首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Saccharomyces cerevisiae is one of the most im- portant heterologous expression systems. The stability and copy number of expression plasmid in the host are the important factors to affect the expression levels of foreign genes[1―3]. pHC11 is a yeast episomal plasmid constructed by our laboratory[4]. It contains the entire sequence of the 2μ plasmid without disrupting its coding elements and other functional regions. The stability and copy number of pHC11 are relatively high. Making use of…  相似文献   

2.
We have developed an effective method to delete or invert a chromosomal segment and to create reciprocal recombination between two nonhomologous chromosomes in Saccharomyces cerevisiae, using the site-specific recombination system of pSR1, a circular cryptic DNA plasmid resembling 2 microns DNA of S. cerevisiae but originating from another yeast, Zygosaccharomyces rouxii. A 2.1-kilobase-pair DNA fragment bearing the specific recombination site on the inverted repeats of pSR1 was inserted at target sites on a single or two different chromosomes of S. cerevisiae by using integrative vectors. The cells were then transformed with a plasmid bearing the R gene of pSR1, which encodes the site-specific recombination enzyme and is placed downstream of the GAL1 promoter. When the transformants were cultivated in galactose medium, the recombination enzyme produced by expression of the R gene created the modified chromosome(s) by recombination between two specific recombination sites inserted on the chromosome(s).  相似文献   

3.
Y Tsukamoto  J Kato    H Ikeda 《Nucleic acids research》1996,24(11):2067-2072
Hdf1 is the yeast homologue of the mammalian 70 kDa subunit of Ku-protein, which has DNA end-binding activity and is involved in DNA double-strand break repair and V(D)J recombination. To examine whether Hdf1 is involved in illegitimate recombination, we have measured the rate of deletion mutation caused by illegitimate recombination on a plasmid in an hdf1 disruptant. The hdf1 mutation reduced the rate of deletion formation by 20-fold, while it did not affect mitotic and meiotic homologous recombinations between two heteroalleles or homologous recombination between direct repeats. Hence Hdf1 participates in illegitimate recombination, but not in homologous recombination, in contrast to Rad52, Rad50, Mre11 and Xrs2, which are involved in both homologous and illegitimate recombination. The illegitimate recombination in the hdf1 disruptant took place between recombination sites that shared short regions of homology (1-4 bp), as was observed in the wild-type. Based on the DNA end-binding activity of Hdf1, we discuss models in which Hdf1 plays an important role in the late step of illegitimate recombination.  相似文献   

4.
The molecular products of DNA double strand break repair were investigated after transformation of yeast (Saccharomyces cerevisiae) with linearized plasmid DNA. DNA of an autonomous yeast plasmid cleaved to generate free ends lacking homology with the yeast genome, when used in transformation along with sonicated non-homologous carrier DNA, gave rise to transformants with high frequency. Most of these transformants were found to harbor a head-to-head (inverted) dimer of the linearized plasmid. This outcome of transformation contrasts with that observed when the carrier DNA is not present. Transformants occur at a much reduced frequency and harbor either the parent plasmid or a plasmid with deletion at the site of the cleavage. When the linearized plasmid is introduced along with sonicated carrier DNA and a homologous DNA restriction fragment that spans the site of plasmid cleavage, homologous recombination restores the plasmid to its original circular form. Inverted dimer plasmids are not detected. This relationship between homologous recombination and a novel DNA transaction that yields rearrangement could be important to the cell, as the latter could lead to a loss of gene function and lethality.  相似文献   

5.
BRCA1 tumor suppressor gene is found mutated in familial breast and ovarian cancer. Most cancer related mutations were found located at the RING (Really Interesting New Gene) and at the BRCT (BRca1 C-Terminal) domain. However, 20 y after its identification, the biological role of BRCA1 and which domains are more relevant for tumor suppression are still being elucidated. We previously reported that expression of BRCA1 cancer related variants in the RING and BRCT domain increases spontaneous homologous recombination in yeast indicating that BRCA1 may interact with yeast DNA repair/recombination. To finally demonstrate whether BRCA1 interacts with yeast DNA repair, we exposed yeast cells expressing BRCA1wt, the cancer-related variants C-61G and M1775R to different doses of the alkylating agent methyl methane-sulfonate (MMS) and then evaluated the effect on survival and homologous recombination. Cells expressing BRCA1 cancer variants were more sensitive to MMS and less inducible to recombination as compared to cell expressing BRCA1wt. Moreover, BRCA1-C61G and -M1775R did not change their nuclear localization form as compared to the BRCA1wt or the neutral variant R1751Q indicating a difference in the DNA damage processing. We propose a model where BRCA1 cancer variants interact with the DNA double strand break repair pathways producing DNA recombination intermediates, that maybe less repairable and decrease MMS-induced recombination and survival. Again, this study strengthens the use of yeast as model system to characterize the mechanisms leading to cancer in humans carrying the BRCA1 missense variant.  相似文献   

6.
7.
Agrobacterium tumefaciens cells carrying a tumour inducing plasmid (Ti‐plasmid) can transfer a defined region of transfer DNA (T‐DNA) to plant cells as well as to yeast. This process of Agrobacterium‐mediated transformation (AMT) eventually results in the incorporation of the T‐DNA in the genomic DNA of the recipient cells. All available evidence indicates that T‐strand transfer closely resembles conjugal DNA transfer as found between Gram‐negative bacteria. However, where conjugal plasmid DNA transfer starts via relaxase‐mediated processing of a single origin of transfer (oriT), the T‐DNA is flanked by two imperfect direct border repeats which are both substrates for the Ti‐plasmid encoded relaxase VirD2. Yeast was used as a model system to investigate the requirements of the recipient cell for the formation of T‐DNA circles after AMT. It was found that, despite the absence of self‐homology on the T‐DNA, the homologous repair proteins Rad52 and Rad51 are involved in T‐DNA circle formation. A model is presented involving the formation of T‐DNA concatemers derived from T‐strands by a process of strand‐transfer catalysed by VirD2. These concatemers are then resolved into T‐DNA circles by homologous recombination in the recipient cell.  相似文献   

8.
S. Kunes  D. Botstein    M. S. Fox 《Genetics》1990,124(1):67-80
When yeast (Saccharomyces cerevisiae) is transformed with linearized plasmid DNA and the ends of the plasmid do not share homology with the yeast genome, circular inverted (head-to-head) dimer plasmids are the principal product of repair. By measurements of the DNA concentration dependence of transformation with a linearized plasmid, and by transformation with mixtures of genetically marked plasmids, we show that two plasmid molecules are required to form an inverted dimer plasmid. Several observations suggest that homologous pairing accounts for the head-to-head joining of the two plasmid molecules. First, an enhanced frequency of homologous recombination is detected when genetically marked plasmids undergo end-to-end fusion. Second, when a plasmid is linearized within an inverted repeat, such that its ends could undergo head-to-tail homologous pairing, it is repaired by intramolecular head-to-tail joining. Last, in the joining of homologous linearized plasmids of different length, a shorter molecule can acquire a longer plasmid end by homologous recombination. The formation of inverted dimer plasmids may be related to some forms of chromosomal rearrangement. These might include the fusion of broken sister chromatids in the bridge-breakage-fusion cycle and the head-to-head duplication of genomic DNA at the sites of gene amplifications.  相似文献   

9.

Objectives

To target a carotenoid biosynthetic gene in the oleaginous yeast Rhodosporidium toruloides by using the Agrobacterium-mediated transformation (AMT) method.

Results

The RHTO_04602 locus of R. toruloides NP11, previously assigned to code the carotenoid biosynthetic gene CRTI, was amplified from genomic DNA and cloned into the binary plasmid pZPK-mcs, resulting in pZPK-CRT. A HYG-expression cassette was inserted into the CRTI sequence of pZPK-CRT by utilizing the restriction-free clone strategy. The resulted plasmid was used to transform R. toruloides cells according to the AMT method, leading to a few white transformants. Sequencing analysis of those transformants confirmed homologous recombination and insertional inactivation of CRTI. When the white variants were transformed with a CRTI-expression cassette, cells became red and produced carotenoids as did the wild-type strain NP11.

Conclusions

Successful homologous targeting of the CrtI locus confirmed the function of RHTO_04602 in carotenoids biosynthesis in R. toruloides. It provided valuable information for metabolic engineering of this non-model yeast species.
  相似文献   

10.
To locate the transfer region of the 122-kiloase plasmid R64drd-11 belonging to incompatibility group I1, a series of deletion derivatives was constructed by in vitro recombinant DNA techniques followed by double homologous recombination in vivo. A plasmid designated pKK609 and bearing a 56.7-kilobase R64 sequence was the smallest transferable plasmid. A plasmid designated pKK610 and no longer possessing the 44-base-pair sequence of the R64 transfer system is located at one end. The other end of the R64 transfer region comprises a DNA segment of about 19 kilobases responsible for pilus formation. Shufflon, DNA with a novel rearrangement in R64, was found to be involved in pilus formation.  相似文献   

11.
We asked if single-stranded vector DNA molecules could be used to reintroduce cloned DNA sequences into a eukaryotic cell and cause genetic transformation typical of that observed using double-stranded DNA vectors. DNA was presented to Saccharomyces cerevisiae following a standard transformation protocol, genetic transformants were isolated, and the physical state of the transforming DNA sequence was determined. We found that single-stranded DNA molecules transformed yeast cells 10- to 30-fold more efficiently than double-stranded molecules of identical sequence. More cells were competent for transformation by the single-stranded molecules. Single-stranded circular (ssc) DNA molecules carrying the yeast 2 μ plasmid-replicator sequence were converted to autonomously replicating double-stranded circular (dsc) molecules, suggesting their efficient utilization as templates for DNA synthesis in the cell. Single-stranded DNA molecules carrying 2 μ plasmid non-replicator sequences recombined with the endogenous multicopy 2 μ plasmid DNA. This recombination yielded either the simple molecular adduct expected from homologous recombination (40% of the transformants examined) or aberrant recombination products carrying incomplete transforming DNA sequences, endogenous 2 μ plasmid DNA sequences, or both (60% of the transformants examined). These aberrant recombination products suggest the frequent use of a recombination pathway that trims one or both of the substrate DNA molecules. Similar aberrant recombination products were detected in 30% of the transformants in cotransformation experiments employing single-stranded and double-stranded DNA molecules, one carrying the 2 μ plasmid replicator sequence and the other the selectable genetic marker. We conclude that single-stranded DNA molecules are useful vectors for the genetic transformation of a eukaryotic cell. They offer the advantage of high transformation efficiency, and yield the same intracellular DNA species obtained upon transformation with double-stranded DNA molecules. In addition, single-stranded DNA molecules can participate in a recombination pathway that trims one or both DNA recombination substrates, a pathway not detected, at least at the same frequency, when transforming with double-stranded DNA molecules  相似文献   

12.
We examined unequal homologous DNA recombination between human repetitive DNA elements located on a yeast artificial chromosome (YAC) and transforming plasmid molecules. A plasmid vector containing an Alu element, as well as a sequence identical to a unique site on a YAC, was introduced into yeast and double recombinant clones analyzed. Recombination occurs between vector and YAC Alu elements sharing as little as 74% identity. The physical proximity of an Alu element to the unique DNA segment appears to play a significant role in determining the frequency with which that element serves as a recombination substrate. In addition, cross-over points of the recombination reaction are largely confined to the ends of the repetitive element. Since a similar distribution of crossover sites occurs during unequal homologous recombination in human germ and somatic tissue, we propose that similar enzymatic processes may be responsible for the events observed in our system and in human cells. This suggests that further examination of the enzymology of unequal homologous recombination of human DNA within yeast may yield a greater understanding of the molecular events which control this process in higher eukaryotes.  相似文献   

13.
The melanocortin 4 receptor (MC4R) is involved in the regulation of energy homeostasis and is known as one of the major hypothalamic regulators of food intake. Several studies have shown that replacement of aspartic acid at position 126 of the MC4R abolishes the ligand binding. We used the modified yeast Saccharomyces cerevisiae strain MMY28 to functionally express the MC4R and characterise the importance of this amino acid for ligand based activation of the receptor. The efficiency of the functional expression system was estimated by activation with αMSH, ACTH and THIQ and compared with cAMP response in mammalian cells. We generated the library of MC4R mutants randomised at the amino acid position 126. Recombinant MC4R clones were screened for the αMSH induced activity in yeast. From 9 different amino acids obtained only the natural aspartic acid displayed the ligand dependent activity of MC4R. The MC4R variants with glutamic acid and leucine at position 126, however, displayed higher background activity than other amino acid substitutions. The results suggest that the yeast expression system is suitable for screening of the MC4R receptor ligands and that the substitution of aspartic acid at position 126 of MC4R by different amino acids functionally inactivates the receptor.  相似文献   

14.
The cloning of α-amylase gene ofS. occidentalis and the construction of starch digestible strain of yeast,S. cerevisiae AS. 2. 1364 with ethanol-tolerance and without auxotrophic markers used in fermentation industry were studied. The yeast/E.coli shuttle plasmid YCEp1 partial library ofS. occidentalis DNA was constructed and α-amylase gene was screened in S.cerevisiae by amylolytic activity. Several transformants with amylolysis were obtained and one of the fusion plasmids had an about 5.0 kb inserted DNA fragment, containing the upstream and downstream sequences of α-amylase gene fromS. occidentalis. It was further confirmed by PCR and sequence determination that this 5.0 kb DNA fragment contains the whole coding sequence of α-amylase. The amylolytic test showed that when this transformant was incubated on plate of YPDS medium containing 1 % glum and 1 % starch at 30°C for 48 h starch degradation zones could be visualized by staining with iodine vapour. α-amylase activity of the culture filtratate is 740–780 mU/mL and PAGE shows that the yeast harboring fusion plasmids efficiently secreted α-amylase into the medium, and the amount of the recombinant α-amylase is more than 12% of the total proteins in the culture filtrate. These results showed that α-amylase gene can be highly expressed and efficiently secreted inS. cerevisiae AS. 2.1364, and the promotor and the terminator of α-amylase gene fromS. occidentalis work well inS. cercvisiac AS. 2.1364.  相似文献   

15.
Plasmid construction by homologous recombination in yeast   总被引:82,自引:0,他引:82  
H Ma  S Kunes  P J Schatz  D Botstein 《Gene》1987,58(2-3):201-216
We describe a convenient method for constructing new plasmids that relies on interchanging parts of plasmids by homologous recombination in Saccharomyces cerevisiae. A circular recombinant plasmid of a desired structure is regenerated after transformation of yeast with a linearized plasmid and a DNA restriction fragment containing appropriate homology to serve as a substrate for recombinational repair. The free ends of the input DNA molecules need not be homologous in order for efficient recombination between internal homologous regions to occur. The method is particularly useful for incorporating into or removing from plasmids selectable markers, centromere or replication elements, or particular alleles of a gene of interest. Plasmids constructed in yeast can subsequently be recovered in an Escherichia coli host. Using this method, we have constructed an extended series of new yeast centromere, episomal and replicating (YCp, YEp, and YRp) plasmids containing, in various combinations, the selectable yeast markers LEU2, HIS3, LYS2, URA3 and TRP1.  相似文献   

16.
The gene encoding for amorpha-4,11-diene synthase from Artemisia annua was transformed into yeast Saccharomyces cerevisiae in two fundamentally different ways. First, the gene was subcloned into the galactose-inducible, high-copy number yeast expression vector pYeDP60 and used to transform the Saccharomyces cerevisiae strain CEN·PK113-5D. Secondly, amorpha-4,11-diene synthase gene, regulated by the same promoter, was introduced into the yeast genome by homologous recombination. In protein extracts from galactose-induced yeast cells, a higher activity was observed for yeast expressing the enzyme from the plasmid. The genome-transformed yeast grows at the same rate as wild-type yeast while plasmid-carrying yeast grows somewhat slower than the wild-type yeast. The plasmid and genome-transformed yeasts produced 600 and 100 μg/l of the artemisinin precursor amorpha-4,11-diene, respectively, during 16-days’ batch cultivation. Revisions requested 14 November 2005; Revisions received 17 January 2006  相似文献   

17.
A plasmid recombination system has been developed that relies upon interplasmid exchanges for yeast cell viability. Two types of plasmids, one carrying the LEU2 allele inserted within yeast actin gene sequences and the other carrying 2-microns plasmid DNA and an intact actin gene, were constructed. Neither plasmid alone yielded transformants in the haploid Leu- strain AH22, but when cotransformed, a number of colonies were obtained. Southern blot analysis revealed that transformants arose because of recombination events within the homologous actin sequences that transferred the LEU2 gene to the actin gene on the 2-microns plasmid. The recombinant plasmids could be recovered, and sequence analysis of one recombination site revealed that the exchange event was faithful at the nucleotide level. The resulting recombinant plasmids carried a defective actin gene and presumably arose because of a double-crossover event. Deletion mutations that prevented actin gene expression on one donor plasmid enabled the recovery at a high frequency of transformants resulting primarily from single-crossover events between the two plasmids. This was presumably because such events no longer generated an intact actin gene on a multicopy plasmid. Infrequently a transformant from a plasmid with an intact gene was recovered, but in these cases the plasmid was not present in multiple copies. These cells exhibited a slower growth rate, and Northern blot analysis revealed an elevated level of actin mRNA.  相似文献   

18.
The well-established method for high-throughput construction of an expression system of the yeast Saccharomyces cerevisiae uses homologous recombination between an expression plasmid and a target gene (with homologous regions of the plasmid on both ends added by PCR). This method has been widely used for membrane proteins using plasmids containing GFP, and has been successfully used to investigate the cellular localization and solubilization conditions of the proteins. Although the methanol-utilizing yeast Pichia pastoris is known as an excellent expression host, a method for high-throughput construction of an expression system like that in S. cerevisiae has not been reported. In this study, we have attempted to construct expression systems via homologous recombination in P. pastoris. The insertion of genes into a plasmid could be easily checked by colony-PCR. Expression systems for seven membrane proteins of medaka fish (Oryzias latipes) and yeast (S. cerevisiae) were constructed, and the expression of proteins was analyzed by fluorescence spectra, fluorescence microscopy, and SDS-PAGE (in-gel fluorescence detection).  相似文献   

19.
Endomyces fibuliger is a dimorphic yeast which is homothallic and exists predominantly in the diploid phase with a brief haploid phase. A repeat unit of the ribosomal RNA genes, or rDNA, from E. fibuliger 8014 met has been isolated, cloned and sequenced. In this report, the sequences of the 17S, 5.8S and 26S rRNA genes are presented. Homology between the sequenced rRNA genes and those of closely-related yeast strains, particularly Saccharomyes cerevisiae and Candida albicans, was observed. As a step towards the eventual development of a transformation system for the yeast E. fibuliger, an integrative plasmid containing the 5.8S and a part of the 26S rRNA gene, a selectable marker conferring resistance to the G418 antibiotic and a reporter gene, the α-amylase (ALP1) gene of E. fibuliger, was constructed. This plasmid was linearized at a unique restriction site within the 26S rRNA gene, and transformed into S. cerevisiae INVSC2 MATa his3 ura3 using the lithium acetate method to test the functionality of the vector system. Transformation into S. cerevisiae INVSC2 MATa his3 ura3 was by virtue of the extensive homology between the sequenced 26S rRNA gene of E. fibuliger 8014 met and that of S. cerevisiae, so that homologous pairing and integration into the recipient chromosome was possible. The G418-resistant S. cerevisiae transformants produced halos on starch medium due to hydrolysis by α-amylase, and they were further analysed by Southern hybridization with the ALP1 gene and the gene encoding the aminoglycoside 3′- phosphotransferase I enzyme which confers resistance to the G418 antibiotic. A band of 13.7 kb which corresponded to the linearized size of the transforming plasmid DNA was obtained on the autoradiogram, suggesting that tandem copies of the plasmid DNA are present in the chromosome. Finally, an assay of the α-amylase enzyme secreted extracellularly was performed on the transformants.  相似文献   

20.
Yeast (Saccharomyces cerevisiae) transposons (Ty elements) are excised from up to 20% of supercoiled plasmids during transformation of yeast cells. The excision occurs by homologous recombination across the direct terminal repeats (deltas) of the Ty element, leaving behind a single delta in the transforming plasmid. Only the initial transforming plasmid is susceptible to excision, and no high frequency excision is observed in plasmids that have become established in transformed cells or in plasmids that are resident in cells undergoing transformation. High frequency excision from plasmids during yeast transformation is not specific for Ty elements and can be observed with other segments of plasmid DNA bounded by direct repeats. The frequency of Ty excision from supercoiled plasmids is greatly reduced when the host yeast cells contain the rad52 mutation, a defect in double-strand DNA repair. When linear or ligated-linear plasmid DNAs containing a Ty element are used for transformation, few or no excision plasmids are found among the transformant colonies. These results suggest that when a yeast cell is transformed with a supercoiled plasmid, the plasmid DNA is highly susceptible to homologous recombination for a short period of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号