首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical group-transfer reactions by hydrolytic enzymes have considerable importance in biocatalytic synthesis and are exploited broadly in commercial-scale chemical production. Mechanistically, these reactions have in common the involvement of a covalent enzyme intermediate which is formed upon enzyme reaction with the donor substrate and is subsequently intercepted by a suitable acceptor. Here, we studied the glycosylation of glycerol from sucrose by sucrose phosphorylase (SucP) to clarify a peculiar, yet generally important characteristic of this reaction: partitioning between glycosylation of glycerol and hydrolysis depends on the type and the concentration of the donor substrate used (here: sucrose, α-d -glucose 1-phosphate (G1P)). We develop a kinetic framework to analyze the effect and provide evidence that, when G1P is used as donor substrate, hydrolysis occurs not only from the β-glucosyl-enzyme intermediate (E-Glc), but additionally from a noncovalent complex of E-Glc and substrate which unlike E-Glc is unreactive to glycerol. Depending on the relative rates of hydrolysis of free and substrate-bound E-Glc, inhibition (Leuconostoc mesenteroides SucP) or apparent activation (Bifidobacterium adolescentis SucP) is observed at high donor substrate concentration. At a G1P concentration that excludes the substrate-bound E-Glc, the transfer/hydrolysis ratio changes to a value consistent with reaction exclusively through E-Glc, independent of the donor substrate used. Collectively, these results give explanation for a kinetic behavior of SucP not previously accounted for, provide essential basis for design and optimization of the synthetic reaction, and establish a theoretical framework for the analysis of kinetically analogous group-transfer reactions by hydrolytic enzymes.  相似文献   

2.
The objective of the study was to investigate in vitro transdermal delivery of venlafaxine hydrochloride across the pigskin by passive diffusion and iontophoresis. For passive diffusion, experiments were carried out in Franz diffusion cell whereas for iontophoretic permeation, the diffusion cell was modified to contain both the donor and return electrode on the same side of skin. Anodal iontophoresis was carried out using a current density of 0.5 mA/cm2. Donor concentrations used were 585.5 mg/ml (saturated solution) and 100 mg/ml. Experiments initially performed to determine the transport efficiency of venlafaxine ions showed promising results. Iontophoresis increased the permeation rate at both concentration levels over their passive counterparts (P < 0.01), but surprisingly higher steady-state flux was obtained from lower donor drug load (P < 0.01). The favorable pH of the unsaturated solutions is suggested to be the cause for this effect. Mild synergistic effect was observed when iontophoresis was carried out incorporating peppermint oil in the donor but the same was not found in passive diffusion. Highest steady-state flux obtained in the experiment was 3.279 μmol/cm2/h when peppermint oil (0.1%) was included in the donor. As the maintenance requirement of venlafaxine hydrochloride is approximately 9.956 μmol/h, the results suggested that the drug is a promising candidate for iontophoretic delivery.  相似文献   

3.
The stratum corneum, the rate‐limiting barrier in transdermal drug delivery, is chiral in nature and enantiomers behave differently with respect to their transport across the skin, resulting in enantioselective permeation. The permeation characteristics of individual enantiomers of metoprolol free base (MB) were investigated using hairless mouse skin. The influence of chiral permeation enhancers, l‐menthol and (±)‐linalool, on the permeation of MB was also investigated. In the absence of enhancers, the permeation profiles of R‐ and S‐MB from donor solutions containing either RS‐MB or pure enantiomers are comparable (p < 0.05). In presence of enhancers, l‐menthol and (±)‐linalool, the flux values were increased 2.4‐ to 3.0‐fold, respectively, and the permeation profiles of R‐ and S‐MB from donor solutions containing RS‐MB are comparable (p < 0.05). However, when donor vehicle contains pure enantiomers, the permeation enhancing effect of l‐menthol on S‐MB was significantly higher (by 25%) than on R‐MB (p < 0.05). Further, in presence of l‐menthol, the flux of S‐MB from donor solution containing pure S‐MB was 35% higher than the flux of RS‐MB from racemate. No such effect was seen with (±)‐linalool. In all the investigations, no enantiomeric inversion was observed during the permeation process. The lag times were shorter in the case of l‐menthol compared with (±)‐linalool. Chirality 11:536–540, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

4.
A nonlinear mathematical model developed by Chandrasekaran et al. is examined to monitor pharmacokinetic profiles in percutaneous drug absorption and is addressed to several associated problems that could occur in the data analysis of in vitro experiments. The formulation of the model gives rise to a nonlinear partial differential equation (PDE) of parabolic type, and a family of finite-difference methods is developed for the numerical solution of the associated initial/boundary-value problem. The value given to a parameter in this family determines the stability properties of the resulting method and whether the solution is obtained explicitly or implicitly. In the case of implicit members of the family it is seen that the solution of the nonlinear PDE is obtained by solving a linear algebraic system, the coefficient matrix of which is tridiagonal. The behaviors of two methods of the family are examined in a series of numerical experiments. Numerical differentiation and integration procedures are combined to monitor the cumulative amount of drug eliminated into the receptor cell per unit area as time increases. It is found that the use of the equation for the simple membrane model to estimate the permeability coefficient and lag time is warranted even if the system should be described by the dual-sorption model, provided cumulative amount versus time data collected for a sufficiently long time are used. However, being different from the behavior in the simple membrane model, the lag time, which can be estimated in this way, is dose-dependent and decreases with increasing donor cell concentration. On the other hand, the permeability coefficient in the dual-sorption model remains constant irrespective of the donor cell concentrations as in the simple membrane model.  相似文献   

5.
The objective of the present study was to design and evaluate unilaminate transdermal adhesive matrix systems capable of diffusing bupropion base at a constant rate over an extended period of time as an alternative route of administration. Unilaminate transdermal adhesive matrices have been fabricated with different concentrations of Eudragit E as the adhesive and rate-controlling polymer. The in vitro release and epidermal flux through human cadaver skin were studied. The release of drug from the matrices obeyed zero order release kinetics (r 2=0.9810 to 0.9960). The delivery rate of bupropion ranged from 10.5 mg to 31.4 mg per day from a 3.14 cm2 area of matrix. The relation between concentration of bupropion base in matrix and epidermal flux, concentration of drug in matrix, and epidermal adsorption of bupropion during diffusion follow hyperbolic fashion. Triethylcitrate (TEC) and dibutylphthalate (DBP) have no influence on the diffusion of bupropion through human cadaver skin when used as plasticizers. Incorporation of succinic acid in the adhesive matrix retarded diffusion due to the formation of rigid cross linking of the polymer, while propylene glycol and myristic acid, alone or in combination, significantly enhanced the flux of bupropion through human cadaver skin.  相似文献   

6.
Niosomes suggest a versatile vesicle delivery system with possible transport of drugs via topical route for skin delivery. The aim of the present research was to optimize niosome gel formulation of acyclovir and to evaluate in both in vitro and in vivo rabbit model. Niosome formulations were formulated by coacervation phase separation technique with different ratios of nonionic surfactants, phospholipids and cholesterol using 32 factorial design. Altering the surfactant concentration has influenced the drug entrapment, but not vesicle size. At high surfactant combinations, the acyclovir release from niosomes was strongly influenced by cholesterol:lecithin ratio. Ex vivo drug permeation data indicate substantial difference in flux values and was influenced by the niosome composition. Ex vivo studies using formulation (B8) for drug deposition indicate greater amount of niosome being diffused into the skin layers and formed a depot, compared to commercial acyclovir cream (control). Two distinct dermatopharmacokinetic profiles were observed, in vivo, for niosome gel formulation (B8) and control, which were analog to the profiles observed with ex vivo deposition studies. In vivo plasma drug level suggests low systemic exposure of acyclovir (Cmax: 9.44?±?2.27?ng/mL and 14.54?±?3.11?ng/mL for niosome formulation and control, respectively). Comparison of kinetic data of acyclovir in the stratum corneum and plasma signifies that the niosome formulation forms a depot in the epidermis or dermis region. This study concludes that the niosome gel formulation (B8) could be a viable vesicular system for an impressive transdermal delivery of acyclovir by topical application.  相似文献   

7.

Background  

When a drug is applied on the skin surface, the concentration of the drug accumulated in the skin and the amount of the drug eliminated into the blood vessel depend on the value of a parameter, r. The values of r depend on the amount of diffusion and the normalized skin-capillary clearence. It is defined as the ratio of the steady-state drug concentration at the skin-capillary boundary to that at the skin-surface in one-dimensional models. The present paper studies the effect of the parameter values, when the region of contact of the skin with the drug, is a line segment on the skin surface.  相似文献   

8.
A steady-state biofilm is defined as one that has neither net growth nor decay over time. The model, developed for steady-state-biofilm kinetics with a single substrate, couples the flux of substrate into a biofilm to the mass (or thickness) of biofilm that would exist at steady-state for a given bulk substrate concentration. Based on kinetic and energetic constraints, this model predicts for a single substrate that a steady-state bulk concentration, Smin, exists below which a steady-state biofilm cannot exist. Thus, in the absence of adsorption of bacteria from the bulk water and for substrate concentration below Smin, substrate flux and biofilm thickness are zero. Equations are provided for calculating the steady-state substrate flux and biofilm thickness for S greater than Smin. An example is provided to demonstrate the use of the steadystate model.  相似文献   

9.
In this study, some single-layer and double-layer transdermal drug delivery systems (TDDSs) with different functional and non-functional acrylic pressure-sensitive adhesives (PSAs) were prepared. For this purpose, fentanyl as a drug was used. The effects of PSAs type, single-layer and double-layer TDDSs on skin permeation and in vitro drug release from devices were evaluated using a hydrodynamically well-characterized Chien permeation system fitted with excised rat abdominal skin. The adhesion properties of devices such as peel strength and tack values were obtained as well. It was found that TDDS with –COOH functional PSA showed the lowest steady-state flux. Double-layer TDDS displayed a constant flux up to 72 h. In double- and single-layer devices after 1 and 3 h, respectively, drug release followed Higuchi’s kinetic model. Formulations with the highest percentage of –COOH functional PSA have displayed the lowest flux. The double-layer TDDSs with non-functional PSA demonstrated the suitable skin permeation rate close to Duragesic® TDDS and suitable adhesion properties.  相似文献   

10.
The light response curves of the acceptor and donor side mechanisms of photoinhibition of Photosystem II were calculated, using Arabidopsis as a model organism. Acceptor-side photoinhibition was modelled as double reduction of QA, noting that non-photochemical quenching has the same effect on the quantum yield of QA double reduction in closed PSII centres as it has on the quantum yield of electron transport in open centres. The light response curve of acceptor-side photoinhibition in Arabidopsis shows very low efficiency under low intensity light and a relatively constant quantum yield above light saturation of photosynthesis. To calculate the light response curve of donor-side photoinhibition, we built a model describing the concentration of the oxidized primary donor P680+ during steady-state photosynthesis. The model is based on literature values of rate constants of electron transfer reactions of PSII, and it was fitted with fluorescence parameters measured in the steady state. The modelling analysis showed that the quantum yield of donor-side photoinhibition peaks under moderate light. The deviation of the acceptor and donor side mechanisms from the direct proportionality between photoinhibition and photon flux density suggests that these mechanisms cannot solely account for photoinhibition in vivo, but contribution of a reaction whose quantum yield is independent of light intensity is needed. Furthermore, a simple kinetic calculation suggests that the acceptor-side mechanism may not explain singlet oxygen production by photoinhibited leaves. The theoretical framework described here can be used to estimate the yields of different photoinhibition mechanisms under different wavelengths or light intensities.  相似文献   

11.
Transdermal films of the furosemide were developed employing ethyl cellulose and hydroxypropyl methylcellulose as film formers. The effect of binary mixture of polymers and penetration enhancers on physicochemical parameters including thickness, moisture content, moisture uptake, drug content, drug–polymer interaction, and in vitro permeation was evaluated. In vitro permeation study was conducted using human cadaver skin as penetration barrier in modified Keshary–Chein diffusion cell. In vitro skin permeation study showed that binary mixture, ethyl cellulose (EC)/hydroxypropyl methylcellulose (HPMC), at 8.5:1.5 ratio provided highest flux and also penetration enhancers further enhanced the permeation of drug, while propylene glycol showing higher enhancing effect compared to dimethyl sulfoxide and isopropyl myristate. Different kinetic models, used to interpret the release kinetics and mechanism, indicated that release from all formulations followed apparent zero-order kinetics and non-Fickian diffusion transport except formulation without HPMC which followed Fickian diffusion transport. Stability studies conducted as per International Conference on Harmonization guidelines did not show any degradation of drug. Based on the above observations, it can be reasonably concluded that blend of EC–HPMC polymers and propylene glycol are better suited for the development of transdermal delivery system of furosemide.  相似文献   

12.
The purpose of the present study was to investigate the potential of nanoemulsions as nanodrug carrier systems for the percutaneous delivery of ropinirole. Nanoemulsions comprised Capryol 90 as the oil phase, Tween 20 as the surfactant, Carbitol as the cosurfactant, and water as an external phase. The effects of composition of nanoemulsion, including the ratio of surfactant and cosurfactant (S mix) and their concentration on skin permeation, were evaluated. All the prepared nanoemulsions showed a significant increase in permeation parameters such as steady state flux (J ss) and permeability coefficient (K p) when compared to the control (p < 0.01). Nanoemulsion composition (NEL3) comprising ropinirole (0.5% w/w), Capryol 90 (5% w/w), S mix 2:1 (35% w/w), and water (59.5% w/w) showed the highest flux (51.81 ± 5.03 μg/cm2/h) and was selected for formulation into nanoemulsion gel. The gel was further optimized with respect to oil concentration (Capryol 90), polymer concentration (Carbopol), and drug content by employing the Box–Behnken design, which statistically evaluated the effects of these components on ropinirole permeation. Oil and polymer concentrations were found to have a negative influence on permeation, while the drug content had a positive effect. Nanoemulsion gel showed a 7.5-fold increase in skin permeation rate when compared to the conventional hydrogel. In conclusion, the results of the present investigation suggested a promising role of nanoemulsions in enhancing the transdermal permeation of ropinirole.  相似文献   

13.
Summary In a total of six hours of observation of severalMicrostigmus nigrophthalmus nests with two or more adult wasps, nine buccal contacts, six between females and three between females and males were observed. Except for two cases, these occurred soon after one of the females involved (the apparent donor) had returned to the nest and involved transfer from older to younger individuals. Experimental feeding of colored solution confirmed the occurrence of trophallaxis. InM. nigrophthalmus, trophallaxis seems to have arisen as a prolongation of maternal care since food is transferred from an older to a younger individual.  相似文献   

14.
In ligand binding studies, it is often difficult to apply kinetic analyses because of an uncertainty in experimental data obtained at high ligand concentrations. Under such circumstances, Kd value (an index of the affinity) and the binding site concentration may be estimated more accurately from the binding of a fixed concentration of labelled ligand observed in the presence of various concentrations of the non-labelled ligand, if the fraction of both labelled and non-labelled ligand bound is small. When there is no cooperative effect of the ligand binding, the Kd value may be calculated by subtracting the concentration of the labelled drug from the concentration of the non-labelled drug to cause a 50% reduction of the saturable binding of the labelled drug. From above values, the binding site concentration may be calculated. The proposed method is capable of examining the cooperativity of the ligand binding, the labelled drug concentration and the specific radioactivity of the labelled drug and does not require large amounts of the labelled drug.  相似文献   

15.
Marker rescue transformation by linear plasmid DNA in Bacillus subtilis   总被引:21,自引:0,他引:21  
Although plasmid-free Bacillus subtilis cannot be transformed for markers carried by linear or nicked plasmid DNA, a resident plasmid can rescue a marker on such damaged DNA under certain conditions. Linearized chimeric plasmid DNA has been used to transform cultures carrying a resident plasmid which is homologous with a portion of the donor. This system has revealed the following properties of the marker rescue process: (1) It is recE dependent. (2) It requires the presence in the resident plasmid of sequences which are homologous to the donor. (3) When the selected marker is on a nonhomologous segment it must be flanked by segments which are homologous to the resident plasmid. (4) The efficiency of rescue varies in a regular way with the position of the linearizing cut. (5) Marker rescue is first order with respect to DNA concentration. These properties and other data are interpreted as providing a strong indication that marker rescue occurs by recombination, although an alternative explanation involving recE-dependent recircularization of the donor plasmid has not been eliminated. Our results also suggest that if the major pathway of marker rescue is by recombination, an average of 0.15 Mdal (single strand) must be removed from each donor DNA molecule or otherwise rendered unavailable for recombination and that the exchange frequency during transformational recombination is approximately 0.2 to 0.5 Mdal−1.  相似文献   

16.
A herd of 28–33 Japanese Black cows (Bos taurus) were allowed to graze on an experimental plot comprising monoculture swards of centipedegrass (Eremochloa ophiuroides) and bahiagrass (Paspalum notatum) (0.39 and 0.61 ha, respectively) for 3–5 days each month (from 0850 to 1600 hours) between May (late spring) and October (mid-autumn). On a monthly basis, the animals showed an increasing trend to select centipedegrass in preference to bahiagrass as the relative crude protein (CP) concentration of the former increased relative to the latter. On a daily basis, the animals showed a decreased selectivity for centipedegrass with the progression of grazing days, as centipedegrass sward lost both quantity and quality faster than bahiagrass sward under higher degrees of defoliation. Animals maintained similar bite rates on the two swards by modifying feeding station behavior as soon as they switched between the swards, i.e., they increased the number of bites per feeding station and decreased the number of feeding stations selected per unit grazing time soon after switching to centipedegrass, with the reverse process occurring soon after the switch to bahiagrass. The results show CP concentration to be a partial forage factor influencing animals’ choice between tropical grasses growing as patches. The results also demonstrate that animals have an ability to adapt their foraging behavior flexibly and rapidly to varying types of vegetation.  相似文献   

17.
In recent years there has been much interest in the genetic enhancement of plant metabolism; however, attempts at genetic modification are often unsuccessful due to an incomplete understanding of network dynamics and their regulatory properties. Kinetic modeling of plant metabolic networks can provide predictive information on network control and response to genetic perturbations, which allow estimation of flux at any concentration of intermediate or enzyme in the system. In this research, a kinetic model of the benzenoid network was developed to simulate whole network responses to different concentrations of supplied phenylalanine (Phe) in petunia flowers and capture flux redistributions caused by genetic manipulations. Kinetic parameters were obtained by network decomposition and non‐linear least squares optimization of data from petunia flowers supplied with either 75 or 150 mm 2H5‐Phe. A single set of kinetic parameters simultaneously accommodated labeling and pool size data obtained for all endogenous and emitted volatiles at the two concentrations of supplied 2H5‐Phe. The generated kinetic model was validated using flowers from transgenic petunia plants in which benzyl CoA:benzyl alcohol/phenylethanol benzoyltransferase (BPBT) was down‐regulated via RNAi. The determined in vivo kinetic parameters were used for metabolic control analysis, in which flux control coefficients were calculated for fluxes around the key branch point at Phe and revealed that phenylacetaldehyde synthase activity is the primary controlling factor for the phenylacetaldehyde branch of the benzenoid network. In contrast, control of flux through the β‐oxidative and non‐β‐oxidative pathways is highly distributed.  相似文献   

18.
The dependence of polarisability (α) and hyperpolarisability (β) on donor strength has been systematically studied by employing density functional theory method on triphenylamine (TPA) and carbazole (CZ) based compounds. The electronic structures, absorption spectra and non-linear optical (NLO) response were calculated by using quantum chemical methods. All the calculations were performed in gas phase in presence of solvent. The results reveal that the polarizability (α) and hyperpolarizability (β) significantly increased by the addition of second donor moiety. Similarly, the oscillator strength and light harvesting efficiency were also increased, while absorption wavelength was red-shifted by the addition of second donor moiety. These results indicate that the di-substituted donor is an effective way to improve NLO response. The TPA dyes possess a large second-order non-linear response and this is primarily because of the strong donor-π-acceptor conjugation that is ascribed to the excited state intramolecular charge transfer. These theoretical frameworks of carbon architecture might be advantageous to design other organic charge-transfer compounds.  相似文献   

19.
The aim of this investigation is to study the effect of donor concentration and microneedle (MN) length on permeation of insulin and further evaluating the data using scaling analyses and numerical simulations. Histological evaluation of skin sections was carried to evaluate the skin disruption and depth of penetration by MNs. Scaling analyses were done using dimensionless parameters like concentration of drug (C t/C s), thickness (h/L) and surface area of the skin (S a/L 2). Simulation studies were carried out using MATLAB and COMSOL software to simulate the insulin permeation using histological sections of MN-treated skin and experimental parameters like passive diffusion coefficient. A 1.6-fold increase in transdermal flux and 1.9-fold decrease in lag time values were observed with 1.5 mm MN when compared with passive studies. Good correlation (R 2?>?0.99) was observed between different parameters using scaling analyses. Also, the in vitro and simulated permeations profiles were found to be similar (f 2?≥?50). Insulin permeation significantly increased with increase in donor concentration and MN length (p?<?0.05). The developed scaling correlations and numerical simulations were found to be accurate and would help researchers to predict the permeation of insulin with new dimensions of MN in optimizing insulin delivery. Overall, it can be inferred that the application of MNs can significantly enhance insulin permeation and may be an efficient alternative for injectable insulin therapy in humans.  相似文献   

20.
In the present study we investigated the enantioselectivity in the pharmacokinetics of metoprolol administered in a multiple‐dose regimen as the racemate. The study was conducted on 10 patients of both sexes with mild to severe essential hypertension, aged 28 to 76 years, with normal hepatic and renal function and phenotyped as extensive metabolizers of debrisoquine (urine debrisoquine to 4‐hydroxydebrisoquine ratios of 0.28 to 6.56). The patients were treated with racemic metoprolol (two 100 mg tablets every 24 h) for 7 days. Serial blood samples were collected at times zero, 0.5, 1, 1.5, 2, 3, 4, 6, 8, 10, 12, 16, 20, 22, and 24 h and urine at each 6 h period until 24 h after metoprolol administration. The plasma concentrations of the (−)‐(S)‐ and (+)‐(R)‐metoprolol enantiomers were determined by HPLC using a chiral stationary phase (Chiralpak AD, 4.6 × 250 mm) and fluorescence detection. The enantiomeric ratios differing from one were evaluated by the paired t test and the results are reported as means (95% CI). No differences were observed between metoprolol enantiomers in half‐lives and absorption, distribution and elimination rate constants. However, the following differences (p < 0.05) were observed between the (−)‐(S) and (+)‐(R) enantiomers: maximum plasma concentration, Cmax, 179.99 (123.33–236.64) versus 151.30 (95.04–207.57) ng/mL; area under the plasma concentration versus time curve, AUC, 929.85 (458.02–1401.70) versus 782.11 (329.80–1234.40) ng h/mL; apparent total clearance, ClT/f, 1.70 (0.79–2.61) versus 2.21 (1.06–3.36) L/h/kg, apparent distribution volume, Vd/f, 10.51 (6.35–14.68) versus 13.80 (6.93–20.68) L/kg, and renal clearance, ClR, 0.06 (0.05–0.08) versus 0.07 (0.05–0.09) L/kg. The enantiomeric ratios AUC(−)‐(S)/AUC(+)‐(R) ranged from 1.14 to 1.44, with a mean of 1.29. The data obtained demonstrate enantioselectivity in the kinetic disposition of metoprolol, with plasma accumulation of the pharmacologically more active (−)‐(S)‐metoprolol enantiomer in hypertensive patients phenotyped as extensive metabolizers of debrisoquine. Chirality 11:591–597, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号