首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The population tendencies of Pseudomonas cichorii and P. syringae pv. garcae in young and mature coffee leaves were determined by inoculating streptomycin resistant bacterial cells from 24 h cultures into young and mature coffee leaves. The leaves were then sampled daily for 5 days and the number of bacterial cells per g of leaf tissue was determined. Pseudomonas cichorii increased in mature leaves only while P. syringae pv. garcae increased in young leaves. Symptom development was dependent on the presence of a large number of bacterial cells in the host tissue and coincided with the maximum content of bacterial cells in the leaf.  相似文献   

2.
The occurrence of “Xanthomonas axonopodis pv. phaseoli var. fuscans” (proposed name) populations as biofilms on bean leaves was investigated during three field experiments on plots established with naturally contaminated bean seeds. Behavior of aggregated versus solitary populations was determined by quantification of culturable cells in different fractions of the epiphytic population separated by particle size. X. axonopodis pv. phaseoli var. fuscans population dynamic studies confirmed an asymptomatic and epiphytic colonization of the bean phyllosphere. For all years of experiment and cultivars tested, biofilms and solitary components of the populations were always detected. Biofilm population sizes remained stable throughout the growing season (around 105 CFU/g of fresh weight) while solitary population sizes were more abundant and varied with climate. According to enterobacterial repetitive intergenic consensus fingerprinting, aggregated bacterial isolates were not different from solitary isolates. In controlled conditions, application of a hydric stress resulted in a decrease of the solitary populations on the leaf surface while the biofilm fraction remained stable. Suppression of the hydric stress allowed solitary bacterial populations to increase again. Aggregation in biofilms on leaf surfaces provides protection to the bacterial cells against hydric stress.  相似文献   

3.
Susceptibility of mango fruits to bacterial black spot disease was related to the stage of fruit development and to climatic factors (rainfall and temperature). The highest percentages of infected fruits occurred when inoculations were performed during the month just before harvest. Wounds and lenticels are effective entry sites for the bacterium. The ability of lenticels to take up bacterial inoculum was estimated using safranin. The susceptibility of lenticels to entry of the pathogen was directly related to the fruit age. X. c. pv. mangiferaeindicae can survive epiphytically on immature mango fruits. Bacterial populations around 105 c.f.u./fruit are commonly detected. Epiphytic X. c. pv. mangiferaeindicae were not detected on symptomless mature fruits. Those resident populations are an important source of inoculum for fruit infection. The number of bacterial spots occurring on the fruits is directly related to epiphytic populations.  相似文献   

4.
Abstract Over two growing seasons, 273 bacterial strains were isolated from soybean leaves without and with bacterial blight symptoms caused by Pseudomonas syringae pv. glycinea (Psg). The majority of the isolates from leaves with symptoms were identified as Psg (43%), followed by Erwinia herbicola (21%), and Enterobacter/Erwinia (19%). The isolates from leaves without symptoms included mainly a group of unidentified Gram-negative bacteria (22%), Psg (21%), and E. herbicola (18%). Psg colonized the soybean leaves prior to saprophytic bacteria, and remained dominant during both seasons on healthy, as well as infected, leaves. Eighty-two saprophytic isolates were tested in vitro for their antagonistic activities against Psg, using an agar-diffusion assay. For the in planta assay, Psg and each isolate were simultaneously inoculated into wounds of pin-pricked leaves of greenhouse-grown soybean plants. Twenty-nine isolates were antagonistic in vitro. Nineteen isolates were able to suppress the growth of Psg and prevented the formation of leaf spots in planta when mixtures of isolate and pathogen were inoculated at ratios >1. Only 9 of the 82 isolates inhibited Psg in vitro as well as in planta. Most antagonists detected belonged to the genera Pseudomonas and the species Erwinia herbicola. The in planta assay should be a reliable predictor of field performance for screening of biological control agents. Received: 8 April 1996; Accepted: 22 October 1996  相似文献   

5.
The efficacy of a bacterial strain as a biocontrol agent in the field may be related to the ecological similarity between the biocontrol agent and the target pathogen. Therefore, a number of different Pseudomonas syringae strains were evaluated for their antagonistic activities in vitro (agar-diffusion assay) and in planta (greenhouse assay) against the target pathogen, Pseudomonas syringae pv. glycinea. Six strains of five different pathovars were found to be antagonistic in vitro as well as in planta. The epiphytic fitness of the antagonistic Pseudomonas syringae strain 22d/93 and its two antibiotic-resistant mutants were examined on soybean plants in the fields. After adaptation the parental strain and its mutants had the ability to establish and maintain large epiphytic populations (about 106 cfu/g FW) over the whole growing season after a single spray inoculation. The epiphytic behaviors of the mutants and the parent were not significantly different. The introduced bacteria did not influence the total bacterial population size. When the antagonist was coinoculated with the pathogen, the development of the pathogen was significantly reduced during the whole growing season. When the antagonistic strain was inoculated 4 weeks in advance of the pathogen, this antagonistic effect could be markedly enhanced. The final population size of the pathogen reached just 104 cfu/g FW and was significantly reduced to 0.12% compared to the pathogen alone. This study demonstrates that biological control of foliar pathogens through colonization of the host plants with near isogenic or ecologically similar antagonistical strains seems to be a realistic goal.  相似文献   

6.
In order to understand the mode of action of taxonomically related Pseudomonas syringae pathovar strains that infect pea, tomato, and soya bean, we examined their extracellular polysaccharides (EPS). Maximum production of polysaccharide in shake culture of these pathogens was observed between 24 and 60 h. P. syringae pv. pisi 519, the bacterial blight pathogen of pea, produced a higher amount of polysaccharide (34.87 g/mL) at 60 h compared with 32.67 g/mL produced by P. syringae pv. glycinea NCPPB 1783, the bacterial blight pathogen of soya bean, and 30.03 g/mL produced by P. syringae pv. tomato NCPPB 269, the bacterial speck pathogen of tomato. EPS produced by P. syringae pv. pisi 519, P. syringae pv. tomato NCPPB 269, and P. syringae pv. glycinea NCPPB 1783 was characterized with infrared (FTIR), nuclear magnetic resonance (NMR), high performance thin layer chromatography, (HPTLC), and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. HPTLC profiles revealed the presence of glucose and glucuronic acid in all bacteria and mannose only in P. syringae pv. tomato. Molecular mass of EPS of P. syringae pv. pisi (m/z 933.8), P. syringae pv. tomato (m/z 950.4), and P. syringae pv. glycinea (m/z 933.5) was confirmed by MALDI-TOF mass spectrometry.  相似文献   

7.
In order to assess resistance to common bean blight, populations of two isolates of Xanthomonas campestris pv. phaseoli were monitored in leaves of two Phaseolus vulgaris breeding lines, BLT87-2 (susceptible) and OAC88-1 (partially resistant) and a resistant tepary bean accession, P. acutifolius P. I. 440795. The breeding line OAC88-1 possesses resistance to common bacterial blight which was incorporated from P. acutifolius by an interspecific cross. In susceptible, leaves, bacterial populations increased to 108 CFU/g leaf at 3 wk after inoculation whereas, in resistant leaves, bacterial populations declined to 101 - 103 CFU/g leaf. In partially resistant leaves the population first declined similar to that in resistant P. acutifolius but later increased, and typical bacterial blight symptoms appeared. Cellulase, protease and amylase activities were monitored in culture and intercellular leaf spaces. Only cellulase activity was, clearly related to bacterial growth in the susceptible host; other enzyme activities were variable in their relationship to host resistance and bacterial growth. Differences between strains in cellulase activity inside partially resistant leaves corresponded to their ability to secrete cellulase in culture. Measuring cellulase activity in intercellular wash fluids may be a simple and sensitive method for determining X. c. phaseoli populations in leaves.  相似文献   

8.
Plant-derived natural bactericides and their possible applications in agriculture to control plant bacterial diseases has intensified as this approach has enormous potential to inspire and influence modern agro-chemical research. Naturally occurring and biologically active plant products such as essential oils and organic extracts could be a source of alternative classes of natural biopesticides to serve as templates for new and more effective compounds in controlling plant pathogenic micro-organisms. In the present study, the efficacy of six plants extracts from different solvent system were tested for their antibacterial activity aganist Xanthomonas oryzae pv. oryzae both in vitro and in vivo. Among these extracts, Cocculus hirsutus leaf chloroform extract exhibits significant antibacterial activity against X. oryzae pv. oryzae. Data obtained from the experiments such as minimum inhibitory concentration, effect of C. hirsutus leaf chloroform extract on the incidence of X. oryzae pv. oryzae, phytotoxicity test and effect of C. hirsutus leaf chloroform extract on seed germination and seedling vigour, along with the in vivo experiments under greenhouse conditions showed significant improvement over controls. Thus, the present study demonstrated that the C. hirsutus leaf chloroform extract posses antibacterial activity against bacterial leaf blight pathogen of rice.  相似文献   

9.
Summary A group of pathogenicity genes was previously identified in Pseudomonas syringae pv. phaseolicola which controls the ability of the pathogen to cause disease on bean and to elicit the hypersensitive response on non-host plants. These genes, designated hrp, are located in a ca. 20 kb region which was referred to as the hrp cluster. Homologous sequences to DNA segments derived from this region were detected in several pathovars of P. syringae but not in symbiotic, saprophytic or other phytopathogenic bacteria. A Tn5-induced Hrp- mutation was transferred from P. syringae pv. phaseolicola to P. syringae pv. tabaci and to three races of P. syringae pv. glycinea by marker exchange mutagenesis. The resulting progeny were phenotypically Hrp-, i.e. no longer pathogenic on their respective hosts and unable to elicit the hypersensitive response on non-host plants. These mutants were restored to wild-type phenotype upon introduction of a recombinant plasmid carrying the corresponding wild-type locus from P. syringae pv. phaseolicola. The marker exchange mutants of P. syringae pv. glycinea psg0 and Psg5 which carry different avr genes for race specific avirulence did not elicit a hypersensitive response on incompatible soybean cultivars. It appears, therefore, that P. syringae pathovars possess common genes for pathogenicity which also control their interaction with non-host plants. Furthermore, the expression of race/cultivar specific incompatibility of P. syringae pv. glycinea requires a fully functional hrp region in addition to the avr genes which determine avirulence on single-gene differential cultivars of soybean.  相似文献   

10.
Since March, 2011, typical leaf spot symptoms were observed on parsley in several fields inspected in Hatay and Adana provinces of Turkey. Incidence of the disease was 5–15% in the regions. Symptoms were characterized as angular to irregular, initially water soaked later brown to dark black spots. Spots often limited by veins which were visible from both adaxial and abaxial sides of leaves but were not present on stems. Fluorescent bacterial colonies were consistently isolated from typical leaf spots. Biochemical tests, fatty acid methyl ester (FAME) analysis, molecular, pathogenicity tests and sequence of 16S ribosomal DNA of bacterial isolates were performed to identify possible causal disease agent. The causal disease agent was identified as Pseudomonas syringae pv. apii based on symptoms, biochemical, molecular, pathogenicity tests and sequencing. To our knowledge, this is the first report of bacterial leaf spot on parsley caused by Pseudomonas syringae pv. apii in Turkey.  相似文献   

11.
The leaf colonization strategies of two bacterial strains were investigated. The foliar pathogen Pseudomonas syringae pv. syringae strain B728a and the nonpathogen Pantoea agglomerans strain BRT98 were marked with a green fluorescent protein, and surface (epiphytic) and subsurface (endophytic) sites of bean and maize leaves in the laboratory and the field were monitored to see if populations of these strains developed. The populations were monitored using both fluorescence microscopy and counts of culturable cells recovered from nonsterilized and surface-sterilized leaves. The P. agglomerans strain exclusively colonized epiphytic sites on the two plant species. Under favorable conditions, the P. agglomerans strain formed aggregates that often extended over multiple epidermal cells. The P. syringae pv. syringae strain established epiphytic and endophytic populations on asymptomatic leaves of the two plant species in the field, with most of the P. syringae pv. syringae B728a cells remaining in epiphytic sites of the maize leaves and an increasing number occupying endophytic sites of the bean leaves in the 15-day monitoring period. The epiphytic P. syringae pv. syringae B728a populations appeared to originate primarily from multiplication in surface sites rather than from the movement of cells from subsurface to surface sites. The endophytic P. syringae pv. syringae B728a populations appeared to originate primarily from inward movement through the stomata, with higher levels of multiplication occurring in bean than in maize. A rainstorm involving a high raindrop momentum was associated with rapid growth of the P. agglomerans strain on both plant species and with rapid growth of both the epiphytic and endophytic populations of the P. syringae pv. syringae strain on bean but not with growth of the P. syringae pv. syringae strain on maize. These results demonstrate that the two bacterial strains employed distinct colonization strategies and that the epiphytic and endophytic population dynamics of the pathogenic P. syringae pv. syringae strain were dependent on the plant species, whereas those of the nonpathogenic P. agglomerans strain were not.  相似文献   

12.
In parallel experiments, cells of Pseudomonas syringae pv. tabaci were infiltrated into tobacco leaves (to determine bacterial changes occurring in planta) and inoculated into nutrient broth (to make comparative observations on cells cultured in vitro). In each case, details of surface structure, bacterial size and flagellation were determined in a sequence of samples by transmission electron microscopy of whole mount stained and unstained preparations. In both in planta and in vitro environments, bacterial population showed a clear phase of exponential increase. In each case, bacterial size was highest during the early part of the multiplication phase, then decreased during the rest of the multiplication period. In each case also, the proportion of cells with flagella showed a similar trend - with an initial decrease after infiltration, followed by a major increase during the phase of bacterial multiplication. These results suggest that changes in bacterial size and flagellation in planta relate directly to the growth phase of the population, and are therefore determined primarily by internal cellular (endogenous) factors - rather than by external factors within the leaf environment.  相似文献   

13.
The occurrence of "Xanthomonas axonopodis pv. phaseoli var. fuscans" (proposed name) populations as biofilms on bean leaves was investigated during three field experiments on plots established with naturally contaminated bean seeds. Behavior of aggregated versus solitary populations was determined by quantification of culturable cells in different fractions of the epiphytic population separated by particle size. X. axonopodis pv. phaseoli var. fuscans population dynamic studies confirmed an asymptomatic and epiphytic colonization of the bean phyllosphere. For all years of experiment and cultivars tested, biofilms and solitary components of the populations were always detected. Biofilm population sizes remained stable throughout the growing season (around 10(5) CFU/g of fresh weight) while solitary population sizes were more abundant and varied with climate. According to enterobacterial repetitive intergenic consensus fingerprinting, aggregated bacterial isolates were not different from solitary isolates. In controlled conditions, application of a hydric stress resulted in a decrease of the solitary populations on the leaf surface while the biofilm fraction remained stable. Suppression of the hydric stress allowed solitary bacterial populations to increase again. Aggregation in biofilms on leaf surfaces provides protection to the bacterial cells against hydric stress.  相似文献   

14.
Bacteria, yeasts and filamentous fungi colonizing immature, mature and senescing primary leaves of field grown Beta vulgaris (sugar beet) were analysed over a complete growing season. Greatest microbial numbers were detected on senescing primary leaves and these numbers increased over most of the season. The number of colonizers detected on mature leaves was found to be stable over most of the study.Filamentous fungi and yeasts were identified to the genus level and the communities found to have greatest diversity during the summer months. There was no consistent pattern of diversity according to leaf type. Two genera of filamentous fungi, Cladosporium and Alternaria and two yeast genera, Cryptococcus and Sporobolomyces were the most numerous fungal populations isolated. Only 8 filamentous fungi and 3 yeast genera were commonly isolated on PDA (potato dextrose agar).Bacterial strains (1236) were isolated on Tryptic Soy Broth (TSB) agar and identified to species, or in some cases sub-species level, by analysis of their fatty acid methyl ester (FAME) profiles. Isolated bacteria were grouped into 78 named and 37 unnamed species clusters. Greatest number of bacterial species were isolated from young plants and leaves, sampled during the autumn months. Bacterial community diversity was lowest in mid-summer and winter months. Pseudomonas was the most commonly isolated genus and Erwinia herbicola the most common species. P. aureofaciens was the only species isolated from soil that was also isolated from the phyllosphere of B. vulgaris throughout the season.  相似文献   

15.
Xanthomonas oryzae pv. oryzae is the pathogen that causes bacterial leaf blight in rice. Bacterial leaf blight is the main cause for severe rice underproduction in many countries. However, with conventional methods it is difficult to quickly and reliably distinguish this pathogen from other closely related pathogenic bacteria, especially X. oryzae pv. oryzicola, the causal organism of bacterial leaf streak in rice. We have developed a novel and highly sensitive real-time method for the identification of this specific bacteria based on a TaqMan probe. This probe is designed to recognize the sequence of a putative siderophore receptor gene cds specific to X. oryzae pv. oryzae, and can be identified from either a bacterial culture or naturally infected rice seeds and leaves in only 2 h. The sensitivity of the method is 100 times higher than that of the current polymerase chain reaction (PCR) gel electrophoresis method for diagnosis.  相似文献   

16.
P. syringae pv. mori multiplied on leaf surface and colonized particularly on the cystoliths and in the grooves of veins. The masses of bacteria were associated with necrotic spots, which appeared 9 days after inoculation. The studies also revealed that the bacterium invaded leaf tissues through cystoliths. However, it did not enter through stomata and trichomes which had commonly been observed in most of the plant pathogenic bacteria.  相似文献   

17.
Culturable bacterial communities on rice plants were investigated from 2001 to 2003. In total, 1,394 bacterial isolates were obtained from the uppermost leaf sheaths at 1 month before heading time and from leaf sheaths and panicles at heading time. The average culturable bacterial population on the leaf sheaths was larger at heading time than at 1 month previously. Furthermore, the population was significantly larger on panicles than on leaf sheaths, suggesting that the bacterial population is influenced by the organs of rice plants. Larger proportions of bacteria were obtained from the macerates of leaf sheaths after washing with phosphate buffer, and most culturable bacteria were verified to inhabit the inside or inner surface, rather than the outer surface, of the tissues. Verification of the bacterial composition based on 16S rRNA gene sequences revealed that genera of Sphingomonas, Microbacterium, Methylobacterium, and Acidovorax tended to be dominant colonizers on leaf sheaths, whereas Pseudomonas and Pantoea were isolated mainly from the panicles, indicating that leaf sheaths and panicles harbor distinct communities. Furthermore, the richness of bacterial genera was less on both leaf sheaths and panicles at heading time compared with that observed 1 month before heading time. Phylogenetic analyses using bacterial isolates belonging to the four dominant genera inhabiting leaf sheaths at heading time revealed that particular bacterial groups in each genus colonized the leaf sheaths.  相似文献   

18.
Summary The E. coli Flac plasmid was transferred from an Erwinia chrysanthemi Hfr8 donor to a multiply-auxotrophic, rifampicin-resistant Pseudomonas syringae pv. glycinea recipient. Transfer occurred at a frequency of approximately 10-5/donor. Stable transconjugants which were able to utilize lactose as the sole carbon source after several transfers would not donate the Flac plasmid in detectable frequency to other pv. glycinea or E. coli recipients. The plasmid DNA was shown to be integrated into the pv. glycinea chromosome (Fig. 1).  相似文献   

19.
通过液—液萃取、硅胶和凝胶柱层析法,从佛甲草(Sedum lineare)分离出一种可以抑制水稻细菌性条斑病菌(Xanthomonas oryzae pv.oryzicola,Xoc)生长的单体化合物,经质谱分析,确定该化合物为没食子酸(gallic acid,GA)。在30 mg·m L-1浓度下,GA能抑制一些植物病原细菌如桃细菌性穿孔病菌(X.campestris pv.pruni)、水稻细菌性条斑病菌(X.oryzae pv.oryzicola)、水稻白叶枯病菌(X.oryzae pv.oryzae)、柑橘溃疡病菌(X.axonopodis pv.citri)、大豆细菌性斑点病菌(Pseudomonas syringae pv.glycinea)、番茄细菌性斑点病菌(P.syringae pv.tomato)和胡萝卜软腐果胶杆菌(Pectobacterium carotovora subsp.carotovora)的生长;GA还对11种植物病原真菌如烟草疫霉(Phytophthora nicotianae)、指状青霉(Penicillium digitatum)、滇刺枣褐腐病菌(Streptobotrys streptothrix)、瓜果腐霉(Pythium aphanidermatum)、芒果拟盘多毛孢(Pestalotiopsis mangiferae)、新月弯孢霉(Curvularia lunata)、立枯丝核菌(Rhizoctonia solani)、(Fusarium oxysporum f.sp.niverum)、西瓜专化型尖孢镰刀菌(F.oxysporum f.sp.nicotianae)、番茄灰霉病菌(Botrytis cinerea)和齐整小核菌(Sclerotium rolfsii)的生长具有一定的抑制作用。在300 mg·m L-1浓度下,GA对水稻细菌性条斑病的田间防治效果达到64.62%。该研究结果表明没食子酸具有开发成为一种防治水稻细菌性条斑病的杀菌剂的潜力。  相似文献   

20.
Total, fluorescent, and pectolytic epiphytic bacterial population sizes were quantified on leaves of different age groups of broad-leaved endive during field cultivation from leaf emergence until harvest. Greater bacterial population densities (log(inf10) CFU per square centimeter) were observed on outer leaves than on inner leaves of the plants throughout the growing season. These differences were statistically significant for total bacterial populations at all sampling times and were often significant for fluorescent and pectolytic bacterial populations. At harvest, a linear gradient of decreasing densities of epiphytic bacteria from outer (older) to inner (younger) leaves of the head was significant. Leaf age influenced the frequency distribution and variability of bacterial population sizes associated with leaves of broad-leaved endive. Total bacterial population sizes were greater at leaf emergence for leaves emerging during the second half of the cultivation period than for leaves emerging earlier. The size of fluorescent and pectolytic bacterial populations on newly emerged leaves increased throughout the season as plants aged. To assess the importance of plant age on bacterial immigration at leaf emergence, bacterial densities were quantified on leaves emerging simultaneously on plants of different ages. In two of the three experiments, greater bacterial population sizes were observed on leaves emerging on younger plants. This indicates that factors other than an increase in concentration of airborne bacteria can lead to increases in population sizes at leaf emergence as plants age in the field. Results of leaf pruning experiments suggested that adjacent leaves may act as a barrier for immigration of fluorescent bacteria on newly emerged leaves. Survival of an inoculated strain of Pseudomonas fluorescens on newly emerged leaves generally did not vary with the age of plants. However, these effects were not consistent among experiments, suggesting that interactions among micro- and macroenvironmental conditions, physiological condition of leaves, and accessibility of leaves to airborne bacteria are important in controlling epiphytic bacterial population sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号