首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT. Giardia lamblia trophozoites express on their surfaces one of a set of cysteine-rich antigenically variant proteins, called variant-specific surface proteins, which comprise the majority of proteins detected by surface labeling. While these VSP proteins may be immunodominant proteins important in the host immune response to G. lamblia , the ability to switch expression from one VSP to another may provide a means for the trophozoites to avoid the host immune response. The first VSP characterized, VSPA6 (from the A6 clone of the WB isolate, originally termed CRP170), contains 18–23 copies of a 65 amino acid repeat. We have now used the repeat as a probe to isolate from a WBA6 genomic library two genes related to vspA6 (called vspA6-S1, vspA6-S2). Sequence analysis of the vspA6-S1 gene revealed nearly two complete copies of the 195 bp repeat and substantial nucleotide and translated amino acid similarity in the coding regions 5'and 3'to the repeats. The vspA6-S2 gene, while still related, showed greater divergence from vspA6 than vspA6-S1 in the nonrepeat coding region and contained nearly four copies of a 201 bp repeat that was 75% identical to the 195 bp vspA6 repeat. These results suggest that gene duplication followed by divergence has played a key role in the generation of the vsp gene repertoire.  相似文献   

2.
The secretory transport capacity of Giardia trophozoites is perfectly adapted to the changing environment in the small intestine of the host and is able to deploy essential protective surface coats as well as molecules which act on epithelia. These lumen-dwelling parasites take up nutrients by bulk endocytosis through peripheral vesicles or by receptor-mediated transport. The environmentally-resistant cyst form is quiescent but poised for activation following stomach passage. Its versatility and fidelity notwithstanding, the giardial trafficking systems appear to be the product of a general secondary reduction process geared towards minimization of all components and machineries identified to date. Since membrane transport is directly linked to organelle biogenesis and maintenance, less complexity also means loss of organelle structures and functions. A case in point is the Golgi apparatus which is missing as a steady-state organelle system. Only a few basic Golgi functions have been experimentally demonstrated in trophozoites undergoing encystation. Similarly, mitochondrial remnants have reached a terminally minimized state and appear to be functionally restricted to essential iron-sulfur protein maturation processes. Giardia’s minimized organization combined with its genetic tractability provides unique opportunities to study basic principles of secretory transport in an uncluttered cellular environment. Not surprisingly, Giardia is gaining increasing attention as a model for the investigation of gene regulation, organelle biogenesis, and export of simple but highly protective cell wall biopolymers, a hallmark of all perorally transmitted protozoan and metazoan parasites.  相似文献   

3.
Giardia lamblia (syn. Giardia duodenalis, Giardia intestinalis) infections are associated with continuous antigenic variation of the parasite which is mediated by the parasite's major surface antigen, named variant surface protein. Offspring mice and corresponding mothers were infected with G. lamblia clone GS/M-83-H7 (expressing variant surface protein H7) and various parameters of this infection were assessed in a long-term follow-up investigation. Our experimentation revealed that variant surface protein H7-type trophozoites were replaced by new variant-type trophozoites during the early stage of infection (around day 8 p.i.), but the original variant-type re-emerged at at least two time-points during the later stages of infection (at days 22 and 42 p.i.). Such periods of variant surface protein H7-type trophozoite re-expansion were accompanied by transient production of intestinal IgA against variant-specific epitopes on a 314-aa N-terminal region of variant surface protein H7. At late stages of infection (between days 42 and 200 p.i.), most mice produced intestinal IgA against both variant surface protein H7 and other antigens of the parasite. At these stages, infection seemed to be resolved in most mice, but occasional reappearance of relatively high (at day 64 p.i.) or at least detectable (at days 80 and 120 p.i.) amounts of intestinal parasites indicated that G. lamblia GS/M-83-H7 infections in mice may enter into a latent chronic phase which is interrupted by sporadic breakthroughs of parasite growth.  相似文献   

4.
Ecto-phosphatase activities of Giardia lamblia were characterized in intact cells, which are able to hydrolyze the artificial substrate p-nitrophenylphosphate (p-NPP) to p-nitrophenol (p-NP) at a rate of 8.4 ± 0.8 nmol p-NP/h/107 cells. The ecto-phosphatase activities were inhibited at high pH as well as by classical inhibitors of acid phosphatases, such as sodium fluoride and sodium molybdate and by inorganic phosphate, the final product of the reaction. Experiments using a classical inhibitor of phosphotyrosine phosphatase, sodium orthovanadate, also showed that the ecto-phosphatase activity was inhibited in a dose-dependent manner. Different phosphorylated amino acids were used as substrates for the G. lamblia ecto-phosphatase activities the highest rate of phosphate release was achieved using phosphotyrosine. Not only p-NPP hydrolysis but also phosphotyrosine hydrolysis was inhibited by sodium orthovanadate. Phosphotyrosine but not phospho-serine or phospho-threonine inhibited the p-nitrophenylphosphatase activity. We also observed a positive correlation between the ecto-phosphatase activity and the capacity to encystation of G. lamblia trophozoites.  相似文献   

5.
End-binding 1 (EB1) proteins are evolutionarily conserved components of microtubule (MT) plus-end tracking protein that regulate MT dynamics. Giardia lamblia, with two nuclei and cytoskeletal structures, requires accurate MT distribution for division. In this study, we show that a single EB1 homolog gene of G. lamblia regulates MT dynamics in mitosis. The haemagglutinin-tagged G. lamblia EB1 (GlEB1) localizes to the nuclear envelopes and median bodies, and is transiently present in mitotic spindles of dividing cells. Knockdown of GlEB1 expression using the morpholinos-based anti-EB1 oligonucleotides, resulted in a significant defect in mitosis of Giardia trophozoites. The MT-binding assays using recombinant GlEB1 (rGlEB1) proteins demonstrated that rGlEB1102–238, but not rGlEB11–184, maintains an MT-binding ability comparable with that of the full length protein, rGlEB11–238. Size exclusion chromatography showed that rGlEB1 is present as a dimer formed by its C-terminal domain and a disulfide bond. In vitro-mutagenesis of GlEB1 indicated that an intermolecular disulfide bond is made between cysteine #13 of the two monomers. Complementation assay using the BIM1 knockout mutant yeast, the yeast homolog of mammalian EB1, indicated that expression of the C13S mutant GlEB1 protein cannot rescue the mitotic defect of the BIM1 mutant yeast. These results suggest that dimerization of GlEB1 via the 13th cysteine residues plays a role during mitosis in Giardia.  相似文献   

6.
The protozoan parasite Giardia lamblia is an important causative agent of acute or chronic diarrhoea in humans and various animals. During infection, the parasite survives the hosts reactions by undergoing continuous antigenic variation of its major surface antigen, named VSP (variant surface protein). The VSPs form a unique family of cysteine-rich proteins that are extremely heterogeneous in size. The relevance of antigenic variation for the survival in the host has been most successfully studied by performing experimental infections in a combined mother/offspring mouse system and by using the G. lamblia clone GS/M-83-H7 (human isolate) as model parasite. In-vivo antigenic variation of G. lamblia clone GS/M-83-H7 is characterised by a diversification of the intestinal parasite population into a complex mixture of different variant antigen types. It could be shown that maternally transferred lactogenic anti-VSP IgA antibodies exhibit cytotoxic activity on the Giardia variant-specific trophozoites in suckling mice, and thus express a modulatory function on the proliferative parasite population characteristics. Complementarily, in-vitro as well as in-vivo experiments in adult animals indicated that non-immunological factors such as intestinal proteases may interfere into the process of antigen variation in that they favour proliferation of those variant antigen-type populations which resist the hostile physiological conditions within the intestine. These observations suggest that an interplay between immunological and physiological factors, rather than one of these two factor alone, modulates antigenic diversification of a G. lamblia population within an experimental murine host and thus influences the survival rate and strategy of the parasite.  相似文献   

7.
8.
Giardia lamblia consist of heterogeneous isolates that can be divided into at least three groups. Differential screening of a cDNA library with isolate-specific antisera identified a gene which is expressed and found only in Group 3 isolates. This gene, GLORF-C4, is 597 bp in length and predicts a deduced protein of 198 amino acids that is characterized by a polyserine motif. Giardia can also be grouped by their ability to express certain variant-specific surface proteins (VSPs), expression of which is restricted among groups. In Southern blots, probes specific to two VSPs were used to characterize isolates. Failure to detect VSP genes correlated with inability to express the same VSP. Analysis of isolates with these new probes complements and confirms the groupings previously suggested using other criteria. These genetic differences should allow differentiation of isolates and permit the application of basic epidemiological techniques to determine the manner of spread and the presence of animal reservoirs.  相似文献   

9.
We have isolated from a Kentucky stream a bacterial strain capable of killing the cyst form of Giardia lamblia. This bacterium, designated Sun4, is a Gram-negative, aerobic rod which produces a yellow pigment, but not of the flexirubin-type. Although true gliding motility has not been observed in Sun4, this strain does exhibit a spreading colony morphology when grown on R2A agar. Strain Sun4 has been identified by 16S rRNA sequencing and phylogenetic analysis as belonging to the genus Flavobacterium, and is most closely related to Cytophaga sp. strain Type 0092 and associated Flavobacterium columnare strains. Lipid analysis also identified fatty acids characteristic of the Cytophaga–Flavobacterium group of bacteria. In culture, Sun4 is able to degrade casein and cellulose, but not chitin, gelatin, starch, or agar. Degradation of Giardia cysts by Sun4 appears to require direct cellular contact as neither cell-free extracts nor cells separated from the cysts by dialysis membranes showed any activity against cysts. Activity against Giardia cysts is rapid, with Sun4 killing over 90% of cysts within 48 h. Strain Sun4 requires elevated levels of Ca2+ for optimal growth and degradative activity against Giardia cysts. We propose that bacterial strains such as Sun4 could be used as biological control agents against Giardia cysts in drinking water treatment systems.  相似文献   

10.
This report describes the preparation and characterization of a panel of monoclonal antibodies (mAbs) against the myelin proteolipid protein (PLP). A Lewis rat was immunized with bovine proteolipid apoprotein and 27 mAbs were selected based on their reactivity against bovine PLP on enzyme-linked immunosorbent assays. Eleven mAbs recognized the PLP carboxyl-terminal sequence when tested against a panel of synthetic peptides in a solid-phase assay. A carboxyl-terminal pentapeptide (residues 272-276) was sufficient for antibody binding and the terminal phenylalanine residue was found particularly important. Deletion, modification, or replacement of this residue markedly reduced or obliterated antigen-antibody interaction. Nine mAbs reacted with a second antigenic determinant, residues 209-217, but these could be identified only by competitive immunoassays. This peptide was a more effective inhibitor than the longer peptides 202-217 and 205-221, suggesting that flanking residues may interfere with peptide-antibody interaction. Seven antibodies did not react with any of the synthetic peptides tested and their determinants remain unidentified. Immunoblot analysis showed that the mAbs reacted with both the PLP and the DM-20 isoforms. Twenty-three of the mAbs were of the immunoglobulin G2a or b isotype; the remaining antibodies were immunoglobulin M and all of these were specific for residues 209-217. Cultured murine oligodendrocytes were stained by most of the mAbs tested, but the most intense reactivity was observed with the carboxyl-terminus-specific mAbs. The immunocytochemical analyses demonstrate that the mAbs react with the native PLP in situ and show their potential usefulness for studies of the cell biology of myelin and oligodendrocytes.  相似文献   

11.
12.
Protein S-palmitoylation, a hydrophobic post-translational modification, is performed by protein acyltransferases that have a common DHHC Cys-rich domain (DHHC proteins), and provides a regulatory switch for protein membrane association. In this work, we analyzed the presence of DHHC proteins in the protozoa parasite Giardia lamblia and the function of the reversible S-palmitoylation of proteins during parasite differentiation into cyst. Two specific events were observed: encysting cells displayed a larger amount of palmitoylated proteins, and parasites treated with palmitoylation inhibitors produced a reduced number of mature cysts. With bioinformatics tools, we found nine DHHC proteins, potential protein acyltransferases, in the Giardia proteome. These proteins displayed a conserved structure when compared to different organisms and are distributed in different monophyletic clades. Although all Giardia DHHC proteins were found to be present in trophozoites and encysting cells, these proteins showed a different intracellular localization in trophozoites and seemed to be differently involved in the encystation process when they were overexpressed. dhhc transgenic parasites showed a different pattern of cyst wall protein expression and yielded different amounts of mature cysts when they were induced to encyst. Our findings disclosed some important issues regarding the role of DHHC proteins and palmitoylation during Giardia encystation.  相似文献   

13.
The lactate and malate dehydrogenases comprise a complex protein superfamily with multiple enzyme homologues found in eubacteria, archaebacteria, and eukaryotes. In this study we describe the sequence and phylogenetic relationships of a malate dehydrogenase (MDH) gene from the amitochondriate diplomonad protist, Giardia lamblia. Parsimony, distance, and maximum-likelihood analyses of the MDH protein family solidly position G. lamblia MDH within a eukaryote cytosolic MDH clade, to the exclusion of chloroplast, mitochondrial, and peroxisomal homologues. Furthermore, G. lamblia MDH is specifically related to a homologue from Trichomonas vaginalis. This MDH topology, together with published phylogenetic analyses of β-tubulin, chaperonin 60, valyl-tRNA synthetase, and EF-1α, suggests a sister-group relationship between diplomonads and parabasalids. Since these amitochondriate lineages contain genes encoding proteins which are characteristic of mitochondria and α-proteobacteria, their shared ancestry suggests that mitochondrial properties were lost in the common ancestor of both groups. Received: 14 September 1998 / Accepted: 29 December 1998  相似文献   

14.
A sixth locus (vsp417-6) belonging to the vsp417 gene subfamily, a subset of the family of genes that encodes 'variant-specific' surface proteins (VSP) in Giardia, is described. The sequence of vsp417-6(A-I), the ortholog representing the vsp417-6 locus in isolates of the type A-I (Assemblage A, Group I) genotype of Giardia intestinalis, was determined from a cloned 5.5-kb Hind III fragment of genomic DNA derived from isolate Ad-1/C1. The gene encodes a 704 residue polypeptide (VSP417-6(A-I), Mr 71,674) that has 75% identity (92% similarity) over a 718 residue overlap with the prototype of the VSP417 subfamily, VSP417-1(A-I)-encoded by the vsp417-1 (syn. tsa417) locus in type A-I isolates. Alignment of VSP417-6(A-I) with the deduced sequences of other known members of this subfamily identified one polypeptide, encoded by a gene found in type A-II (Assemblage A, Group II) isolates, whose homology with VSP417-6(A-I) (91% identity, 98% similarity over 713-residues) indicated that it was VSP417-6(A-II), the VSP417-6 ortholog in type A-II isolates. Sequence-based phylogenetic analyses of known VSP417 subfamily members defined several loci that predate the emergence of the A-I and A-II sublineages of G. intestinalis. Related sequences that may correspond to additional, uncharacterised vsp417 subfamily genes were identified in genomic DNA by Southern hybridisation using subfamily- and locus-specific probes. Variant-specific expression of vsp417-1 and vsp417-6 within axenic cultures of G. intestinalis was detected by in situ mRNA hybridization, indicating that these genes are functional and that they are expressed in an alternative fashion with other vsp genes in these organisms.  相似文献   

15.
16.
PCR方法检测水稻中存在G蛋白基因家族陈忠英,王钧(中国科学院上海植物生理研究所,2000032)关键词G蛋白;聚合酶链式反应(PCR);水稻苗;DNA序列分析植物细胞对各种外源和内源的刺激,如光、重力、病原、激素等都有灵敏复杂的反应,但对植物信息传...  相似文献   

17.
MBD蛋白是一类与甲基化DNA结合的反式作用因子,在植物生长发育调控过程中发挥重要功能。该研究以‘中国春’小麦为材料,利用生物信息学方法分析了小麦基因组中MBD基因家族成员的组成、序列特征、染色体定位和表达模式,利用qRT-PCR技术分析TaMBD6和TaMBD9基因的时空表达模式。结果显示:(1)小麦MBD基因家族包含16个成员(44个基因位点)分布于第1、2、5、6和7号染色体群;聚类分析表明,小麦MBD蛋白分别属于第Ⅰ、Ⅱ、Ⅲ、Ⅴ、Ⅶ和Ⅷ亚类,其中第Ⅱ、Ⅲ和Ⅷ亚类的MBD蛋白含有5个识别甲基化DNA的保守位点;基因结构分析显示,小麦MBD基因家族成员的内含子数目在1~10之间,启动子区域普遍存在光响应和激素应答元件,且基因组结构特征在同一亚类内高度相似。(2)RNA-Seq数据的基因表达谱分析显示,小麦MBD基因家族多数成员在穗和籽粒发育早期均有较高的表达水平,而且部分成员对干旱和热胁迫有明显响应。(3)qRT-PCR分析显示,TaMBD6和TaMBD9的3个部分同源基因在不同组织间差异表达,但均在幼穗中表达量最高。结果表明,小麦MBD基因可能在小麦发育及非生物胁迫响应过程中发挥调控功能,为进一步探讨小麦MBD基因的功能奠定了基础。  相似文献   

18.
Giaridia lamblia was long considered to be one of the most primitive eukaryotes and to lie close to the transition between prokaryotes and eukaryotes, but several supporting features, such as lack of mitochondrion and Golgi, have been challenged recently. It was also reported previously that G. lamblia lacked nucleolus, which is the site of pre-rRNA processing and ribosomal assembling in the other eukaryotic cells. Here, we report the identification of the yeast homolog gene, krr1, in the anucleolate eukaryote, G. lamblia. The krr1 gene, encoding one of the pre-rRNA processing proteins in yeast, is actively transcribed in G. lamblia. The deduced protein sequence of G. lamblia krr1 is highly similar to yeast KRR1p that contains a single-KH domain. Our database searches indicated that krr1 genes actually present in diverse eukaryotes and also seem to present in Archaea. However, only the eukaryotic homologs, including that of G. lamblia, have the single-KH domain, which contains the conserved motif KR(K)R. Fibrillarin, another important pre-rRNA processing protein has also been identified previously in G. lamblia. Moreover, our database search shows that nearly half of the other nucleolus-localized protein genes of eukaryotic cells also have their homologs in Giardia. Therefore, we suggest that a common mechanism of pre-RNA processing may operate in the anucleolate eukaryote G. lamblia and in the other eukaryotes and that like the case of "lack of mitochondrion," "lack of nucleolus" may not be a primitive feature, but a secondarily evolutionary condition of the parasite.  相似文献   

19.
NLP基因家族是一类特殊的转录因子,豆科植物根瘤的形成依赖于该基因家族的存在,在非豆科植物中具有调节植物硝酸盐吸收以及同化的功能。通过对毛果杨(Populus trichocarpa)基因组的生物信息学分析,共鉴定出14个毛果杨NLP基因家族成员,这些成员具有低亲水性的特点,基因结构保守,都含有RWP-RK以及PB1两个保守结构域。通过细胞定位预测,所有成员都定位在细胞核中。直系同源与旁系同源进化分析显示,NLP基因家族成员在漫长的进化过程中经历了严格的选择。染色体定位分析表明,毛果杨NLP基因家族成员坐落在毛果杨9条染色体之上,成员数量的扩增来自于杨柳科染色体自身的扩增事件。芯片数据分析结果显示,NLP基因家族成员在嫩叶,根和雄花中表达,部分基因在木质部以及种子萌发过程之中表达,但所有成员均不在成熟叶片中表达。  相似文献   

20.
Intrachromosomal variant surface glycoprotein (VSG) genes in Trypanosoma brucei are expressed by a mechanism involving gene conversion. The 3'boundary of gene conversion is usually within the last 130 bp of the VSG gene, a region of partially conserved sequences. We report here the loss of the predominant telomeric A VSG gene in the cloned variant antigenic type (VAT) 5A3, leaving only an intrachromosomal A VSG gene (the A-B gene). The nucleotide sequence of the A-B VSG gene reveals that it lacks the normal VSG 3' sequence. Surprisingly, we find cells expressing this A-B VSG gene in relapse populations arising from VAT 5A3. Since the A VSG mRNAs from these cells have a normal 3' sequence, the incomplete A-B VSG gene must be expressed via a partial gene conversion that supplies the functional 3'end. Although the A-B VSG gene is no longer predominant like the telomeric A VSG gene, it is still expressed more frequently than other intrachromosomal VSG genes, suggesting that factors other than a telomeric location determine whether a VSG gene is expressed early in a serodeme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号