首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
潘嘉雯  林娜  何茜  苏艳  李吉跃 《生态学报》2018,38(19):6932-6940
研究影响桉树人工林生产力的主要因素,对于提高桉树人工林生产力以及经营水平和合理利用树种都具有重要的意义。收集我国3个桉树人工林种植区(广东省、广西壮族自治区、云南省)关于生物量与生产力研究中的相关数据,对海拔、林分密度、林龄、年均温和年降水量与乔木层生物量进行了主成分分析与混合模型分析,探究各因素对我国桉树人工林生物量与生产力的影响。结果显示:年均温、年降水量、林龄、海拔和林分密度均是影响广东、广西、云南这3个省(区)桉树人工林生物量的主要因素,其中年降水量对这3个地区桉树人工林的生物量影响极其显著(P0.01),林龄和林分密度对桉树人工林的生物量影响显著(P0.05)。这是因为这3个地区都位于亚热带,温度都属于桉树生长的适宜温度,而这3个地区存在明显的干湿季,降水量在季节和地域上分布不均匀,导致这3个地区年降水量存在较明显的差异。因此,年降水量成为影响这3个地区桉树人工林生物量的关键因素。  相似文献   

2.
Seven ephemeral pools on the coastal plain of southern Brazil were found to be inhabited by three annual and 22 non‐annual fish species. Two common annual species (Austrolebias minuano and Cynopoecilus fulgens) exhibited clear seasonal dynamics, with the appearance of young fishes in the austral autumn (May to June) and a decline in abundance over the seasonal cycle. The third annual species, Austrolebias wolterstorffii, was rare. No seasonal dynamics were observed in non‐annual fishes. The relative abundance of non‐annual fishes compared with annual fishes increased over the seasonal cycle, but they coexisted widely. The size structure of annual fishes suggested the presence of a single age cohort in most pools though a second age cohort was registered in one pool in August, coinciding with a large flooding. Strong sexual dimorphism in body size was found in C. fulgens throughout the seasonal cycle, while no sexual dimorphism in body size was found in A. minuano. Female‐biased sex ratios were recorded in both common annual fish species in the last three sampling dates (in spring), but not during the first two sampling dates (in winter). The natural lifespan of annual fishes was <8 months. Annual fishes disappeared before habitat desiccation in half of the pools, while non‐annual fishes were still present.  相似文献   

3.
Abstract The presence of shrubs in arid lands creates spatial heterogeneity that affects the distribution and performance of annual plants; several possible mechanisms have been implicated. A preliminary survey in a chenopod shrubland in South Australia showed differences in the distribution of annual plants under canopies of Atriplex vesicaria and Maireana sedifolia (the two dominant shrub species) and open spaces. A series of experiments were conducted to test the potential contribution to these patterns of nutrient enrichment under shrubs, differential seed accumulation, stress reduction by the canopy, competition by shrub roots, and protection against grazing. The germinable soil seed‐bank under A. vesicaria and M. sedifolia was different from that in open spaces, but these differences can only explain a fraction of the differences observed in the growing annual plant community in different microsites. The soil under A. vesicaria had higher total nitrogen content than soil in open spaces, whereas soil under M. sedifolia had lower available phosphorus than open spaces. Although annual plant densities under A. vesicaria were higher than in open spaces, experimental removal of shrubs increased their density, suggesting that shrub canopies inhibit annual plants in this system. Surprisingly, trenching of open areas close to shrubs (severing lateral shrub roots) decreased annual plant density. We suggest that water moves laterally through shrub roots, in a process akin to a hydraulic lift, increasing water availability for the annual plants. Exclusion of vertebrate grazers had a stronger effect on annual plant biomass in open spaces than under M. sedifolia, suggesting that this shrub provides shelter against herbivory. Overall our results show that shrubs can have simultaneously facilitative and inhibitory effects on the annual plant community through different mechanisms, but more importantly that different shrub species have different effects. This is a potential mechanism allowing for species coexistence of annual plants.  相似文献   

4.
Abstract. The annual cycle of canopy structure in two mediterranean shrubs in a pioneer zone of the mobile dune system in the Donana National Park, Scrophularia frutescens and Halimium halimifolium, has been analyzed. Destructive methods were used as well as a new non-destructive method, based on frequency analysis of organ distribution within the plant canopy. S. frutescens shows strong seasonal changes of photo-synthetic biomass, but little annual increment in dry weight. In H. halimifolium, seasonal changes are not as strongly differentiated as in S. frutescens, but a higher annual increment is shown. The canopy structure of both species and its temporal changes are compared with existingplant strategy models.  相似文献   

5.
The reproductive patterns (birth seasonality, litter size, litters per year) of two sympatric species of galago (Galago zanzibaricus and G. garnettii) were studied in a coastal forest in Kenya for a two-year period. Trap-retrap and radio tracking methods were employed. G. zanzibaricus has one infant twice per year; G. garnettii has one infant once per year. Both species are seasonal breeders. These East African galagos are intermediate in reproductive patterns when compared with galagos from South African woodland (G. senegalensis moholi and G. crassicaudatus umbrosis) and West African rainforest (G. alleni and G. demidovii). Climatic patterns (total annual rainfall, seasonal variability of rainfall, variability in total annual rainfall, and annual temperature variability) are also compared for the three regions. Climatically, East Africa is intermediate between West and South Africa in total annual rainfall and in seasonality of rainfall, but not in year-to-year variability in rainfall. East Africa shows the highest variability in annual rainfall. South Africa has the coldest dry seasons and highest variability in temperatures. The results of this study suggest that “r-selection” and “K-selection” do not provide adequate explanations of galago reproductive patterns.  相似文献   

6.
Life-history Habitat Matching in Invading Non-native Plant Species   总被引:1,自引:0,他引:1  
We briefly reviewed the literature on habitat matching in invading non-native plant species. Then we hypothesized that the richness and cover of native annual and perennial plant species integrate complex local information of vegetation and soils that would help to predict invasion success by similarly adapted non-native plant species. We tested these ‘life-history habitat matching’ relationships in 603 0.1-ha plots, including 294 plots in Colorado, which were relatively high for the cover of native perennial plant species, and for 309 0.1-ha plots in southern Utah, which were relatively high in the cover of native annual plant species. We found strong positive relationships between the richness and foliar cover for both native and non-native species, whether they were annual or perennial species (0.34 > r 2 < 0.53; P < 0.0001). We also found significant positive relationships between the cover of native annual species at a site and the richness (r 2 = 0.13; P < 0.0001) and the foliar cover (r 2 = 0.06; P < 0.0001) of non-native annual species. The proportion of non-native annual species in the flora of a plot also increased significantly with the foliar cover of native annual species. Conversely, the richness and cover of non-native annual species were significantly negatively associated with the foliar cover of native perennial species (r 2 = 0.05 and 0.06, respectively; P < 0.0001). The cover of non-native annual or perennial species was not significantly correlated with soil texture variables, %N, or %C. We conclude that there may be a high degree of life-history habitat matching by non-native annual species in these study sites. Information on native annual and perennial species richness and cover may help characterize the complex soils, climate, and disturbance environment in which similarly adapted non-native plant species establish and gain foliar cover.  相似文献   

7.
Summary Vernalization response was determined in an annual and two biennial celery strains, Apium graveolens L. and their F2 hybrids. Although the annual strain did not require vernalization to bolt, plants exposed to 10°C for 7 days bolted 2 weeks earlier than non-treated plants. Inheritance studies based on F2 and backcross segregations demonstrate that annual habit in celery is partially dominant over biennial and determined by a single gene designated Hb. Cosegregation studies of this trait with nine isozyme loci and a gene determining petiole anthocyanin pigmentation disclosed the following linkage relationships: Adh-1-Sdh-1-Mdh-1, and Got-1-Mdh-2-Hb-A. The recombination frequency observed for Hb and Mdh-2 was too large to use the latter as a useful marker for annual habit.  相似文献   

8.
Helianthus petiolaris andH. niveus are polytypic species which are morphologically distinct at the periphery of their ranges but intergrade in areas of sympatry.Helianthus niveus includes both annual and perennial members, whereasH. petiolaris is strictly annual. Chloroplast DNA and nuclear ribosomal DNA restriction site data were used to reconstruct the evolutionary history of populations of the two species. Cladistic analyses reveal the following: (1) neither species is monophyletic; (2) the annual habit is derived once in this complex; and (3) the region of morphological intergradation appears to be primary in origin. The significance of interbreeding versus common descent in defining species concepts is discussed in relation to the above cladistic analyses.  相似文献   

9.
Exotic Grass Competition in Suppressing Native Shrubland Re-establishment   总被引:4,自引:0,他引:4  
Disturbance of coastal sage scrub in southern California has led to extensive displacement of native shrubs by exotic annual grasses. The initial conversion from shrubland to exotic grassland is typically associated with disturbance caused by intense grazing, high fire frequency, or mechanical vegetation removal. While native shrubs have been shown to recolonize annual grasslands under some conditions, other annual grasslands are persistent and show no evidence of shrub recolonization. This study examined the mechanisms by which annual grasses may exclude native shrubs and persist after release from disturbance. Grass density was manipulated in experimental plots to achieve a series of prescribed densities. Artemisia californica, a dominant native shrub, was seeded or planted into the plots and responses to the grass density treatments were measured over two growing seasons. A. californica germination, first season growth, and survival were all negatively related to the density of neighboring annual grasses. The most probable mechanism underlying the reduction of first season growth and survival was depletion of soil water by the grasses. The effects of the grasses on A. californica were no longer significant in the second season. The results of this study indicate that Mediterranean annual grasses reduce recruitment and can persist by inhibiting post-disturbance establishment of A. californica from seed. Although succession alone may not return disturbed annual grasslands to their former shrubland composition, the results suggest that restoration can be achieved by using container plantings or grass removal followed by seeding.  相似文献   

10.
魏海霞  霍艳玲  周忠科  张治国 《生态学报》2022,42(20):8343-8351
叶功能性状与植物的生长对策及资源利用效率密切相关,研究叶功能性状沿气候梯度的变异特征能为理解植物对气候变化的响应机制提供一种简便可行的测定指标。以我国西北荒漠地区广泛分布的唐古特白刺(Nitraria tangutorum)为研究对象,对其比叶面积(SLA)、单位质量和单位面积叶氮含量(Nmass、Narea)、单位质量和单位面积叶建成成本(CCmass、CCarea)进行测定,分析这些叶功能性状及性状相关关系沿气候梯度的变异特征。结果表明,唐古特白刺叶功能性状(CCarea除外)在气候梯度下存在显著差异,其中,温度是决定唐古特白刺SLA变化的主要因子,SLA随着温度的增加而增加;降水和温度对唐古特白刺Nmass、Narea和CCmass均有显著影响,Nmass和Narea随着降水和温度的增加而降低,而CCmass呈增加趋势。沿气候梯度,唐古特白刺SLA-Nmass、CCmass-Nmass和CCarea-Narea的线性正相关关系发生平移,导致在相同SLA、CCmass和CCarea下,降水和温度较低的地区具有更高的Nmass和Narea。这一结果表明唐古特白刺能通过调节叶功能性状之间的关系来适应气候的变化,并形成性状间的最佳功能组合。  相似文献   

11.
Callitris is Australia’s most successful and drought tolerant conifer genus. Callitris species are distributed across a huge geographical range from rainforest to arid zones, and hence they provide a rare opportunity to view plant growth trends across the continent. Here, we make a continental-scale examination of how climate influences basal diameter growth in Callitris. We sampled a total of five species but focused effort (23 of 28 samples) on the most widespread species, C. columellaris. Cores from a total of 23 trees were sampled from 15 sites that spanned a gradient in mean annual rainfall from 225 to 2117 mm and mean annual temperature from 11.5 to 28.2°C. Ring production is not annual across much of the distribution of the genus, so 14C-AMS dating was used to establish the frequency of ring production for each core. Ring width, tracheid lumen diameter and number of tracheids per ring were also measured on each core. Ring production was close to annual at mesic sites with reliable alternation of rainfall or temperature regimes but was more erratic elsewhere. For C. columellaris, ring width significantly increased with mean annual rainfall (r 2 = 0.49) as a result of wider and more tracheids per ring. For this species tracheid lumen diameter was correlated with annual rainfall (r 2 = 0.61), with a threefold increase from the driest to the wettest sites, lending support to the hypothesis that conifers growing at drier sites will have narrow lumen diameters to maximise mechanical strength of the xylem.  相似文献   

12.
Perennial ryegrass (Lolium perenne L.) is a preferred choice for the turf grass industry due to its ability to provide a durable turf cover. Genetic or physical contamination of annual (L. multiflorum Lam.) or intermediate (L. hybridum) ryegrass species in perennial ryegrass is one of the major problems affecting the grass seed industry. At present, seedling root fluorescence (SRF), a biochemical marker, is used for the detection of annual ryegrass contamination. Due to the unreliability of the SRF test, the seed industry is seeking an alternative, more reliable and accurate detection method. Currently, there are no DNA tests available in ryegrass for detecting contamination with annual and intermediate ryegrass types. We developed a novel quantitative polymerase chain reaction (Q-PCR)-based DNA test for the detection of annual and/or intermediate ryegrass types in perennial ryegrass. This DNA test was designed using an insertion/deletion (InDel) site in the LpVRN2_2 (Vernalization 2) gene, which is one of the several genes controlling vernalization in ryegrass. The new DNA test is more reliable, accurate and cost-effective in detecting contamination, with a high sensitivity of 0.04% in a sample size of 5,000 seeds. Use of larger sample sizes (12.5-fold higher compared to SRF test) provided additional accuracy in detecting the level of contamination. The method has produced consistent results in 68 perennial, 26 annual and 14 intermediate ryegrass lines.  相似文献   

13.
The knowledge of tree age is important for understanding tree growth and forest dynamics. It may be estimated by ‘direct’ methods involving growth ring counts, or by ‘indirect’ methods involving field measurements of growth rates. Direct methods are considered more accurate, but it is not clear if they are appropriate for all species, notably from the humid tropics. In this paper we assess the occurrence of annual growth rings and their utility for age estimation in three tropical tree species, Acrocarpus fraxinifolius, Dalbergia latifolia (Fabaceae) and Syzygium cumini (Myrtaceae), growing in traditional shade coffee plantations of the southern Western Ghats, India. These species previously were described as having “indistinct or absent” growth rings. We used anatomical studies, field measurements and computational methods to characterise growth rings and assess similarities between directly and indirectly estimated tree ages. Our study revealed that annual growth rings were characterised by different sets of anatomical features per species and were most distinct in the fast-growing deciduous A. fraxinifolius. Growth rates measured in the field showed annual periodicity in all three species, and reflected annual rainfall-drought cycles in D. latifolia and S. cumini. Direct age estimates were most similar to indirect estimates in D. latifolia, and least so in S. cumini. The results of direct age estimation by counting rings are consistent with them being annual in nature in tropical species with distinct and reliable annual growth ring formation. However, for species with poorly defined growth rings, indirect age estimation methods might be more useful.  相似文献   

14.
Abstract. We studied the interactions between woody perennial species and native and non-native annual species in a number of vegetation types within a nature reserve in the Western Australian wheatbelt. In particular, we examined the responses of annuals to perennial canopy removal, fire, soil disturbance and nutrient additions, and the effects of removal of annuals on perennial seedling regeneration. Experimental shrub removal significantly increased the abundance of annuals in a dense shrubland dominated by Allocasuarina campestris, but had no effect in a more open species-rich sandplain heath. Soil disturbance and nutrient addition in the heath area had no significant influence on annual abundance until three years after treatment. Fire had no clear effect on annual abundance in the heath within the reserve, but promoted a large increase in non-native species within an adjacent roadverge. A pattern of increased soil nutrient levels was accompanied by greatly increased non-native annual abundance beneath individual trees of Santalum spicatum. Exploratory laboratory bioassay experiments indicated that several woody perennials produced leachates that were capable of reducing the germination or growth of the introduced grass Avena fatua, indicating that allelopathy may be an important component of the interaction between the annual and perennial components. Within a woodland community, fire temporarily reduced the abundance of annual species and increased the establishment of perennial seedlings. Field experiments showed that annuals significantly reduced the survival of seedlings of the shrub Allocasuarina campestris. Our results indicate that intact native vegetation canopies effectively prevent invasion by non-native annuals, and that regeneration by native perennials is likely to be inhibited by the presence of an abundant annual cover.  相似文献   

15.
在树木年轮学与气候学理论基础上,以新疆和田地区玉龙喀什河与策勒河下游河岸胡杨为研究对象,基于流域对应的气象、沙尘天气日数、策勒河径流量等因子,分析了玉龙喀什河与策勒河流域胡杨年轮对气象因子的响应特征,以明确干旱荒漠区胡杨生长过程中的气候限制因子,为促进胡杨生态修复及沙尘防治提供理论依据.结果显示:(1)1976-201...  相似文献   

16.
Little is known about the potential for coexistence between native and non-native plants after large-scale biological invasions. Using the example of native perennial bunchgrasses and non-native annual grasses in California grasslands, we sought to determine the effects of interference from non-native grasses on the different life stages of the native perennial bunchgrass Nassella pulchra. Further, we asked whether N. pulchra interferes with non-native annual grasses, and whether competition for water is an important component of these interspecific interactions in this water-limited system. In a series of field and greenhouse experiments employing neighbor removals and additions of water, we found that seedling recruitment of N. pulchra was strongly seed-limited. In both field and greenhouse, natural recruitment of N. pulchra seedlings from grassland soil was extremely low. In field plots where we added seeds, addition of water to field plots increased density of N. pulchra seedlings by 88% and increased total aboveground N. pulchra seedling biomass by almost 90%, suggesting that water was the primary limiting resource. In the greenhouse, simulated drought early in the growing season had a greater negative effect on the biomass of annual seedlings than on the seedlings of N. pulchra. In the field, presence of annuals reduced growth and seed production of all sizes of N. pulchra, and these effects did not decrease as N. pulchra individuals increased in size. These negative effects appeared to be due to competition for water, because N. pulchra plants showed less negative pre-dawn leaf water potentials when annual neighbors were removed. Also, simply adding water caused the same increases in aboveground biomass and seed production of N. pulchra plants as removing all annual neighbors. We found no evidence that established N. pulchra plants were able to suppress non-native annual grasses. Removing large N. pulchra individuals did not affect peak biomass per unit area of annuals. We conclude that effects of interference from non native annuals are important through all life stages of the native perennial N. pulchra. Our results suggest that persistence of native bunchgrasses may be enhanced by greater mortality of annual than perennial seedlings during drought, and possibly by reduced competition for water in wet years because of increased resource availability. Received: 12 November 1998 / Accepted: 4 August 1999  相似文献   

17.
Peter Haase 《Oecologia》1986,68(3):456-458
Summary The annual leaf area production of the subalpine composite shrubsOlearia ilicifolia andSenecio bennettii is related to the environmental temperatures experienced at the time of leaf primordia initiation in the previous growing season. The sensitive period occurs 3–9 weeks after bud break when the new resting bud is formed in the growing shoot apex. The initiation periods ofOlearia andSenecio do not coincide and, therefore, the annual variation of leaf area increment follows a different pattern in the two species. A minimum annual increment of 20 cm2 inOlearia and 40–45 cm2 inSenecio seems to represent a probable lower limit; lower temperatures are unlikely to be experienced during primordia formation as these would delay bud break.  相似文献   

18.
The distribution and abundance of larval chironomids in Lake Hayes were studied from December 1973 to March 1975. The mean annual production of the two dominant species, Chironomus zealandicus and Chironomus sp. a, was 29.2 g m−2 dry weight which is approximately 4.3 % of the average annual phytoplankton production in the lake. A high annual P/B ratio of 18.5 is consistent with the multivoltine life cycle of C. zealandicus. Larval chironomid production in the second summer when Anabaena blooms were absent was only one quarter of that in the first summer and is consistent with the hypothesis that the production of benthic chironomids in Lake Hayes is closely linked to that of the phytoplankton through the sedimentation of autochthonous organic matter.  相似文献   

19.
The Cape Floristic Region and the Succulent Karoo in southwestern Africa are both noted for their plant species richness and high levels of endemism. The southwestern tip of Africa is one of the world's five Mediterranean-type climate regions. The biodiversity in the Cape Floristic Region and Succulent Karoo is thought to be at least partly due to changes to the climate of these regions that have occurred since the middle Miocene. Annual species are usually a significant proportion of local flora in Mediterranean-type climate regions. Previous studies of species radiations in the Cape Floristic Region have concentrated on genera that predominantly contain perennial species. Nemesia (Scrophulariaceae) comprises c. 65 species of annual and perennial herbs and sub-shrubs that are native to southern and tropical Africa. Annuals make up a significant proportion (~75%) of Nemesia species. We have reconstructed a phylogeny of 23 Nemesia species using nucleotide sequences of the ITS, ETS and trnL-spacer regions. Species were grouped into five clades, two composed of annual species, one that contained two annual and one perennial species, one that contained one annual and two perennial species, and one that was predominantly composed of perennial species. Phylogenetic dating of the ITS + ETS based phylogenetic tree using penalised likelihood suggested the genus evolved during the Miocene, and that the majority of extant Nemesia species studied radiated during the Pliocene. Ancestral state reconstruction supports at least three separate origins of the annual habit from plants with a perennial life history. One origin can be traced to the late Miocene while the other two transitions occurred more recently during the Pliocene. The transition from perennial to annual life-histories in Nemesia may have been a response to climate change.  相似文献   

20.
The evolutionary rate at which DNA sequences evolve is known to differ between different groups of organisms. However, the reasons for these different rates are seldom known. Among plants, the generation-time hypothesis, which states that organisms that reproduce faster also have more DNA substitutions per time, has gained most popularity. We evaluate the generation-time hypothesis using 131 DNA sequences from the plastid trnLF region and the nuclear ribosomal ITS region of the genus Veronica (Plantaginaceae). We also examine the alternative hypothesis that a higher substitution rate is correlated with selfing breeding system. Selfing is associated with annual life history in many organisms and may thus often be the underlying reason for observed correlations of annual life history with other characters. We provide evidence that annual life history is more likely to be the responsible factor for higher substitution rates in Veronica than a selfing breeding system. Nevertheless, the way in which annual life history may influence substitution rate in detail remains unknown, and some possibilities are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号