首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MOTIVATION: Microarray experiments are affected by numerous sources of non-biological variation that contribute systematic bias to the resulting data. In a dual-label (two-color) cDNA or long-oligonucleotide microarray, these systematic biases are often manifested as an imbalance of measured fluorescent intensities corresponding to Sample A versus those corresponding to Sample B. Systematic biases also affect between-slide comparisons. Making effective corrections for these systematic biases is a requisite for detecting the underlying biological variation between samples. Effective data normalization is therefore an essential step in the confident identification of biologically relevant differences in gene expression profiles. Several normalization methods for the correction of systemic bias have been described. While many of these methods have addressed intensity-dependent bias, few have addressed both intensity-dependent and spatiality-dependent bias. RESULTS: We present a neural network-based normalization method for correcting the intensity- and spatiality-dependent bias in cDNA microarray datasets. In this normalization method, the dependence of the log-intensity ratio (M) on the average log-intensity (A) as well as on the spatial coordinates (X,Y) of spots is approximated with a feed-forward neural network function. Resistance to outliers is provided by assigning weights to each spot based on how distant their M values is from the median over the spots whose A values are similar, as well as by using pseudospatial coordinates instead of spot row and column indices. A comparison of the robust neural network method with other published methods demonstrates its potential in reducing both intensity-dependent bias and spatial-dependent bias, which translates to more reliable identification of truly regulated genes.  相似文献   

2.
New normalization methods for cDNA microarray data   总被引:7,自引:0,他引:7  
MOTIVATION: The focus of this paper is on two new normalization methods for cDNA microarrays. After the image analysis has been performed on a microarray and before differentially expressed genes can be detected, some form of normalization must be applied to the microarrays. Normalization removes biases towards one or other of the fluorescent dyes used to label each mRNA sample allowing for proper evaluation of differential gene expression. RESULTS: The two normalization methods that we present here build on previously described non-linear normalization techniques. We extend these techniques by firstly introducing a normalization method that deals with smooth spatial trends in intensity across microarrays, an important issue that must be dealt with. Secondly we deal with normalization of a new type of cDNA microarray experiment that is coming into prevalence, the small scale specialty or 'boutique' array, where large proportions of the genes on the microarrays are expected to be highly differentially expressed. AVAILABILITY: The normalization methods described in this paper are available via http://www.pi.csiro.au/gena/ in a software suite called tRMA: tools for R Microarray Analysis upon request of the authors. Images and data used in this paper are also available via the same link.  相似文献   

3.
4.
DNA microarray data are affected by variations from a number of sources. Before these data can be used to infer biological information, the extent of these variations must be assessed. Here we describe an open source software package, lcDNA, that provides tools for filtering, normalizing, and assessing the statistical significance of cDNA microarray data. The program employs a hierarchical Bayesian model and Markov Chain Monte Carlo simulation to estimate gene-specific confidence intervals for each gene in a cDNA microarray data set. This program is designed to perform these primary analytical operations on data from two-channel spotted, or in situ synthesized, DNA microarrays.  相似文献   

5.
In this study we present two novel normalization schemes for cDNA microarrays. They are based on iterative local regression and optimization of model parameters by generalized cross-validation. Permutation tests assessing the efficiency of normalization demonstrated that the proposed schemes have an improved ability to remove systematic errors and to reduce variability in microarray data. The analysis also reveals that without parameter optimization local regression is frequently insufficient to remove systematic errors in microarray data.  相似文献   

6.

Background  

In the microarray experiment, many undesirable systematic variations are commonly observed. Normalization is the process of removing such variation that affects the measured gene expression levels. Normalization plays an important role in the earlier stage of microarray data analysis. The subsequent analysis results are highly dependent on normalization. One major source of variation is the background intensities. Recently, some methods have been employed for correcting the background intensities. However, all these methods focus on defining signal intensities appropriately from foreground and background intensities in the image analysis. Although a number of normalization methods have been proposed, no systematic methods have been proposed using the background intensities in the normalization process.  相似文献   

7.

Background  

Normalization is a critical step in analysis of gene expression profiles. For dual-labeled arrays, global normalization assumes that the majority of the genes on the array are non-differentially expressed between the two channels and that the number of over-expressed genes approximately equals the number of under-expressed genes. These assumptions can be inappropriate for custom arrays or arrays in which the reference RNA is very different from the experimental samples.  相似文献   

8.

Background  

Normalization is essential in dual-labelled microarray data analysis to remove non-biological variations and systematic biases. Many normalization methods have been used to remove such biases within slides (Global, Lowess) and across slides (Scale, Quantile and VSN). However, all these popular approaches have critical assumptions about data distribution, which is often not valid in practice.  相似文献   

9.
Normalization of expression levels applied to microarray data can help in reducing measurement error. Different methods, including cyclic loess, quantile normalization and median or mean normalization, have been utilized to normalize microarray data. Although there is considerable literature regarding normalization techniques for mRNA microarray data, there are no publications comparing normalization techniques for microRNA (miRNA) microarray data, which are subject to similar sources of measurement error. In this paper, we compare the performance of cyclic loess, quantile normalization, median normalization and no normalization for a single-color microRNA microarray dataset. We show that the quantile normalization method works best in reducing differences in miRNA expression values for replicate tissue samples. By showing that the total mean squared error are lowest across almost all 36 investigated tissue samples, we are assured that the bias correction provided by quantile normalization is not outweighed by additional error variance that can arise from a more complex normalization method. Furthermore, we show that quantile normalization does not achieve these results by compression of scale.  相似文献   

10.

Background

Microarray technology allows the monitoring of expression levels for thousands of genes simultaneously. This novel technique helps us to understand gene regulation as well as gene by gene interactions more systematically. In the microarray experiment, however, many undesirable systematic variations are observed. Even in replicated experiment, some variations are commonly observed. Normalization is the process of removing some sources of variation which affect the measured gene expression levels. Although a number of normalization methods have been proposed, it has been difficult to decide which methods perform best. Normalization plays an important role in the earlier stage of microarray data analysis. The subsequent analysis results are highly dependent on normalization.

Results

In this paper, we use the variability among the replicated slides to compare performance of normalization methods. We also compare normalization methods with regard to bias and mean square error using simulated data.

Conclusions

Our results show that intensity-dependent normalization often performs better than global normalization methods, and that linear and nonlinear normalization methods perform similarly. These conclusions are based on analysis of 36 cDNA microarrays of 3,840 genes obtained in an experiment to search for changes in gene expression profiles during neuronal differentiation of cortical stem cells. Simulation studies confirm our findings.
  相似文献   

11.
MOTIVATION: The goal of the study is to obtain genetic information from exfoliated colonocytes in the fecal stream rather than directly from mucosa cells within the colon. The latter is obtained through invasive procedures. The difficulties encountered by this procedure are that certain probe information may be compromised due to partially degraded mRNA. Proper normalization is essential to obtaining useful information from these fecal array data. RESULTS: We propose a new two-stage semiparametric normalization method motivated by the features observed in fecal microarray data. A location-scale transformation and a robust inclusion step were used to roughly align arrays within the same treatment. A non-parametric estimated non-linear transformation was then used to remove the potential intensity-based biases. We compared the performance of the new method in analyzing a fecal microarray dataset with those achieved by two existing normalization approaches: global median transformation and quantile normalization. The new method favorably compared with the global median and quantile normalization methods. AVAILABILITY: The R codes implementing the two-stage method may be obtained from the corresponding author.  相似文献   

12.
cDNA芯片阳性对照的制备及在芯片敏感性分析中的应用   总被引:2,自引:0,他引:2  
cDNA芯片是一种高通量基因表达谱分析技术,在生理病理条件下细胞基因表达谱分析,新基因发现和功能研究等方面具有广阔应用前景。CDNA芯片阳性对照的选取以及CDNA芯片检测敏感性是芯片成功应用的关键问题之一。以在系统发育上与人类基因同源性小的荧火虫荧光素酶基因材料,制备了用于人类和其他动物基因表达谱CDNA芯片的通用型阳性对照探针和相应的mRNA参照物,经反转录对mRNA参照物进行Cy3荧光标记并与DNA芯片杂交后发现,mRNA参照物能特异性地与荧光酶基因cDNA片断杂交,而与人β-肌动蛋白基因,人G3PDH基因以及λDNA/HINDⅢ无杂交反应。把mRNA参照物以不同比例加入HepG2总RNA中,以反转录荧光标记后与CDNA芯片杂交,结果发现当总RNA中的MRNA含量为1/10^4稀释(即mRNA分子个数约为10^8个)时,CDNA芯片基本检测不出mRNA标记产物的杂交信号。而且,cDNA芯片检测的信号强度与芯片上固定的探针浓度密切相关,当探针浓度为2g/L时,杂交信号最强,随着探针浓度下降芯片的杂交信号趋于减弱。CDNA芯片通用型阳性参照物的制备以及应用于CDNA芯片检测敏感性研究为CDNA芯片应用于人和其他动物基因表达谱高通量分析和新基因功能研究提供了技术基础和理论依据。  相似文献   

13.
Transformation and normalization of oligonucleotide microarray data   总被引:3,自引:0,他引:3  
MOTIVATION: Most methods of analyzing microarray data or doing power calculations have an underlying assumption of constant variance across all levels of gene expression. The most common transformation, the logarithm, results in data that have constant variance at high levels but not at low levels. Rocke and Durbin showed that data from spotted arrays fit a two-component model and Durbin, Hardin, Hawkins, and Rocke, Huber et al. and Munson provided a transformation that stabilizes the variance as well as symmetrizes and normalizes the error structure. We wish to evaluate the applicability of this transformation to the error structure of GeneChip microarrays. RESULTS: We demonstrate in an example study a simple way to use the two-component model of Rocke and Durbin and the data transformation of Durbin, Hardin, Hawkins and Rocke, Huber et al. and Munson on Affymetrix GeneChip data. In addition we provide a method for normalization of Affymetrix GeneChips simultaneous with the determination of the transformation, producing a data set without chip or slide effects but with constant variance and with symmetric errors. This transformation/normalization process can be thought of as a machine calibration in that it requires a few biologically constant replicates of one sample to determine the constant needed to specify the transformation and normalize. It is hypothesized that this constant needs to be found only once for a given technology in a lab, perhaps with periodic updates. It does not require extensive replication in each study. Furthermore, the variance of the transformed pilot data can be used to do power calculations using standard power analysis programs. AVAILABILITY: SPLUS code for the transformation/normalization for four replicates is available from the first author upon request. A program written in C is available from the last author.  相似文献   

14.

Background  

With the development of DNA hybridization microarray technologies, nowadays it is possible to simultaneously assess the expression levels of thousands to tens of thousands of genes. Quantitative comparison of microarrays uncovers distinct patterns of gene expression, which define different cellular phenotypes or cellular responses to drugs. Due to technical biases, normalization of the intensity levels is a pre-requisite to performing further statistical analyses. Therefore, choosing a suitable approach for normalization can be critical, deserving judicious consideration.  相似文献   

15.
cDNA arrays allow quantitative measurement of expression levels for thousands of genes simultaneously. The measurements are affected by many sources of variation, and substantial improvements in the precision of estimated effects accompany adjustments for these effects. Two generic nuisance variations, one associated with the magnitude of expression and the other associated with array location, are common in data from filter arrays. Procedures, like normalization using lowess regression, are effective at reducing variation associated with magnitude, and they have been widely adopted. However, variation associated with location has received less attention. Here, a simple, but effective method based on localized median is expounded for dealing with these nuisance effects, and its properties are discussed. The proposed methodology handles location-dependent variation ("splotches") and magnitude-dependent variation (background and/or saturation) effectively. The procedure is related to lowess when implemented to adjust magnitude-dependent variation, and it performs similarly. The proposed methodology is illustrated with data from the National Center for Toxicological Research (NCTR), where treatment differences in levels of mRNA from rat hepatocytes were assessed using 33P-labeled samples hybridized to cDNA spotted arrays. Normalizing intensities by the median-of-subsets removes systematic variation associated with the location of a gene on the array and/or the level of its expression. This procedure is easy to implement using iteratively reweighted least-squares algorithms. Although less sophisticated than lowess, this procedure works nearly as well for normalizing intensities based upon their magnitude. Unlike lowess, it can adjust for location-dependent effects.  相似文献   

16.
Normalization of cDNA microarray data   总被引:43,自引:0,他引:43  
Normalization means to adjust microarray data for effects which arise from variation in the technology rather than from biological differences between the RNA samples or between the printed probes. This paper describes normalization methods based on the fact that dye balance typically varies with spot intensity and with spatial position on the array. Print-tip loess normalization provides a well-tested general purpose normalization method which has given good results on a wide range of arrays. The method may be refined by using quality weights for individual spots. The method is best combined with diagnostic plots of the data which display the spatial and intensity trends. When diagnostic plots show that biases still remain in the data after normalization, further normalization steps such as plate-order normalization or scale-normalization between the arrays may be undertaken. Composite normalization may be used when control spots are available which are known to be not differentially expressed. Variations on loess normalization include global loess normalization and two-dimensional normalization. Detailed commands are given to implement the normalization techniques using freely available software.  相似文献   

17.
SUMMARY: We present a web server for Diagnosis and Normalization of MicroArray Data (DNMAD). DNMAD includes several common data transformations such as spatial and global robust local regression or multiple slide normalization, and allows for detecting several kinds of errors that result from the manipulation and the image analysis of the arrays. This tool offers a user-friendly interface, and is completely integrated within the Gene Expression Pattern Analysis Suite (GEPAS). AVAILABILITY: The tool is accessible on-line at http://dnmad.bioinfo.cnio.es.  相似文献   

18.
Optimized LOWESS normalization parameter selection for DNA microarray data   总被引:1,自引:0,他引:1  

Background  

Microarray data normalization is an important step for obtaining data that are reliable and usable for subsequent analysis. One of the most commonly utilized normalization techniques is the locally weighted scatterplot smoothing (LOWESS) algorithm. However, a much overlooked concern with the LOWESS normalization strategy deals with choosing the appropriate parameters. Parameters are usually chosen arbitrarily, which may reduce the efficiency of the normalization and result in non-optimally normalized data. Thus, there is a need to explore LOWESS parameter selection in greater detail.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号