   

8.
Aim Late Pleistocene glacial changes had a major impact on many boreal and temperate taxa, and this impact can still be detected in the present‐day phylogeographic structure of these taxa. However, only minor effects are expected in species with generalist habitat requirements and high dispersal capability. One such species is the white‐tailed eagle, Haliaeetus albicilla, and we therefore tested for the expected weak population structure at a continental level in this species. This also allowed us to describe phylogeographic patterns, and to deduce Ice Age refugia and patterns of postglacial recolonization of Eurasia. Location Breeding populations from the easternmost Nearctic (Greenland) and across the Palaearctic (Iceland, continental Europe, central and eastern Asia, and Japan). Methods Sequencing of a 500 base‐pair fragment of the mitochondrial DNA control region in 237 samples from throughout the distribution range. Results Our analysis revealed pronounced phylogeographic structure. Overall, low genetic variability was observed across the entire range. Haplotypes clustered in two distinct haplogroups with a predominantly eastern or western distribution, and extensive overlap in Europe. These two major lineages diverged during the late Pleistocene. The eastern haplogroup showed a pattern of rapid population expansion and colonization of Eurasia around the end of the Pleistocene. The western haplogroup had lower diversity and was absent from the populations in eastern Asia. These results suggest survival during the last glaciation in two refugia, probably located in central and western Eurasia, followed by postglacial population expansion and admixture. Relatively high genetic diversity was observed in northern regions that were ice‐covered during the last glacial maximum. This, and phylogenetic relationships between haplotypes encountered in the north, indicates substantial population expansion at high latitudes. Areas of glacial meltwater runoff and proglacial lakes could have provided suitable habitats for such population growth. Main conclusions This study shows that glacial climate fluctuations had a substantial impact on white‐tailed eagles, both in terms of distribution and demography. These results suggest that even species with large dispersal capabilities and relatively broad habitat requirements were strongly affected by the Pleistocene climatic shifts.  相似文献   

9.
The present study explores the utility of mitochondrial COI gene sequences to reveal phylogenetic and phylogeographic relationships for the entire European freshwater crayfish genus Austropotamobius. The two traditional taxa, Austropotamobius pallipes and Austropotamobius torrentium, were monophyletic, showing similar genetic diversity, with 28 and 25 haplotypes, respectively, and an uncorrected average pairwise divergence of 0.059 and 0.041. A third distinct haplotype clade, in sister relation to A. torrentium, was discovered at the Upper Kolpa drainage in the northern Dinaric area. All populations north and west of the Alps are genetically impoverished (nucleotide diversity (pi)=0.000-0.001), while southern populations are more diverse (pi=0.001-0.034). A. pallipes reaches the highest diversity in the region of Istra, probably its primary center of radiation. The genetic diversity center for A. torrentium is the southern Balkan peninsula. Other potential glacial refugia were identified in Southern France, Northwestern Italy, the Apennine Peninsula, and in the northern Dinaric area. The Iberian Peninsula has been stocked artificially from Northern Italy. Three main periods of radiation were tentatively identified: late Miocene/early Pliocene for the divergence of species and main lineages, the Pleistocene for the divergence within populations south from Alps, and a postPleistocene expansion north and west from Alps.  相似文献   

10.
Hotspots of intraspecific diversity have been observed in most species, often within areas of putative Pleistocene refugia. They have thus mostly been viewed as the outcome of prolonged stability of large populations within the refugia. However, recent evidence has suggested that several other microevolutionary processes could also be involved in their formation. Here, we investigate the contribution of these processes to current range-wide patterns of genetic diversity in the Italian endemic mole Talpa romana, using both nuclear (30 allozyme loci) and mitochondrial markers (cytochrome b sequences). Southern populations of this species showed an allozyme variation that is amongst the highest observed in small mammals (most populations had an expected heterozygosity of 0.10 or above), which was particularly unexpected for a subterranean species. Population genetic, phylogeographic and historical demographic analyses indicated that T. romana populations repeatedly underwent allopatric differentiations followed by secondary admixture within the refugial range in southern Italy. A prolonged demographic stability was reliably inferred from the mitochondrial DNA data only for a population group located north and east of the Calabrian peninsula, showing comparatively lower levels of allozyme variability, and lacking evidence of secondary admixture with other groups. Thus, our results point to the admixture between differentiated lineages as the main cause of the higher levels of diversity of refugial populations. When compared with the Pleistocene evolutionary history recently inferred for species from both the same and other geographic regions, these results suggest the need for a reappraisal of the role of gene exchange in the formation of intraspecific hotspots of genetic diversity.  相似文献   

11.
The phylogeographic structure of the brown hare (Lepus europaeus) was studied by analysing mtDNA control region sequences of 98 individuals from continental and insular Greece, Bulgaria, Cyprus and northern Israel, together with 44 published sequences from Italy and central Europe. We found two distinct clades separated by an average nucleotide divergence of 6.6%, which may correspond to a Balkan and to an Asia Minor refugium. The estimated time of separation of the two clades was dated back to 105,000- 490,000 years ago. These two clades coexist in the area of northeastern Greece and Bulgaria, most likely as a result of a post-glacial northward expansion. Within the southern Balkan refugium, network analyses showed geographical structuring, which supports the hypothesis of several isolated Late Pleistocene populations. The central European and Italian populations appear to have originated from a non-detected northern Balkan population that was genetically closely related to some northern Greek populations, as a result of postglacial expansion, translocations or a combination of both. Moreover, several cases of ancient and recent translocations by humans were detected, especially for some island populations, while the eastern Aegean islands off the Asia Minor coast were most likely colonized naturally through Late Pleistocene land bridge connection. The genetic analysis presented here provides a framework for designing proper conservation and management guidelines for this species.  相似文献   

12.
Phylogeographic studies of flora in species-rich south-western Australia point to complex evolutionary histories, reflecting patterns of persistence and resilience to climatic changes during the Pleistocene. We asked whether coastal areas of the mid-west and south, as well as granite outcrops and inland ranges, have acted as major refugia within this region during Pleistocene climatic fluctuations by analysing phylogeographic patterns in the shrub Calothamnus quadrifidus R.Br. (Myrtaceae). We determined variation in chloroplast DNA data for 41 populations across the geographic range. Relationships and major clades were resolved using parsimony and Bayesian analyses. We tested for demographic and spatial expansion of the major clades and estimated clade divergence dates using an uncorrelated, lognormal relaxed clock based on two conservative chloroplast mutation rates. Two distinct phylogeographic clades were identified showing divergence during the Pleistocene, consistent with other phylogeographic studies of south-west Australian flora, emphasising the impact of climatic oscillations in driving divergence in this landscape. The southern clade was more diverse, having higher haplotype diversity and greater genetic structure, while the northern clade showed evidence of fluctuation in population size. Regions of high haplotype diversity with adjacent areas of low diversity observed in each clade indicated the locations of two coastal refugia: one on the south coast and another along the mid-west coast. This is the first evidence for major Pleistocene refugia using chloroplast genetic data in a common, widespread species from this region.  相似文献   

13.
We describe range-wide phylogeographic variation in gray jays (Perisoreus canadensis), a boreal Nearctic corvid that occurs today primarily in recently glaciated regions. Phylogenetic analysis of mitochondrial DNA (1041 base pairs ND2 gene; N=205, 50 localities) revealed four reciprocally monophyletic groups. One widespread clade occurs across the North American boreal zone, from Newfoundland to Alaska and southwest into Utah. Three other clades occur at lower latitudes in the montane West in Colorado, the northern Rocky Mountains, and the Pacific Northwest respectively. The geographic distribution of clades in gray jays corresponds with a general pattern that is emerging for boreal taxa, having one widespread northern clade and one or more geographically restricted southwestern clades. Population genetic analyses indicate that the larger boreal clade is genetically structured and harbors significantly more genetic diversity than those clades occurring at lower latitudes. Species distribution modeling (SDM) revealed multiple putative Pleistocene refugia including several occurring at higher latitudes. We suggest that multiple post-glacial colonization routes, some of which originate from these northern refugia, are responsible for the relatively high genetic diversity at high latitudes. Conversely, lower latitude clades show little variation, probably as a result of historical restriction to smaller geographical areas with smaller long-term population sizes. This 'upside-down' pattern of genetic diversity contrasts with the conventional view that populations of north-temperate species occupying previously glaciated habitats should possess lower levels of diversity than their southern counterparts.  相似文献   

14.
Pleistocene glaciations greatly affected the distribution of genetic diversity in animal populations. The Little Owl is widely distributed in temperate regions and could have survived the last glaciations in southern refugia. To describe the phylogeographical structure of European populations, we sequenced the mitochondrial cytochrome c oxidase I (COI) and control region (CR1) in 326 individuals sampled from 22 locations. Phylogenetic analyses of COI identified two deeply divergent clades: a western haplogroup distributed in western and northwestern Europe, and an eastern haplogroup distributed in southeastern Europe. Faster evolving CR1 sequences supported the divergence between these two main clades, and identified three subgroups within the eastern clade: Balkan, southern Italian and Sardinian. Divergence times estimated from COI with fossil calibrations indicate that the western and eastern haplogroups split 2.01–1.71 Mya. Slightly different times for splits were found using the standard 2% rate and 7.3% mtDNA neutral substitution rate. CR1 sequences dated the origin of endemic Sardinian haplotypes at 1.04–0.26 Mya and the split between southern Italian and Balkan haplogroups at 0.72–0.21 Mya, coincident with the onset of two Pleistocene glaciations. Admixture of mtDNA haplotypes was detected in northern Italy and in central Europe. These findings support a model of southern Mediterranean and Balkan refugia, with postglacial expansion and secondary contacts for Little Owl populations. Central and northern Europe was predominantly recolonized by Little Owls from Iberia, whereas expansion out of the Balkans was more limited. Northward expansion of the Italian haplogroup was probably prevented by the Alps, and the Sardinian haplotypes remained confined to the island. Results showed a clear genetic pattern differentiating putative subspecies. Genetic distances between haplogroups were comparable with those recorded between different avian species.  相似文献   

15.
We have used phylogeographic analysis of mitochondrial DNA (COI and COII genes) and ecological niche modelling (ENM) to reconstruct the population history of Argosarchus horridus (White), a widespread species of New Zealand stick insect. These data were used to address outstanding questions on the role of glacial refugia in determining the distribution and genetic structure of New Zealand species. Phylogeographic analysis shows a general pattern of high diversity in upper North Island and reduced diversity in lower North Island and South Island. The ENM indicates that during the last glacial maximum, A. horridus was largely restricted to refugia around coastal areas of North Island. The ENM also suggests refugia on the northeast coast of South Island and southeast coast of North Island and this prediction is verified by phylogeographic analysis, which shows a clade restricted to this region. Argosarchus horridus is also most likely a geographic parthenogen where males are much rarer at higher latitudes. The higher levels of genetic variation in northern, bisexual populations suggest southern and largely unisexual populations originated from southwardly expanding parthenogenetic lineages. Bayesian skyline analysis also provides support for a recent population size increase consistent with a large increase in geographic distribution in the late Pleistocene. These results exemplify the utility of integrating ENM and phylogeographic analysis in testing hypotheses on the origin of geographic parthenogenesis and effects of Pleistocene environmental change on biodiversity.  相似文献   

16.
The Italian endemic genus Salamandrina has been historically regarded as monotypic but, recently, studies based on both mitochondrial and nuclear markers have indicated the existence of two distinct species of spectacled salamanders: Salamandrina perspicillata, in central and northern Italy, and Salamandrina terdigitata, in southern Italy. We analyzed nucleotide variation at mitochondrial and nuclear genes [cytochrome b, 12S and 16S rRNA, recombination activating gene (RAG 1)] in 223 individuals from 56 locations, aiming to investigate their genetic structure and recent evolutionary histories. Phylogenetic and phylogeographical analyses revealed the existence of three and two genetically distinct groups of populations in northern and southern salamander, respectively. Historical demographic analyses led to the inference of range expansion for both species in the late Pleistocene. During the last glacial stage, each salamander survived in a single refugium, namely the southern in Calabria and the northern in central Italy. At the end of this period, both lineages expanded northward and established secondary contact. Spatial distribution of RAG 1 haplotype variation revealed two differentiated population groups corresponding to the major mitochondrial (mt)DNA clades. Nuclear pattern of introgressive hybridization was more extensive than the highly limited introgression of mtDNA markers. From a conservation standpoint, southern Latium and Calabria proved to be the major genetic diversity reservoirs, thus deserving particular conservation efforts. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 903–922.  相似文献   

17.
Aim Climatic changes have strongly reshaped the Western Palaearctic biota throughout the Late Pleistocene. For animals, most studies so far have focused on species having low to moderate dispersal abilities, while strong dispersers have remained understudied, despite their abundance. With the aim of contributing to filling this gap, we here investigate the Late Pleistocene evolutionary history of one such species, the mosquito Aedes caspius. Location Western Palaearctic. Methods Sequences of the cytochrome c oxidase subunits I and II mitochondrial DNA genes were analysed in individuals from 16 sampling localities. The phylogeographic structure was investigated using phylogenetic network analysis, permutational contingency tests, spatial analysis of molecular variance, and correlation of genetic and geographic distances between populations. Historical demographic changes were investigated by analysing the mismatch distributions, the Bayesian skyline plot method and Fu’s FS statistic. Results We observed 67 haplotypes over all 112 individuals analysed (haplotype diversity = 0.971; nucleotide diversity = 0.0067). Despite the substantial genetic diversity, we found neither strong phylogenetic divergence among haplotypes (uncorrected mean sequence divergence 0.8%) nor any phylogeographic structure across the study area. The historical demographic analyses suggested that the species maintained a stable population size until roughly 25,000 years ago, when it underwent a sudden demographic expansion. Main conclusions Our data suggest that during the last glacial stage, A. caspius did not undergo dramatic range fragmentation in separate glacial refugia. Rather, the species is likely to have persisted in largely interconnected populations throughout most of the region, in areas with suitable environmental conditions. This scenario adds to similar patterns emerging for other temperate regions of the world, suggesting that an important component of the evolutionary history of temperate biotas has hitherto been largely overlooked.  相似文献   

18.
The expansion–contraction (EC) model predicts demographic and range contraction of temperate species during Pleistocene glaciations as a consequence of climate‐related habitat changes, and provides a paradigm for explaining the high intraspecific diversity found in refugia in terms of long‐term demographic stability. However, recent evidence has revealed a weak predictive power of this model for terrestrial species in insular and coastal settings. We investigated the Pleistocene EC dynamics and their evolutionary consequences on temperate species using the Maltese archipelago and its endemic lizard Podarcis filfolensis as a model system. The evolutionary and demographic history of P. filfolensis as inferred from mitochondrial and nuclear sequences data does not conform to the EC model predictions, supporting (i) demographic and spatial stability or expansion, rather than contraction, of the northern and southern lineages during the last glacial period; and (ii) a major role for allopatric differentiation primed by sea‐level dynamics, rather than prolonged demographic stability, in the formation of the observed genetic diversity. When combined with evidence from other Mediterranean refugia, this study shows how the incorporation of Pleistocene sea‐level variations in the EC model accounts for a reverse demographic and range response of insular and coastal temperate biotas relative to continental ones. Furthermore, this cross‐archipelago pattern in which allopatric diversity is formed and shaped by EC cycles resembles that seen between isolated populations within mainland refugia and suggests that the EC model, originally developed to explain population fluctuations into and out‐of refugia, may be appropriate for describing the demographic and evolutionary dynamics driving the high genetic diversity observed in these areas.  相似文献   

19.
Demography impacts the observed standing level of genetic diversity present in populations. Distinguishing the relative impacts of demography from selection requires a baseline of expressed gene variation in naturally occurring populations. Six nuclear genes were sequenced to estimate the patterns and levels of genetic diversity in natural Arabidopsis lyrata subsp. petraea populations that differ in demographic histories since the Pleistocene. As expected, northern European populations have genetic signatures of a strong population bottleneck likely due to glaciation during the Pleistocene. Levels of diversity in the northern populations are about half of that in central European populations. Bayesian estimates of historical population size changes indicate that central European populations also have signatures of population size change since the last glacial maxima, suggesting that these populations are not as stable as previously thought. Time since divergence amongst northern European populations is higher than amongst central European populations, suggesting that the northern European populations were established before the Pleistocene and survived glaciation in small separated refugia. Estimates of demography based on expressed genes are complementary to estimates based on microsatellites and transposable elements, elucidating temporal shifts in population dynamics and confirming the importance of marker selection for tests of demography.  相似文献   

20.
The genetic structure of populations over a wide geographical area should reflect the demographic and evolutionary processes that have shaped a species across its range. We examined the population genetic structure of antelope ground squirrels (Ammospermophilus leucurus) across the complex of North American deserts from the Great Basin of Oregon to the cape region of the Baja California peninsula. We sampled 73 individuals from 13 major localities over this 2500-km transect, from 43 to 22 degrees north. Our molecular phylogeographical analysis of 555 bp of the mitochondrial cytochrome b gene and 510 bp of the control region revealed great genetic uniformity in a single clade that extends from Oregon to central Baja California. A second distinct clade occupies the southern half of the peninsula. The minimal geographical structure of the northern clade, its low haplotype diversity and the distribution of pairwise differences between haplotypes suggest a rapid northward expansion of the population that must have followed a northward desert habitat shift associated with the most recent Quaternary climate warming and glacial retreat. The higher haplotype diversity within the southern clade and distribution of pairwise differences between haplotypes suggest that the southern clade has a longer, more stable history associated with a southern peninsular refugium. This system, as observed, reflects both historical and contemporary ecological and evolutionary responses to physical environmental gradients within genetically homogeneous populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号