首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Challenge Hypothesis proposes that testosterone mediates aggression during periods of heightened conflict between males, especially episodes that have important fitness consequences. Considerable evidence from seasonally breeding species provides support for this hypothesis, but few data exist in animals that mate year-round. We tested predictions generated by the Challenge Hypothesis in chimpanzees, a non-seasonally breeding primate, through a study of individuals living in an exceptionally large community at Ngogo, Kibale National Park, Uganda. Results indicated that dominance rank had no influence on testosterone levels. Instead of rank influencing testosterone production, additional analyses revealed an important role for reproductive competition. Male chimpanzees displayed more aggression when they were in the same party as parous estrous females than when reproductively active females were unavailable. Male chimpanzees competed more intensely for mating opportunities with parous females than with nulliparas, and as a consequence, males displayed more aggression around the former than the latter. When males accompanied parous estrous females, their urinary testosterone concentrations were significantly higher than baseline concentrations. In contrast, urinary testosterone concentrations did not exceed baseline when males associated with nulliparous estrous females. These differences in testosterone levels could not be attributed to mating per se because males copulated equally often with parous and nulliparous females. Furthermore, variation in testosterone concentrations were not due to males gathering together in large parties, as their levels in these situations did not exceed baseline. Taken together, these findings, derived from a relatively large sample of males and estrous females, replicate those from a prior study and furnish additional support for the Challenge Hypothesis. Our results suggest that the Challenge Hypothesis is likely to be broadly applicable to chimpanzees and increase our understanding of the physiological costs to males who compete for estrous females.  相似文献   

2.
Differences in feeding patterns of the African elephant were examined by sex and age during the dry season in a dystrophic savanna-woodland ecosystem in northern Botswana. Adult males had the least diverse diet in terms of woody plant species, but they consumed more plant parts than family units. The diameter of stems of food plants broken or bitten off was also greater for adult males than for females and subadult males. Adult males spent more time foraging on each woody plant than did females. The number of woody plant species and individuals present were higher at feeding sites of family units than at feeding sites of adult males, indicating that family units positioned themselves at feeding sites with higher species diversity than those of males. We argue that the most likely explanation for these differences is related to the pronounced sexual size dimorphism exhibited by elephants, resulting in sex differences in browsing patterns due to the allometric relationships that govern the tolerance of herbivores for variation in diet quality. From our results this Body Size Hypothesis is accepted rather than the alternative Scramble Competition Hypothesis, which predicts that adult male elephants consume lower quality browse because they are displaced from preferred browse as an outcome of scramble competition with adult females and their offspring. If the feeding patterns of adult male elephants were affected by intersexual scramble competition, we would expect adult males to browse at a higher level in the canopy than the smaller-bodied females and their offspring. No evidence was found for this, although adult females were found to browse at a higher level in the canopy when feeding in close proximity to subadults and juveniles than when feeding alone. Sex differences in elephant browsing patterns are, we propose, of relevance to understanding and managing elephant impacts on African woodlands.  相似文献   

3.
We studied the relationship between inflorescence size and male fitness in the andromonoecious lily Zigadenus paniculatus, using experimentally manipulated inflorescences to eliminate possible correlations between flower number, resource availability, and other floral traits. Allozyme markers were used to determine the siring success of large versus small plants in 14 arrays of plants, each array containing five large and five small plants. The inflorescence size of small plants was held constant both within and among arrays; the size of large plants was held constant within an array but was varied among arrays. Large plants sired more than half the seeds in 12 of the 14 arrays, and significantly more than half in six of these 12. However, in eight of the arrays, large plants sired significantly fewer seeds than expected on the basis of their size advantage. Furthermore, there was no significant relationship between relative size and relative siring success in comparisons among arrays. A maximum-likelihood model estimated that 28% of seeds were sired by imported pollen, with 95% confidence limits of 13% and 50%. Within these limits, high import rates tended to mask the relative success of large plants in several arrays. These results suggest that the evolution of inflorescence size in Z. paniculatus is at least partly driven by selection for increased male success, assuming genetic variation for flower number. However, the data also support a growing body of evidence that estimates of male fitness in plants can be highly variable. We discuss the sources of this variability and the possible effects of inflorescence design on the relationship between inflorescence size and fitness.  相似文献   

4.
Estrous cycle asynchrony likely functions to elevate individual females' sexual attractiveness during female mate choice. Female chimpanzees show physiological estrus as anogenital swelling. Copulations are concentrated during the period of maximal tumescence, which is called the estrous period. A group of female chimpanzees in Mahale Mountains National Park, Tanzania, was shown to display asynchrony in both maximal tumescence and periovulatory periods. We tested the hypothesis that females establish asynchronous maximal tumescence or periovulatory periods with respect to other females to increase copulation frequency and birth opportunities (Hypothesis 1). We analyzed differences in birth rates between four asynchronous years and five nonasynchronous years. Counter to Hypothesis 1, females in periovulatory periods during asynchronous years showed significantly lower birth rates than those in nonasynchronous years. In addition, periovulatory females copulated more frequently on days on which no other female in a periovulatory period was present. These results suggest that birth rates tend to decrease when females experience nonoverlapping ovulation cycles, although copulation frequency is high. Such a decrease in the birth rate may have resulted from the cost associated with multiple copulations. We tested two other hypotheses: paternity confusion (Hypothesis 2) and sperm competition (Hypothesis 3). Both of these hypotheses were partially supported. The highest‐ranking male most effectively monopolized access to receptive females when relatively few other males and receptive females from the party (or subgroup) were present. The viability of Hypotheses 2 and 3 requires that dominant males are able to hinder a female from mating with other males. Given that the male‐biased operational sex ratio created by female asynchrony is likely to reduce the efficiency of mate guarding by dominant males, an asynchronous female may gain a fitness benefit by increasing the probability of mating with at least one male who produces superior sperm. Am. J. Primatol. 73:180–188, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Twelve young (4-7 years of age) and 14 old (20-27 years of age) male and female rhesus monkeys were tested on seven cognitive tasks. Males and females performed similarly on tasks of object memory and executive function, but young males outperformed young females on a spatial memory task (Delayed Recognition Span Test) that requires the identification of a new stimulus among an increasing array of serially presented stimuli. This superior level of spatial ability in young males declined sharply with age, so that old males did not perform significantly better than old females. These findings in the nonhuman primate suggest that biological rather than sociocultural factors underlie the sex differences in cognition and their diminution with age.  相似文献   

6.
Autosomal dominant facioscapulohumeral muscular dystrophy (FSHD) is caused by deletion of most copies of the 3.3-kb subtelomeric D4Z4 repeat array on chromosome 4q. The molecular mechanisms behind the deletion and the high proportion of new mutations have remained elusive. We surveyed 35 de novo FSHD families and found somatic mosaicism in 40% of cases, in either the patient or an asymptomatic parent. Mosaic males were typically affected; mosaic females were more often the unaffected parent of a nonmosaic de novo patient. A genotypic-severity score, composed of the residual repeat size and the degree of somatic mosaicism, yields a consistent relationship with severity and age at onset of disease. Mosaic females had a higher proportion of somatic mosaicism than did mosaic males. The repeat deletion is significantly enhanced by supernumerary homologous repeat arrays. In 10% of normal chromosomes, 4-type repeat arrays are present on chromosome 10. In mosaic individuals, 4-type repeats on chromosome 10 are almost five times more frequent. The reverse configuration, also 10% in normal chromosomes, was not found, indicating that mutations may arise from transchromosomal interaction, to which the increase in 4-type repeat clusters is a predisposing factor. The somatic mosaicism suggests a mainly mitotic origin; mitotic interchromosomal gene conversion or translocation between fully homologous 4-type repeat arrays may be a major mechanism for FSHD mutations.  相似文献   

7.
Human adolescents exhibit higher levels of novelty-seeking behaviour than younger or older individuals, and novelty-seeking is higher in males than females from adolescence onwards. Gonadal hormones, such as testosterone and estradiol, have been suggested to underlie age and sex difference in response to novelty; however, empirical evidence in support of this hypothesis is limited. Here, we investigated whether suppressing gonadal hormone levels during adolescence affects response to novelty in laboratory rats. Previously, we have shown that male adolescent Lister-hooded rats (postnatal day, pnd, 40) exhibit a stronger preference than same-aged females for a novel object compared to a familiar object. In the current study, 24 male and 24 female Lister-hooded rats were administered with Antide (a gonadotrophin-releasing hormone antagonist), or with a control vehicle solution, at pnd 28. Antide provided long-term suppression of gonadal hormone production, as confirmed by ELISA assays and measurement of internal organs. Response to novel objects was tested at pnd 40 in Antide-treated and control subjects using a ‘novel object recognition’ task with a short (2-minute) inter-trial interval. In support of previous findings, control males exhibited a stronger preference than control females for novelty when presented with a choice of objects. Antide-treated males exhibited a significantly lower preference for novel objects compared to control males, whilst Antide-treated females did not differ significantly from control females in their preference for novelty. Antide treatment did not affect total time spent interacting with objects. We discuss how gonadal hormones might influence sex differences in preference for novelty during adolescence.  相似文献   

8.
《Hormones and behavior》2012,61(5):625-631
Human adolescents exhibit higher levels of novelty-seeking behaviour than younger or older individuals, and novelty-seeking is higher in males than females from adolescence onwards. Gonadal hormones, such as testosterone and estradiol, have been suggested to underlie age and sex difference in response to novelty; however, empirical evidence in support of this hypothesis is limited. Here, we investigated whether suppressing gonadal hormone levels during adolescence affects response to novelty in laboratory rats. Previously, we have shown that male adolescent Lister-hooded rats (postnatal day, pnd, 40) exhibit a stronger preference than same-aged females for a novel object compared to a familiar object. In the current study, 24 male and 24 female Lister-hooded rats were administered with Antide (a gonadotrophin-releasing hormone antagonist), or with a control vehicle solution, at pnd 28. Antide provided long-term suppression of gonadal hormone production, as confirmed by ELISA assays and measurement of internal organs. Response to novel objects was tested at pnd 40 in Antide-treated and control subjects using a ‘novel object recognition’ task with a short (2-minute) inter-trial interval. In support of previous findings, control males exhibited a stronger preference than control females for novelty when presented with a choice of objects. Antide-treated males exhibited a significantly lower preference for novel objects compared to control males, whilst Antide-treated females did not differ significantly from control females in their preference for novelty. Antide treatment did not affect total time spent interacting with objects. We discuss how gonadal hormones might influence sex differences in preference for novelty during adolescence.  相似文献   

9.
In animal-pollinated plants with unisexual flowers, sexual dimorphism in floral traits may be the consequence of pollinator-mediated selection. Experimental investigations of the effects of variation in flower size and floral display on pollinator visitation can provide insights into the evolution of floral dimorphism in dioecious plants. Here, we investigated pollinator responses to experimental arrays of dioecious Sagittaria latifolia in which we manipulated floral display and flower size. We also examined whether there were changes in pollinator visitation with increasing dimorphism in flower size. In S. latifolia, males have larger flowers and smaller floral displays than females. Visitation by pollinators, mainly flies and bees, was more frequent for male than for female inflorescences and increased with increasing flower size, regardless of sex. The number of insect visits per flower decreased with increasing floral display in males but remained constant in females. Greater sexual dimorphism in flower size increased visits to male inflorescences but had no influence on the number of visits to female inflorescences. These results suggest that larger flower sizes would be advantageous to both females and males, and no evidence was found that females suffer from increased flower-size dimorphism. Small daily floral displays may benefit males by allowing extended flowering periods and greater opportunities for effective pollen dispersal.  相似文献   

10.
Investment in male function should often yield diminishing fitness returns, subjecting the evolution of male phenotypes to substantial constraints. In plants, the subdivision of male function via the gradual presentation of pollen might minimize these constraints by preventing the saturation of receptive stigmas. Here, we report on an investigation of (1) patterns of investment in male function by plants in hermaphroditic (monoecious) and dioecious populations of Sagittaria latifolia, and (2) patterns of siring success by males versus hermaphrodites in experimental mating arrays. We show that in natural populations, males from dioecious populations had greater investment in male function than hermaphrodites in monoecious populations. However, as a proportion of total flower production, males presented substantially fewer flowers at once than hermaphrodites. In comparison with hermaphrodites, therefore, males prolonged the period over which they presented pollen. In mating arrays comprised of females, males, and hermaphrodites, siring success by males increased linearly with flower production. This finding is consistent with the existence of a linear gain curve for male function in S. latifolia and supports the idea that the gradual deployment of male function enables plants to avoid diminishing returns on the investment in male function.  相似文献   

11.
Social interactions are important factors determining and regulating individual behaviors. Testosterone has been related to agonistic interactions, while glucocorticoids have been related to social stress, especially during interactions of dominance. We compared testosterone and cortisol concentrations in male degus (Octodon degus, Rodentia) under laboratory conditions without male social interactions, with data from wild males in nature. Under natural conditions, males should present higher levels of testosterone during the breeding season due to social interactions (Challenge Hypothesis). Alternatively, intense social instability could act as a stressing environment, raising glucocorticoids, which inhibit testosterone concentrations. Our results show a significant increase in agonistic interactions between males during the breeding season, and disappearance of non-agonistic male interactions during this period. Hormone levels in breeding season show nonsignificant differences between laboratory groups, but testosterone concentrations in field males were significantly higher than in laboratory males. Testosterone levels were similar among pre-breeding and breeding periods, but in field animals the concentration was approximately 30% higher than in laboratory degus. In field animals, we found two different mating strategies: resident males, with territorial behavior, and transient males, displayed an opportunistic approach to females. Finally, cortisol presents a similar pattern in both laboratory and field animals; pre-breeding values of cortisol are higher than during the breeding season. This suggests that social interactions in O. degus activate a rise in testosterone, supporting the Challenge Hypothesis, and could be considered as partial support of the Social Stress Hypothesis.  相似文献   

12.
Introgression of genetically engineered modifications (GMs) into natural populations represents a new realm for mutation theory. GMs, like mutations, have direct and pleiotropic impacts that can disrupt evolved adaptive suites. If GM males are more competitive or attractive mates, the “Trojan Gene Hypothesis” predicts potentially drastic impacts. We examined sexual selection in transgenic growth hormone (Tg) mice that are strong Trojan candidates given their exceptional size and extensive pleiotropic deficits. We hypothesized that the sophisticated olfactory abilities of females would recognize dysregulation of Tg males (the Transparent Genome Hypothesis). Females expressed interest in Tg males and their volatile scent, but when allowed nasal contact with urine (critical to mate choice) they preferred normal males. Tg male urine had reduced major urinary proteins (important in social signaling) and contained albumin and transferrin indicative of pathology. Novel Tg males failed to elicit pregnancy block in recently inseminated females (the “Bruce Effect”) whereas normal males were highly effective. Normal males expressed high aggression but Tg males were placid, non-aggressive and were largely ignored by normal males. Female mice also strongly preferred normal males over p53± knockout males in response to volatiles, contact with urine and male presence. This study suggests that conspecific discrimination of fitness may be more powerful than generally appreciated. This has great implications for introductions of GM animals and sexual selection generally.  相似文献   

13.
Differences in reproductive demands between the sexes of dioecious plants could cause divergence in physiology between the sexes. We found that the reproductive effort of female Silene latifolia plants increased to more than twice that of male plants or female plants that were prevented from setting fruit by lack of pollination after 4 weeks of flowering. Whole-plant source/sink ratios of pollinated females were significantly lower than those of males or unpollinated females because of investment in fruit. We hypothesized that these differences in source/sink ratio between the sexes and within females, depending on pollination, would lead to differences in leaf photosynthetic rates. Within females, we found that photosynthetic capacity was consistent with measurement of whole-plant source/sink ratio. Females that were setting fruit had 30% higher light-saturated photosynthetic rates by 28 days after flowering than females that were not setting fruit. Males, however, had consistently higher photosynthetic rates than females from 10 days after flowering onwards. Males also had approximately twice the dark respiration rates of fruiting females. We found that female reproductive structures are longer-lived and contribute more carbon to their own support than male reproductive structures. Despite the higher rates of leaf dark respiration and lower calyx photosynthetic rates, males fix more carbon than do females. We conclude that females have a sink-regulated mechanism of photosynthesis that allows them to respond to variations in fruit set. This mechanism is not, however, sufficient to explain why male S. latifolia plants have higher rates of photosynthesis, higher source/sink ratios, and lower reproductive allocation, but fail to grow larger than female plants.  相似文献   

14.
Four polymorphic microsatellite loci were used to assess biological parentage of 453 offspring from 15 pregnant males from a natural population of the Western Australian seahorse Hippocampus angustus . Microsatellite genotypes in the progeny arrays were consistent with a monogamous mating system in which both females and males had a single mate during a male brooding period. Multilocus genotypes implicated four females in the adult population sample as contributors of eggs to the broods of collected males, but there was no evidence for multiple mating by females. Based on genotypic data from the progeny arrays, two loci were linked tightly and the recombination rate appeared to be ≈ 10-fold higher in females than in males. The utility of linked loci for parentage analyses is discussed.  相似文献   

15.
The pattern of biomass allocation of males and females and the sex ratio and growth characteristics of plants from three seed-size classes in Silene alba were investigated in a greenhouse study. Seed size significantly affected adult plant size and flower production of both male and female plants, but there was no significant difference in the proportion of males and females emerging in three seed-size categories. Male and female plants differed in the proportion of total biomass allocated to vegetative and reproductive structures and these differences were consistent across all seed-size categories. Males allocated a greater proportion of their biomass to flowers than did females. Female reproductive effort was dependent upon the percentage of flowers producing mature capsules. Only females with greater than 20% fruit set have a higher reproductive expenditure than males. Consequently, female expenditure is potentially greater than males, but is spread out over a longer portion of the growing season. This difference in the timing of reproductive expenditures by males and females allows females to allocate more biomass to growth during the early flowering period and may therefore account for the common pattern in herbaceous perennial dioecious species in which adult females are larger than adult males.  相似文献   

16.
Summary The response by male and female plants to herbivory was studied by experimental defoliation of the dioecious perennial herb Silene dioica in a green-house. Male and female plants were defoliated prior to and during the early flowering phase at two intensities (50% and 100% of leaf-area removed) in two consecutive years. Defoliation resulted in a decrease in the number of flowers initiated in both sexes, while a larger delay of peak flowering and a higher mortality was observed in males compared to females. In female plants, severe defoliation resulted in a reduction in seed number per capsule and in seed size compared to control. Females showed a negative correlation between the production of flowers in the first and second season in all treatments, while flowering in males the first season was not correlated with flowering in the second season. Females also showed a lower frequency of flowering than males during the two seasons studied. However, during the flowering period, males allocated significantly more biomass to flowers than did females. This outcome supports the idea that females may have a higher total reproductive expenditure than males, but males have a higher reproductive effort during flowering. Male rosette leaves were significantly preferred by the generalist herbivore Arianta arbustorum in experiments. This preference was most pronounced in trials with leaves from fertilized plants compared to nonfertilized plants. A greater storage of resources in aboveground leaves during winter by males compared to females may explain the higher preference for male leaves and the higher male mortality following early defoliation. Furthermore, males are smaller than females and may have a lower ability than females to replace lost resources needed for reproduction when defoliated early in the season.  相似文献   

17.
Variation in the timing of reproductive functions in dioecious organisms may result in adaptive changes in the direction of sexual dimorphism during the breeding season. For plants in which both pollen and seeds are wind-dispersed, it may be advantageous for male plants to be taller when pollen is dispersed and female plants to be taller when seeds are dispersed. We examined the dynamics of height dimorphism in Rumex hastatulus, an annual, wind-pollinated, dioecious plant from the southern USA. A field survey of seven populations indicated that females were significantly taller than males at seed maturity. However, a glasshouse experiment revealed a more complex pattern of height growth during the life cycle. No dimorphism was evident prior to reproduction for six of seven populations, but at flowering, males were significantly taller than females in all populations. This pattern was reversed at reproductive maturity, consistent with field observations. Males flowered later than females and the degree of height dimorphism was greater in populations with a later onset of male flowering. We discuss the potential adaptive significance of temporal changes in height dimorphism for pollen and seed dispersal, and how this may be optimized for the contrasting reproductive functions of the sexes.  相似文献   

18.
Chemical communication was shown to play a role in the pear psylla, Cacopsylla bidens. Electrophysiological (EAG) and behavioral responses were investigated in males and females pear psylla . Males were found to be attracted to females, and especially to those on host plants, but not to males, uninfested host plants, or plants infested with conspecific larvae. On the other hand, females were not attracted to males or females but displayed some attraction to host plants. Furthermore, females showed a preference for uninfested pear versus plants infested with conspecific larvae. The antennae of males gave highest electroantenographic response to volatiles from pears infested with females but not males, while females, responded also toward the volatiles of pear alone. These results indicate that females of C. bidens emit sex pheromones that are attractive to the males and suggest that, host volatiles may play a role in host selection by pear psylla females.  相似文献   

19.
20.
Bird song is typically depicted as a male singing a long‐distance signal to potentially unknown receivers to (1) deter males and (2) attract females. Nevertheless, many songbirds sing from close distances to a known receiver; males of these species may be under more intense selective pressure to modify their songs depending on the sex of the receiver in order to convey different motivational states (aggression versus courtship) to the different sexes. In a laboratory setting, we examined how receiver sex affected within‐song variation of the close‐range singing behavior in the brown‐headed cowbird (Molothrus ater). Although we know that cowbird song is influenced by flock composition, it is still unclear as to how the cowbird modifies his song based on social context. Using a cross‐correlation analysis of each male's different song types, we found that pairs of songs were significantly more dissimilar if they were directed to females compared with songs directed to males. We subsequently tested whether there were any consistent spectral or temporal patterns in the songs males gave to females versus to males. Our results lend support for the Motivational Structural Rules Hypothesis as songs directed toward males had higher entropy (i.e., harshness) than the same song type directed toward females. Our results suggest that cowbirds may have evolved the ability to alter multiple dimensions of their singing behavior based on receiver sex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号