首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Chin TM  Lin SB  Lee SY  Chang ML  Cheng AY  Chang FC  Pasternack L  Huang DH  Kan LS 《Biochemistry》2000,39(40):12457-12464
The formation of a DNA "paper-clip" type triple helix (triplex) with a common sequence 5'-d-(TC)(3)T(a)()(CT)(3)C(b)()(AG)(3) (a and b = 0-4) was studied by UV thermal melting experiments and CD spectra. These DNA oligomers form triplexes and duplexes under slightly acidic and neutral conditions, respectively. The stability of the formed triplexes (at pH 4.5) or duplexes (at pH 7.0 or 8.0) does not vary significantly with the size of the loops (a and b = 1-4). At pH 6.0, the triplex stability is, however, a function of a and b. It is also interesting to note that the oligomer 5'-d-(TC)(3)(CT)(3)(AG)(3) (a and b = 0) forms a stable triplex at pH 4.5 with a slightly lower T(m) value, due to dissociation of a base triad at one end and a distorted base triad at the other, observed by (1)H NMR. Thus, we have here a model system, 5'-d-(TC)(3)T(a)(CT)(3)C(b)(AG)(3), that could form a triplex effectively with (a and b = 1-4) and without (a and b = 0) loops under acidic conditions. In addition, the triplex formation of oligomers with replacement of one, two, or three 2'-deoxycytidine in the Hoogsteen strand by either 2'-deoxypseudoisocytidine (D) or 2'-O-methylpseudoisocytidine (M) was also studied in the sequence 5'-d-(TX)(3)T(2)(CT)(3)C(2)(AG)(3) (where X is C, D, or M). Both CD spectra and UV melting results showed that only D3 [(TX)(3) = (TD)(3)] and M3 [(TX)(3) = (TM)(3)] were able to form the paper-clip structure under both neutral and acidic conditions. This is because the N(3)H of a pseudoisocytosine base can serve as a proton donor without protonation. We hereby proved that the 2'-deoxypseudoisocytidine, similar to 2'-O-methylpseudoisocytidine, could replace 2'-deoxycytidine in the Hoogsteen strand to provide triplex formation at neutral pH.  相似文献   

2.
It was observed that a group of unusually stable DNA hairpins (Hn: 5'-d-(AG)nT4(CT)n, n = 2-4) were directed to homopyrimidine sequences (Pn: 5'-d-(TC)n) by py x pu x py-type triplex formation, resulting in high binding affinity and specificity. The spectroscopic results (UV and CD) showed that the short bimolecular triplex Hn:Pn could be formed in acidic conditions (pH 4.5-6.0) as helix length n > 2, and further extending to neutral pH as n = 4. This hairpin strategy for recognition of a pyrimidine strand has a substantial binding advantage over either the conventional linear analog or simple Watson-Crick complement. Triplex stability of Hn with Pn is not only pH-dependent, as expected for triplexes involving C+. GC triads, but also sensitive to the buffer. The triplex H4:P4 was formed in the phosphate buffers of pH 6.0-7.0 but already dissociated above pH 6.5 in the buffer of cacodylate, MOPSO or PIPES. By contrast, the nature of a buffer had no major influence on stability of a hairpin duplex. Here we provide a simple triplex system, and the data presented here may be useful in defining the experimental conditions necessary to stabilize triplex DNA.  相似文献   

3.
4.
We have stabilized the d(A)10.2d(T)10 and d(C+LT4C+3).d(G3A4G3).d(C3T4C3) triple helices with either NaCl or MgCl2 at pH 5.5. UV mixing curves demonstrate a 1:2 stoichiometry of purine to pyrimidine strands under the appropriate conditions of pH and ionic strength. Circular dichroic titrations suggest a possible sequence-independent spectral signature for triplex formation. Thermal denaturation profiles indicate the initial loss of the third strand followed by dissociation of the underlying duplex with increasing temperature. Depending on the base sequence and ionic conditions, the binding affinity of the third strand for the duplex at 25 degrees C is two to five orders of magnitude lower than that of the two strands forming the duplex. Thermodynamic parameters for triplex formation were determined for both sequences in the presence of 50 mM MgCl2 and/or 2.0 M NaCl. Hoogsteen base pairs are 0.22-0.64 kcal/mole less stable than Watson-Crick base pairs, depending on ionic conditions and base composition. C+.G and T.A Hoogsteen base pairs appear to have similar stability in the presence of Mg2+ ions at low pH.  相似文献   

5.
Rajesh M  Wang G  Jones R  Tretyakova N 《Biochemistry》2005,44(6):2197-2207
The p53 tumor suppressor gene is a primary target in smoking-induced lung cancer. Interestingly, p53 mutations observed in lung tumors of smokers are concentrated at guanine bases within endogenously methylated (Me)CG dinucleotides, e.g., codons 157, 158, 245, 248, and 273 ((Me)C = 5-methylcytosine). One possible mechanism for the increased mutagenesis at these sites involves targeted binding of metabolically activated tobacco carcinogens to (Me)CG sequences. In the present work, a stable isotope labeling HPLC-ESI(+)-MS/MS approach was employed to analyze the formation of guanine lesions induced by the tobacco-specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) within DNA duplexes representing p53 mutational "hot spots" and surrounding sequences. Synthetic DNA duplexes containing p53 codons 153-159, 243-250, and 269-275 were prepared, where (Me)C was incorporated at all physiologically methylated CG sites. In each duplex, one of the guanine bases was replaced with [1,7,NH(2)-(15)N(3)-2-(13)C]-guanine, which served as an isotope "tag" to enable specific quantification of guanine lesions originating from that position. After incubation with NNK diazohydroxides, HPLC-ESI(+)-MS/MS analysis was used to determine the yields of NNK adducts at the isotopically labeled guanine and at unlabeled guanine bases elsewhere in the sequence. We found that N7-methyl-2'-deoxyguanosine and N7-[4-oxo-4-(3-pyridyl)but-1-yl]guanine lesions were overproduced at the 3'-guanine bases within polypurine runs, while the formation of O(6)-methyl-2'-deoxyguanosine and O(6)-[4-oxo-4-(3-pyridyl)but-1-yl]-2'-deoxyguanosine adducts was specifically preferred at the 3'-guanine base of 5'-GG and 5'-GGG sequences. In contrast, the presence of 5'-neighboring (Me)C inhibited O(6)-guanine adduct formation. These results indicate that the N7- and O(6)-guanine adducts of NNK are not overproduced at the endogenously methylated CG dinucleotides within the p53 tumor suppressor gene, suggesting that factors other than NNK adduct formation are responsible for mutagenesis at these sites.  相似文献   

6.
Protonated pyrimidine-purine-purine triplex.   总被引:1,自引:0,他引:1       下载免费PDF全文
We have studied a protonated pyrimidine-purine-purine (Py-Pu-Pu) triplex, which is formed between the d(C)nd(G)n duplex and the d(AG)m oligonucleotide as the third strand and carries the CG*A+ protonated base-triads. We have observed such an intermolecular complex between a plasmid carrying the d(C)18 d(G)18 insert and the d(AG)5 oligonucleotide without bivalent cations in 200 mM of Na+ at pH4.0. Bivalent cations additionally stabilize the complex. We propose the structures for nearly isomorphous base-triads TA*A, CG*G and CG*A+. To identify the H-DNA-like structure, which includes the triplex between d(C)n d(G)n duplex and the AG-strand, we have cloned in a superhelical plasmid the insert: G10TTAA(AG)5. The data on photofootprinting and chemical modification with diethyl pyrocarbonate, potassium permanganate and dimethyl sulfate demonstrate that the H-like structure with triplex carrying CG*G and CG*A+ base triads is actually formed under acid conditions. In the course of this study we have come across unexpected results on probing of Py-Pu-Pu triplexes by dimethyl sulfate (DMS): the protection effect is observed not only for guanines entering the duplex but also for guanines in the third strand lying in the major groove. We have demonstrated this effect not only for the case the novel protonated Py-Pu-Pu triplex but also for the traditional non-protonated Py-Pu-Pu intramolecular triplex (H*-DNA) formed by the d(C)37 d(G)37 insert in supercoiled plasmid in the presence of Mg2+ ions.  相似文献   

7.
Triple helices containing C+xGxC triplets are destabilised at physiological pH due to the requirement for base protonation of 2'-deoxycytidine (dC), which has a pKa of 4.3. The C nucleoside 2-amino-5-(2'-deoxy-beta-D-ribofuranosyl)pyridine (beta-AP) is structurally analogous to dC but is considerably more basic, with a pKa of 5.93. We have synthesised 5'-psoralen linked oligodeoxyribonucleotides (ODNs) containing thymidine (dT) and either beta-AP or its alpha-anomer (alpha-AP) and have assessed their ability to form triplexes with a double-stranded target derived from standard deoxynucleotides (i.e. beta-anomers). Third strand ODNs derived from dT and beta-AP were found to have considerably higher binding affinities for the target than the corresponding ODNs derived from dT and either dC or 5-methyl-2'-deoxycytidine (5-Me-dC). ODNs containing dT and alpha-AP also showed enhanced triplex formation with the duplex target and, in addition are more stable in serum-containing medium than standard oligopyrimidine-derived ODNs or ODNs derived from dT and beta-AP. Molecular modelling studies showed that an alpha-anomeric AP nucleotide can be accommodated within an otherwise beta-anomeric triplex with only minor perturbation of the triplex structure. Molecular dynamics (MD) simulations on triplexes containing either the alpha- or beta-anomer of (N1-protonated) AP showed that in both cases the base retained two standard hydrogen bonds to its associated guanine when the 'A-type' model of the triplex was used as the start-point for the simulation, but that bifurcated hydrogen bonds resulted when the alternative 'B-type' triplex model was used. The lack of a differential stability between alpha-AP- and beta-AP-containing triplexes at pH >7, predicted from the behaviour of the B-type models, suggests that the A-type models are more appropriate.  相似文献   

8.
D M Gowers  J Bijapur  T Brown  K R Fox 《Biochemistry》1999,38(41):13747-13758
DNase I footprinting has been used to study the formation of parallel triplexes at oligopurine target sequences which are interrupted by pyrimidines at regular intervals. TA interruptions are targeted with third strand oligonucleotides containing guanine, generating G x TA triplets, while CG base pairs are targeted with thymine, forming T x CG triplets. We have attempted to optimize the stability of these complexes by varying the base composition and sequence arrangement of the target sites, and by replacing the third strand thymines with the positively charged analogue 5-(1-propargylamino)dU (U(P)). For the target sequence (AAAT)(5)AA, in which pyrimidines are positioned at every fourth residue, triplex formation with TG-containing oligonucleotides is only detected in the presence of a triplex-binding ligand, though stable triplexes were detected at the target site (AAAAAT)(3)AAAA. Triplex stability at targets containing pyrimidines at every fourth residue is increased by introducing guanines into the duplex repeat unit using the targets (AGAT)(5)AA and (ATGA)(5)AA. In contrast, placing C(+) x GC triplets on the 5'-side of G x TA, using the target (AGTA)(5)TT, produces complexes of lower stability. We have attempted further to increase the stability of these complexes by using the positively charged thymine base analogue U(P), and have shown that (TU(P)TG)(5)TT forms a more stable complex with target (AAAT)(5)AA than the unmodified third strand, generating a footprint in the absence of a triplex-binding ligand. Triplex formation at (AGTA)(5)AA is improved by using the modified oligonucleotide (TCGU(P))(5)TT, generating a complex in which the charged triplets C(+) x GC and U(P) x AT alternate with uncharged triplets. In contrast, placing U(P) x AT triplets adjacent to C(+) x GC, using the third strand oligonucleotide (U(P)CGT)(5)TT, reduces triplex formation, while the third strand with both substitutions, (U(P)CGU(P))(5)TT, produces a complex with intermediate stability. It appears that, although adjacent U(P) x AT triplets form stable triplexes, placing U(P) x AT adjacent to C(+) x GC is unfavorable. Similar results were obtained with fragments containing CG inversions within the oligopurine tract, though triplexes at (AAAAAC)(3)AA were only detected in the presence of a triplex-binding ligand. Placing C(+) x GC on the 5'-side of T x CG triplets also reduces triplex formation, while a 3'-C(+) x GC produces complexes with increased stability.  相似文献   

9.
We have used circular dichroism and UV absorption spectroscopy to characterize the formation and melting behaviour of an intramolecular DNA triple helix containing parallel T*A:T and G*G:C triplets. Our approach to induce and to stabilize a parallel triplex involves the oligonucleotide 5'-d(G4A4G4[T4]C4T4C4-[T4]G4T4G4) ([T4] represents a stretch of four thymine residues). In a 10 mM sodium cacodylate, 0.2 mM disodium EDTA (pH 7) buffer, we have shown the following significant results. (i) While in the absence of MgCl2 this oligonucleotide adopts an intramolecular hairpin duplex structure prolonged by the single strand extremity 5'-d([T4]G4T4G4), the presence of millimolar concentrations of MgCl2generates an intramolecular triplex (via double hairpin formation). (ii) In contrast to the antiparallel triplex formed by the oligonucleotide 5'-d(G4T4G4[T4]G4A4G4[T4]C4T4C4), the parallel triplex melts in a biphasic manner (a triplex to duplex transition followed by a duplex to coil transition) and is less stable than the antiparallel one. The enthalpy change associated with triplex formation (-37 kcal/mol) is approximately half that of duplex formation (-81 kcal/mol). (iii) The parallel triple helix is disrupted by increasing the concentration of KCl(>10 mM), whereas, under the same conditions, the antiparallel triplex remains stable. (iv) Netropsin, a natural DNA minor groove-binding ligand, binds to the central site A4/T4of the duplex or triplex in an equimolar stoichiometry. Its association constant K is smaller for the parallel triplex ( approximately 1 x 10(7) M-1) than for the antiparallel one ( approximately 1 x 10(8) M-1). In contrast to the antiparallel structure, netropsin binding has no apparent effect on thermal stability of the parallel triple helix.  相似文献   

10.
Di- or trivalent metal ions stabilize a supercoil-dependent transition in pGA37, which contains the (GA)37.(CT)37 insert, at neutral and basic pH. The structure formed is different from the well known protonated triplexes (H-DNA) adopted at low pH by polypurine.polypyrimidine (Pur.Pyr) inserts in plasmids. DNA samples must be preincubated in the presence of multivalent ions at 50 degrees C for the new transition to occur. At neutral pH in the presence of Co hexamine, both strands of the insert have modification maxima situated at one-third of the distance from both ends. We propose the formation of a new structure called nodule DNA which consists of both Pyr.Pur.Pyr and Pur.Pur.Pyr triplexes and does not contain continuous single-stranded regions. At basic pH (greater than 8.5) in the presence of magnesium ions, the modification pattern corresponds to Pur.Pur.Pyr triplex formation in the whole insert. At neutral pH in the presence of magnesium, both nodule DNA and the Pur.Pur.Pyr triplex can be formed in the insert. We also observed a magnesium-dependent transition at neutral pH in the other Pur.Pyr insert containing plasmids. These data demonstrate that Pur.Pyr sequences can adopt several non-B conformations at close to in vivo conditions.  相似文献   

11.
Near-UV difference spectral analysis of the triplex formed from d(C-T)6 and d(A-G)6.d(C-T)6 in neutral and acidic solution shows that the third strand dC residues are protonated at pH 7.0, far above their intrinsic pKa. Additional support for ion-dipole interactions between the third strand dC residues and the G.C target base pairs comes from reduced positive dependence of triplet stability on ionic strength below 0.9 M Na+, inverse dependence above 0.9 M Na+ and strong positive dependence on hydrogen ion concentration. Molecular modeling (AMBER) of C:G.C and C+:G.C base triplets with the third strand base bound in the Hoogsteen geometry shows that only the C+:G.C triplet is energetically feasible. van't Hoff analysis of the melting of the triplex and target duplex shows that between pH 5.0 and 8.5 in 0.15 M NaCl/0.005 M MgCl2 the enthalpy of melting (delta H degree obs) varies from 5.7 to 6.6 kcal.mol-1 for the duplex in a duplex mixture and from 7.3 to 9.7 kcal.mol-1 for third strand dissociation in the triplex mixture. We have extended the condensation-screening theory of Manning to pH-dependent third strand binding. In this development we explicitly include the H+ contribution to the electrostatic free energy and obtain [formula: see text]. The number of protons released in the dissociation of the third strand from the target duplex at pH 7.0, delta n2, is thereby calculated to be 5.5, in good agreement with approximately six third strand dc residues per mole of triplex. This work shows that when third strand binding requires protonated residues that would otherwise be neutral, triplex formation and dissociation are mediated by proton uptake and release, i.e., a proton switch. As a by-product of this study, we have found that at low pH the Watson-Crick duplex d(A-G)6.d(C-T)6 undergoes a transition to a parallel Hoogsteen duplex d(A-G)6.d(C(+)-T)6.  相似文献   

12.
We have previously developed W-shaped nucleoside analogs (WNA) for recognition of TA and CG interrupting sites, which are the intrinsic limitation for the formation of a stable triplex DNA by the natural triplex-forming oligonucleotide (TFO). However, the stabilization effect of WNA is dependent on the neighboring nucleobases at both sides of the WNA analogs within the TFO. Considering that the base is located at the hindered site constructed of three bases of the target duplex and the TFO, it was expected that replacement of the pyrimidine base of the WNA analog with a smaller pyrazole ring might avoid steric repulsion to produce a greater stability for the triplex. In this study, the new WNA analogs bearing the pyrazole ring, 3-aminopyrazole (AP), and 4-methyl-3-pyrazole-5-on (MP) were synthesized, incorporated into the TFOs, then their stabilizing effects on the triplexes were evaluated. A remarkable success was illustrated by the fact that the TFO containing WNA-βAP in the 3′G-WNA-G-5′ sequence formed a stable triplex with selectivity to the CG interrupting site where the previous WNA-βC did not induce the triplex formation.  相似文献   

13.
A psoralen-conjugated oligodeoxyribopyrimidine (1443), PS-pTTTTCTTTTCTTCTT, where PS is trimethylpsoralen and C is 5-methyl-2'-deoxycytidine, that contains alternating methylphosphonate-phosphodiester internucleotide linkages was synthesized. The ability of 1443 to form triple-stranded complexes with a purine tract in a synthetic DNA duplex was studied. Irradiation of solutions containing the DNA target and 10 microM 1443 or 0.25 microM of a similar psoralen-conjugated oligodeoxyribonucleotide that contained all phosphodiester linkages, (1193), with long-wavelength UV light resulted in approximately 80% formation of interstrand cross-links at pH 7.0, 37 degrees C, in the presence of 20 mM magnesium chloride. The extent of triplex formation as monitored by photo-cross-linking decreased over the pH range 5.5-8.0, and the apparent pK of the 5-methylcytosines (C) in 1443 was approximately one-half of a pH unit less than that of the 5-methylcytosines in 1193. Oligomer 1443 formed triplexes in the absence of magnesium, and maximum triplex formation was observed in solutions containing 2.5 mM magnesium, whereas maximal triplex formation by the fully charged 1193 was not observed until the magnesium concentration was 10 mM or higher. Unlike the all-phosphodiester backbone of 1193, the alternating methylphosphonate-phosphodiester backbone of 1193 is resistant to hydrolysis by exonucleases in fetal calf serum. The nuclease resistance of 1443 and its ability to form triplexes at very low magnesium concentrations suggests that triplex-forming oligomers with alternating methylphosphonate-phosphodiester backbones may be good candidates for use as antigene reagents in cell culture.  相似文献   

14.
We have studied the effect of intermolecular triplexes formation on the yield of cyclobutane photodimers in DNA. DNA duplex within the pyrimidine-purine-pyrimidine triplex d(TC)nd(GA)nd(CT)n is protected from the formation of cyclobutane photodimers in the case of the stabilization of this triplex by acid pH, and in the case of supplementary stabilization by Mg2+ or Zn2+. We have studied pH-independent pyrimidine-purine-purine triplexes stabilized by bivalent cations. In such triplexes, the protection from the formation of [6-4] photodimers is observed, whereas the protection from cyclobutane dimer formation does not take place. The formation of the d(TC)nd(GA)nd(GA)n triplex leads to an inversion of the intensities of cyclobutane CT and TC photodimers. We observed a sharp decrease in photoreactivity with respect to cyclobutane dimers in the duplex tract d(C)18d(G)18 in the presence of Ba2+, Cd2+, Co2+, Mn2+, Zn2+ and Ni2+. The formation of the d(C)nd(G)nd(G)n triplex leads to 'antifootprinting', i.e. an increase in the yield of cyclobutane photodimers.  相似文献   

15.
Triplex and duplex formation of two deoxyribohexadecamers d-A-(G-A)-G (a) and d-C-(T-C)-T (b) have been studied by UV, CD, fluorescence, and proton NMR spectroscopy. Optical studies of a and b at dilute concentrations (microM range) yielded results similar to those seen for polymers of the same sequence, indicating that these hexadecamers have properties similar to the polymers in regard to triplex formation. The CD spectra of concentrated NMR samples (mM range) are similar to those observed at optical concentrations at both low and high pH, making possible a correlation between CD and NMR studies. In NMR spectra, two imido NH-N hydrogen bonded resonance envelopes at 12.6 and 13.7 ppm indicate that only the duplex conformation is present at pH greater than 7.7. Four new NH-N hydrogen-bonded resonance envelopes at 12.7, 13.5, 14.2, and 14.9 ppm are observed under acidic conditions (pH 5.6) and the two original NH-N resonances gradually disappear as the pH is lowered. Assignment of these four peaks to Watson-Crick G.C. Hoogsteen T.A Watson-Crick A.T, and Hoogsteen C+.G hydrogen-bonded imidos, respectively, confirm the formation of triple-stranded DNA NMR results also show that triplex is more stable than duplex at the same salt condition and that triplex melts to single strands directly without going through a duplex intermediate. However, in the melting studies, a structural change within the triple-stranded complex is evident at temperatures significantly below the major helix-to-coil transition. These studies demonstrate the feasibility of using NMR spectroscopy and oligonucleotide model compounds a and b for the study of DNA triplex formation.  相似文献   

16.
The effect of the central non-Pur.Pyr sequences in oligo(dG.dC) inserts on determining the type of intramolecular DNA triplex isomers formed in negatively supercoiled plasmids was investigated. Different triplex types (H-r3, H-r5, and H-y3), revealed by a combination of chemical probing and Maxam-Gilbert sequencing reactions, were adopted by the oligo(dG.dC) tracts depending on the length and composition of the central non-Pur.Pyr sequences (0, 3, or 5 base pairs) and the kind of metal ions. The H-r3 triplex conformer, one isomer of a Pur.Pur.Pyr structure, was formed in the (C)20 and (C)10GCG(C)10 inserts in plasmids in the presence of certain metal ions. Interestingly, H-r5, the other isomer of the Pur.Pur-Pyr triplex which had not been detected previously, was formed in a (C)9GAATT(C)9 insert in the presence of either Mg2+ or Ca2+. Alternatively, H-y3, one isomer of a Pyr.Pur.Pyr triplex, was formed in the (C)9GAATT(C)9 insert in the absence of metal ions. Thus, central non-Pur.Pyr sequences and metal ions play a role as determinants of the types of intramolecular triplexes formed; they also reduce the requirement of longer Pur.Pyr repeat sequences to form intramolecular triplexes. Furthermore, the effects of MgCl2 concentration and pH on the formation of triplex isomers were examined. The Pur.Pur.Pyr conformations (H-r3 and H-r5) may be the favored conformations in the cellular milieu, since they are stable at physiological pH and metal ion concentration.  相似文献   

17.
We have used DNase I footprinting, fluorescence and ultraviolet (UV) melting experiments and circular dichroism to demonstrate that, in the parallel triplex binding motif, 2′-aminoethoxy-5-(3-aminoprop-1-ynyl)uridine (bis-amino-U, BAU) has very high affinity for AT relative to all other Watson–Crick base pairs in DNA. Complexes containing two or more substitutions with this nucleotide analogue are stable at pH 7.0, even though they contain several C.GC base triplets. These modified triplex-forming oligonucleotides retain exquisite sequence specificity, with enhanced discrimination against YR base pairs (especially CG). These properties make BAU a useful base analogue for the sequence-specific creation of stable triple helices at pH 7.0.  相似文献   

18.
Oligodeoxynucleotide (ODN) directed triplex formation has therapeutic importance and depends on Hoogsteen hydrogen bonds between a duplex DNA and a third DNA strand. T*A:T triplets are formed at neutral pH and C+*G:C are favoured at acidic pH. It is demonstrated that spermine conjugation at N4 of 5-Me-dC in ODNs 1-5 (sp-ODNs) imparts zwitterionic character, thus reducing the net negative charge of ODNs 1-5. sp-ODNs form triplexes with complementary 24mer duplex 8:9 show foremost stability at neutral pH 7.3 and decrease in stability towards lower pH, unlike the normal ODNs where optimal stability is found at an acidic pH 5.5. At pH 7.3, control ODNs 6 and 7 carrying dC or 5-Me-dC, respectively, do not show any triple helix formation. The stability order of triplex containing 5-Me-dC-N4-(spermine) with normal and mismatched duplex was found to be X*G:C approximately X*A:T > X*C:G > X*T:A. The hysteresis curve of sp-ODN triplex 3*8:9 indicated a better association with complementary duplex 8:9 as compared to unmodified ODN 6 in triplex 6*8:9. pH-dependent UV difference spectra suggest that N3 protonation is not a requirement for triplex formation by sp-ODN and interstrand interaction of conjugated spermine more than compensates for loss in stability due to absence of a single Hoogsteen hydrogen bond. These results may have importance in designing oligonucleotides for antigene applications.  相似文献   

19.
Oligonucleotides capable of sequence-specific triple helix formation have been proposed as DNA binding ligands useful for modulation of gene expression and for directed genome modification. However, the effectiveness of such triplex-forming oligonucleotides (TFOs) depends on their ability to bind to their target sites within cells, and this can be limited under physiologic conditions. In particular, triplex formation in the pyrimidine motif is favored by unphysiologically low pH and high magnesium concentrations. To address these limitations, a series of pyrimidine TFOs were tested for third-strand binding under a variety of conditions. Those containing 5-(1-propynyl)-2'-deoxyuridine (pdU) and 5-methyl-2'-deoxycytidine (5meC) showed superior binding characteristics at neutral pH and at low magnesium concentrations, as determined by gel mobility shift assays and thermal dissociation profiles. Over a range of Mg2+ concentrations, pdU-modified TFOs formed more stable triplexes than did TFOs containing 2'-deoxythymidine. At 1 mM Mg2+, a DeltaTm of 30 degreesC was observed for pdU- versus T-containing 15-mers (of generic sequence 5' TTTTCTTTTTTCTTTTCT 3') binding to the cognate A:T bp rich site, indicating that pdU-containing TFOs are capable of substantial binding even at physiologically low Mg2+ concentrations. In addition, the pdU-containing TFOs were superior in gene targeting experiments in mammalian cells, yielding 4-fold higher mutation frequencies in a shuttle vector-based mutagenesis assay designed to detect mutations induced by third-strand-directed psoralen adducts. These results suggest the utility of the pdU substitution in the pyrimidine motif for triplex-based gene targeting experiments.  相似文献   

20.
The kinetics of hydrolysis by Pseudomonas aeruginosa elastase at 37 degrees C and pH 7.3 of 3-(2-furyl)acryloyl-glycyl-L-phenylalanyl-L-phenylalanine is compatible with nonproductive substrate inhibition, i.e., v = V.[S]/(Km + [S] + [S]2/K1), and the values of Km, Ki, and kappa cat are 1.4 mM, 5.0 mM, and 240 s-1, respectively. Product inhibition experiments are in agreement with an ordered release of product, with L-phenylalanyl-L-phenylalanine, the amino-containing product, being released first from the elastase.product complex. The values of Ki for L-phenylalanyl-L-phenylalanine and 3-(2-furyl)acryloyl-glycine are 1.5 and 4.0 mM, respectively. Kinetic experiments indicate that the second molecule of substrate combines with elastase.substrate to form a dead-end elastase . (substrate)2 complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号