首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas sp. strain CF600 is an efficient degrader of phenol and methylsubstituted phenols. These compounds are degraded by the set of enzymes encoded by the plasmid locateddmpoperon. The sequences of all the fifteen structural genes required to encode the nine enzymes of the catabolic pathway have been determined and the corresponding proteins have been purified. In this review the interplay between the genetic analysis and biochemical characterisation of the catabolic pathway is emphasised. The first step in the pathway, the conversion of phenol to catechol, is catalysed by a novel multicomponent phenol hydroxylase. Here we summarise similarities of this enzyme with other multicomponent oxygenases, particularly methane monooxygenase (EC 1.14.13.25). The other enzymes encoded by the operon are those of the well-knownmeta-cleavage pathway for catechol, and include the recently discoveredmeta-pathway enzyme aldehyde dehydrogenase (acylating) (EC 1.2.1.10). The known properties of thesemeta-pathway enzymes, and isofunctional enzymes from other aromatic degraders, are summarised. Analysis of the sequences of the pathway proteins, many of which are unique to themeta-pathway, suggests new approaches to the study of these generally little-characterised enzymes. Furthermore, biochemical studies of some of these enzymes suggest that physical associations betweenmeta-pathway enzymes play an important role. In addition to the pathway enzymes, the specific regulator of phenol catabolism, DmpR, and its relationship to the XylR regulator of toluene and xylene catabolism is discussed.  相似文献   

2.
Cellular targeting of lycopene biosynthetic enzymes was investigated in Pichia pastoris X-33. Three lycopene pathway enzymes, CrtE, CrtB, and CrtI, were fused to fluorescent EGFPs with or without a peroxisomal targeting sequence (PTS1) and then expressed in P. pastoris. When P. pastoris was grown in YPD, the PTS1 fusion enzymes were found to be localized in peroxisomes, whereas the enzymes not fused with PTS1 were equally distributed throughout the entire cell. A similar targeting pattern was also observed in P. pastoris strains that were grown in peroxisome-proliferating medium, YPOT. Analysis of the fluorescent images of isolated peroxisomes showed that the PTS1 fused enzymes were dominantly present in peroxisomes whereas small amount of the enzymes not fused with PTS1 were non-specifically sent to peroxisomes. These results indicate that PTS1 specifically target lycopene pathway enzymes into peroxisomes and this targeting pathway was strong enough to overcome their inherent targeting program. In conclusion, we first showed that carotenogenic enzymes can be targeted into the specific cellular location of recombinant hosts and this targeting strategy can serve as the basis for the subsequent development of sophisticated pathway engineering in microorganisms.  相似文献   

3.
Summary The gene organization of the phenol catabolic pathway of Pseudomonas CF600 has been investigated. This strain can grow on phenol and some methylated phenols by virtue of an inducible phenol hydroxylase and meta-cleavage pathway enzymes. The genes coding for these enzymes are located on pVI150, an IncP-2 degradative mega plasmid of this strain. Twenty-three kilobases of contiguous DNA were isolated from lambda libraries constructed from strains harbouring wild type and Tn5 insertion mutants of pV1150. A 19.9 kb region of this DNA has been identified which encodes all the catabolic genes of the pathway. Using transposon mutagenesis, polypeptide analysis and expression of subfragments of DNA, the genes encoding the first four enzymatic steps of the pathway have been individually mapped and found to lie adjacent to each other. The order of these genes is the same as that for isofunctional genes of TOL plasmid pWWO and plasmid NAH7.  相似文献   

4.
The activities of enzymes of pentose phosphate pathway (PPP) viz. glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and carbon metabolism viz. phosphoenol pyruvate carboxylase, NADP- isocitrate dehydrogenase and NADP-malic enzyme were measured in the plant and bacteroid fractions of mungbean (ureide exporter) and lentil (amide exporter) nodules along with the developing roots for comparison. The enzymes of pentose phosphate pathway in legume cytosol had higher activities at a stage of maximum nitrogenase activity and higher sucrose metabolism. However, bacteroids had only limited capacity for this pathway. The specific activities of these enzymes were greater in ureide than in amide exporter. CO2 fixation via higher activity of phosphoenolpyruvate carboxylase in the plant part of the nodules in lentil might have been due to the greater synthesis of four carbon amino acids for amide export. The peak of NADP-isocitrate dehydrogenase in both legumes coincided with the pentose phosphate pathway enzymes at the time of high rates of sucrose metabolism and nitrogen fixation. Higher activities of NADP-malic enzyme were obtained in mungbean than in the lentil nodules. These findings are consistent with the role of these enzymes in providing reductant (NADPH) and substrates for energy yielding metabolism of bacteroids and carbon skeletons for ammonia assimilation.  相似文献   

5.
The genetic organization of the DNA region encoding the phenol degradation pathway ofPseudomonas putida H has been investigated. This strain can utilize phenol or some of its methylated derivatives as its sole source of carbon and energy. The first step in this process is the conversion of phenol into catechol. Catechol is then further metabolized via themeta-cleavage pathway into TCA cycle intermediates. Genes encoding these enzymes are clustered on the plasmid pPGH1. A region of contiguous DNA spanning about 16 kb contains all of the genetic information necessary for inducible phenol degradation. The analysis of mutants generated by insertion of transposons and cassettes indicates that all of the catabolic genes are contained in a single operon. This codes for a multicomponent phenol hydroxylase andmeta-cleavage pathway enzymes. Catabolic genes are subject to positive control by the gene product(s) of a second locus.  相似文献   

6.
Alcaligenes xylosoxidans subspecies denitrificans JH1 was enriched with 2-chlorophenol from a mixed culture degrading different chloro- and methylphenols. The strain used all monochloro- and monomethylphenols apart from 2-methylphenol as sole source of energy and carbon with stoichiometric release of chloride. 4-Chlorophenol was mineralized up to a concentration of 1.3 mM. Degradation of mixtures of monochloro- and monomethylphenols occurred at least partially except for the mixture of 2-chlorophenol and 3-methylphenol. Depending upon the growth substrates used, enzymes of the ortho and/or meta cleavage pathway catalysed the degradation of the phenols. The transformation of chlorophenols was concluded to occur exclusively via the ortho cleavage pathway because no chlorocatechol 2,3-dioxygenase activity was found in chlorophenol-grown cells. Degradation of 4-methylphenol in strain JH1 occurred both by the ortho and meta cleavage pathway as indicated by the finding that the ortho- and meta-cleaving dioxygenases were expressed in 4-methylphenol-grown cells. Transformation of methylphenols by the ortho cleavage pathway led to the accumulation of methyllactones as dead-end products. Mixtures of methyl- and chlorophenols were metabolized mainly by the ortho cleavage pathway because chlorocatechols formed inactivated the constitutive catechol 2,3-dioxygenase which caused channelling of methylphenols into the ortho cleavage pathway.  相似文献   

7.
The degradation pathways of benzoate at high concentration in Pseudomonas putida P8 were directly elucidated through mass spectrometric identification of some key catabolic enzymes. Proteins from P. putida P8 grown on benzoate or succinate were separated using two-dimensional gel electrophoresis. For cells grown on benzoate, eight distinct proteins, which were absent in the reference gel patterns from succinate-grown cells, were found. All the eight proteins were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry as catabolic enzymes involved in benzoate degradation. Among them, CatB (EC5.5.1.1), PcaI (EC2.8.3.6), and PcaF (EC2.3.1.174) were the enzymes involved in the ortho-cleavage pathway; DmpC (EC1.2.1.32), DmpD (EC3.1.1.-), DmpE (EC4.2.1.80), DmpF (EC1.2.1.10), and DmpG (EC4.1.3.-) were the meta-cleavage pathway enzymes. In addition, enzyme activity assays showed that the activities of both catechol 1,2-dioxygenase (C12D; EC1.13.11.1) and catechol 2,3-dioxygenase (C23D; EC1.13.11.2) were detected in benzoate-grown P. putida cells, undoubtedly suggesting the simultaneous expression of both the ortho- and the meta-cleavage pathways in P. putida P8 during the biodegradation of benzoate at high concentration.  相似文献   

8.
In the algae Mougeotia, Bumilleriopsis and Eremosphaera, recently shown to possess the enzymes hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) and enoyl-CoA hydratase (EC 4.2.1.17), the presence of thiolase (EC 2.3.1.9) and acyl-CoA-oxidizing enzymes can also be demonstrated, indicating that -oxidation of fatty acids is possible in these organisms. The compartmentation of enzymes is different in the various algae. In Mougeotia, both thiolase and the acyl-CoA-oxidizing enzyme are located exclusively in the peroxisomes. The latter enzyme was found to be an oxidase using molecular oxygen as an electron acceptor. On the other hand, in Bumilleriopsis all enzymes of the fatty-acid -oxidation pathway tested are constituents only of the mitochondria, and acyl-CoA is oxidized by a dehydrogenase incapable of reducing oxygen. Finally, in Eremosphaera thiolase and acyl-CoA-oxidizing enzymes were found in the peroxisomes as well as in the mitochondria. In the peroxisomes, oxidation of acyl-CoA is catalyzed by an oxidase, whereas the corresponding enzyme in the mitochondria is a dehydrogenase. The acyl-CoA oxidases/dehydrogenases of the three algae differ not only by their capability for oxidation of acyl-CoA of different chain lengths but also with regard to their Km values and substrate specificities. Indications were obtained that the oxygen is reduced to water rather than to H2O2 by the algal acyl-CoA oxidases. When cells of Eremosphaera were cultured with hypolipodemic substances in the growth medium the activities of the peroxisomal enzymes, but not those of the mitochondrial enzymes of the fatty-acid -oxidation pathway, were increased by a factor of two to three.Abbreviations DPIP 2,6-dichlorophenol indophenol - INT p-iodonitrotetrazolium violet - MEHP monoethylhexylphthalate  相似文献   

9.
Summary The Mycobacterium tuberculosis shikimate pathway genes designated aroB and aroQ encoding 3-dehydroquinate synthase and 3-dehydroquinase, respectively were isolated by molecular cloning and their nucleotide sequences determined. The deduced dehydroquinate synthase amino acid sequence from M. tuberculosis showed high similarity to those of equivalent enzymes from prokaryotes and filamentous fungi. Surprisingly, the deduced M. tuberculosis 3-dehydroquinase amino acid sequence showed no similarity to other characterised prokaryotic biosynthetic 3-dehydroquinases (bDHQases). A high degree of similarity was observed, however, to the fungal catabolic 3-dehydroquinases (cDHQases) which are active in the quinic acid utilisation pathway and are isozymes of the fungal bDHQases. This finding indicates a common ancestral origin for genes encoding the catabolic dehydroquinases of fungi and the biosynthetic dehydroquinases present in some prokaryotes. Deletion of genes encoding shikimate pathway enzymes represents a possible approach to generation of rationally attenuated strains of M. tuberculosis for use as live vaccines.  相似文献   

10.
171 mutations conferring resistance to the indole analogue 5-fluoroindole (5 FI) were isolated in the filamentous basidiomycete fungus Coprinus cinereus. 5 FI is thought to be toxic because it is converted intracellularly to 5-fluorotryptophan (5 FT) which feedback inhibits the first enzyme of the tryptophan biosynthetic pathway, anthranilate synthase. Mutations were assigned to five loci, iar-1-iar-5 on the basis of functional analyses and mapping experiments. iar-5 mutations mapped in the anthranilate synthase structural gene and gave rise to an enzyme feedback resistant to tryptophan and its analogue. Mutants at other loci had regulatory changes. iar-1 and iar-3 mutants had elevated levels of two pathway enzymes measured (anthranilate synthase and tryptophan synthase) and were cross resistant to analogues of other aromatic amino acids suggesting that the entire aromatic pathway was derepressed. iar-3 mutants were unable to degrade metabolically derived typtophan to anthranilic acid unlike iar-1 mutants which excreted high levels of anthranilic acid. iar-2 mutants appeared to have a constitutive degradative pathway. iar-4 mutants had a blocked degradative pathway and unusual levels of tryptophan pathway enzymes.Abbreviations 5 FI 5-fluoroindole - 5 FT 5-fluorotryptophan - pFP para-fluorophenylalanine - mFT meta-fluoro-tyrosine  相似文献   

11.
Kaur R. and Sood M. L. 1982. Haemonchus contortus: the in vitro effects of dl-tetramisole and rafoxanide on glycolytic enzymes. International Journal for Parasitology 12: 585–588. Various enzymes of glycolysis (hexokinase, phosphoglucomutase, phosphoglucoisomerase, adolase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglyceromutase-enolase-pyruvate kinase and lactate dehydrogenase) have been detected in adult Haemonchus contortus. Low pyruvate kinase and lactate dehydrogenase activities suggested an alternate pathway from phosphoenolpyruvate. In vitro incubation had no significant effects on these enzymes and the worm was able to maintain normal metabolism for 12 h. Varying degrees of inhibition of glycolytic enzymes were observed with 50 μg/ml of dl-tetramisole and rafoxanide. The enzymes were inhibited to a greater extent by dl-tetramisole. These effects may block the glycolytic pathway and deprive the parasite of its ATP production.  相似文献   

12.
Bacillus caldotenax was cultivated in chemostat experiments at 65°C with a chemically defined minimal medium. Glycolysis, tricarboxylic acid cycle, pentose phosphate pathway and the respiratory chain were active as demonstrated by measuring the corresponding enzymes. No enzyme activity of the Entner-Doudoroff pathway could be detected. The specific activities of the citrate cycle enzymes were up to 10 times higher as compared to the enzymes of glycolysis. At dilution rates between 0.3 and 2.2 h-1 none of the main metabolic pathways was regulated. In contrast the isocitrate lyase was regulated (drop of activity with increasing growth rates). As a result of a batch culture with glucose and acetate as carbon sources a regulation model was proposed: glucose, or a metabolite of glucose, represses the isocitrate lyase; in the absence of glucose acetate acts as an inducer.Abbreviations DCIP dichlorphenol indophenol - ED Entner-Doudoroff pathway - EMP Emden-Meyerhof-Parnas pathway - ICL isocitrate lyase - PP pentose phosphate pathway - TCC tricarbonic acid cycle  相似文献   

13.
In Aeromonas formicans two inducible catabolic pathways of L-arginine have been characterized. The arginine decarboxylase is induced by arginine which also induces the three enzymes of the arginine deiminase pathway but only in stress conditions such as a shift from aerobic growth conditions to very low oxygen tension. Addition of glucose to medium containing arginine leads to repression of the enzymes involved in the arginine deiminase pathway while exogenous cAMP prevents that repression of enzyme synthesis by glucose. This suggests that the induction of arginine deiminase pathway is regulated by carbon catabolite repression and the energetic state of the cell.  相似文献   

14.
Summary A biphenyl (BP) and chlorobiphenyl (CBP) metabolizingPseudomonas testosteroni, strain B-356 was also capable of utilizing 2-, 3-, and 4-hydroxybiphenyl. Data presented here suggest that utilization of biphenyl and mono-subtituted biphenyls involves the enzymes of the same pathway. Chloro-hydroxybiphenyls were also metabolized by strain B-356. The unsubstituted ring is first hydroxylated in position 2 and 3 and then cleaved in ameta 1, and 2, position to ultimately generate the benzoic acid derivatives. Since strain B-356 was capable of utilizing benzoic acid and mono-hydroxybenzoic acids, the utilization of biphenyl, 2-, 3-, and 4-hydroxybiphenyl is complete at non-toxic concentrations of the substrates. Chlorobenzoic acids and chloro-hydroxybenzoic acids were not metabolized further by this strain. Studies usingPseudomonas putida, strain KT2440 carrying cloned BP/CBP genes from strain B-356 provided further evidence for the presence of a common pathway for the metabolism of the above compounds inP. testosteroni, strain B-356. Suggestions are made on significance of the broad substrate specificity of the enzymes of biphenyl/chlorobiphenyl pathway in regard to their possible origin and in relation to PCB mixture degradation.  相似文献   

15.
芽胞杆菌属具有良好的蛋白表达和分泌能力,在工业酶的生产中被广泛应用,是理想的工业宿主菌,但实现蛋白分泌表达的普遍高效性还存在许多瓶颈。本文综述了芽胞杆菌的蛋白分泌表达策略,从启动子、信号肽、分泌途径、宿主和培养条件这5个方面总结了提高芽胞杆菌中分泌表达重组蛋白的方法,对芽胞杆菌高效生产工业酶有一定的参考价值,最后展望了优化芽胞杆菌分泌表达的研究方向,各种新型生物技术的发展必将推进芽胞杆菌在分泌表达领域有更深入的应用。  相似文献   

16.
为了解益智(Alpinia oxyphylla)多糖生物合成途径关键酶功能,对其茎、叶、果实中的多糖含量及其单糖组成进行了研究,并采用Real-Time qPCR分析了益智多糖生物合成关键酶基因的表达模式。结果表明,益智多糖含量依次为果实 > 叶 > 茎,主要由葡萄糖、木糖、甘露糖、半乳糖和阿拉伯糖组成;利用益智转录组数据共获得47 690条unigenes,其中31 892条在NR、Swiss-Prot、KEGG、COG、KOG、GO和Pfam数据库获得注释,其中208个unigenes参与益智多糖的生物合成,涉及15个酶。表达分析表明,所筛选的18个基因在茎、叶、果实中均有表达,14个基因在果实中的表达量最高,以糖基转移酶基因和UDP-葡萄糖焦磷酸化酶基因的表达量最高,且其表达模式与不同组织中葡萄糖含量的变化一致。  相似文献   

17.
Gluconobacter oxydans oxidizes glucose via alternative pathways: one involves the non-phosphorylative, direct oxidation route to gluconic acid and ketogluconic acids, and the second requires an initial phosphorylation and then oxidation via the pentose phosphate pathway enzymes. During growth of G. oxydans in glucose-containing media, the activity of this pathway is strongly influenced by (1) the pH value of the environment and (2) the actual concentration of glucose present in the culture. At pH values below 3.5 the activity of the pentose phosphate pathway was completely inhibited resulting in an increased requirement of the organism for nutrient substances, and a poor cell yield. At pH 5.5 a triphasic growth response was observed when G. oxydans was grown in a defined medium. Above a threshold value of 5–15 mM glucose, oxidation of both glucose and gluconate by the pentose phosphate pathway enzymes was repressed, causing a rapid accumulation of gluconic acid in the culture medium. When growing under these conditions, a low affinity for the oxidation of glucose was found (K s=13 mM). Below this threshold glucose concentration, pentose phosphate pathway enzymes were synthesized and glucose was actively assimilated via this pathway. It was shown that de novo enzyme synthesis was necessary for increased pentose phosphate pathway activity and that assimilation of gluconate by washed cell suspensions was inhibited by glucose.  相似文献   

18.
Summary Mutants ofKlebsiella aerogenes W70 that metabolize the uncommon pentose D-arabinose were isolated. These mutants were found to be either constitutive or indicible by D-arabinose for the synthesis of enzymes in the L-fucose pathway. Such mutants could then utilize L-fucose isomerase to convert the structurally similar D-arabinose molecule to D-ribulose. D-Ribulose is an inter-mediate and the inducer of an existing ribitol pathway and could thus be metabolized. In those D-arabinose-positive mutants where the ribitol pathway was blocked by mutation, D-ribulose could alternatively be metabolized by using the remaining L-fucose pathway enzymes. When the two D-arabinose catabolic routes were compared, catabolism of D-arabinose via the ribitol pathway was found to be more efficient. Catabolism of D-arabinose using the L-fucose pathway per-mitted D-ribulose to escape into the media and produced an unmetabolizable end product, L-glycolic acid. A comparison of growth using constitutive versus inducible control of the borrowed L-fucose isomerase did not reveal an advantage for one control type over the other. Several differences were observed,however, when we determined the degree to which these control mutations perturbed the normal functioning of the L-fucose and associated pathways. Growth of the constitutive mutant was impaired with L-fucose as substrate. The inducible-control mutant had altered growth characteristics on ribitol and L-rhamnose.  相似文献   

19.
Pear (Pyrus sp.) is a major fruit crop of temperate regions with increasing extent of cultivation. Pear flavonoids contribute to its fruit color, pathogen defense, and are health beneficial ingredients of the fruits. Comparative Southern analyses with apple (Malus x domestica) cDNAs showed comparable genomic organization of flavonoid genes of both related genera. A homology-based cloning approach was used to obtain the cDNAs of most enzymes of the main flavonoid pathway of Pyrus: phenylalanine ammonia lyase, chalcone synthase, chalcone isomerase, flavanone 3β-hydroxylase, flavonol synthase, dihydroflavonol 4-reductase, leucoanthocyanidin reductase 1 and 2, anthocyanidin synthase, anthocyanidin reductase, and UDP-glucose : flavonoid 7-O-glucosyltransferase. The substrate specificities of the recombinant enzymes expressed in yeast were determined for physiological and non-physiological substrates and found to be in general agreement with the characteristic pear flavonoid metabolite pattern of mainly B-ring dihydroxylated anthocyanins, flavonols, catechins, and flavanones. Furthermore, significant differences in substrate specificities and gene copy numbers in comparison to Malus were identified. Cloning of the cDNAs and studying the enzymes of the Pyrus flavonoid pathway is an essential task toward a comprehensive knowledge of Pyrus polyphenol metabolism. It also elucidates evolutionary patterns of flavonoid/polyphenol pathways in the Rosaceae, which allocate several important crop plants.  相似文献   

20.
TOL plasmid pWW0 from Pseudomonas putida mt-2 encodes catabolic enzymes required for the oxidation of toluene and xylenes. The structural genes for these catabolic enzymes are clustered into two operons, the xylCMABN operon, which encodes a set of enzymes required for the transformation of toluene/xylenes to benzoate/toluates, and the xylXYZLTEGFJQKIH operon, which encodes a set of enzymes required for the transformation of benzoate/toluates to Krebs cycle intermediates. The latter operon can be divided physically and functionally into two parts, the xylXYZL cluster, which is involved in the transformation of benzoate/toluates to (methyl)catechols, and the xylTEGFJQKIH cluster, which is involved in the transformation of (methyl)catechols to Krebs cycle intermediates. Genes isofunctional to xylXYZL are present in Acinetobacter calcoaceticus, and constitute a benzoate-degradative pathway, while xylTEGFJQKIH homologous encoding enzymes of a methylphenol-degradative pathway and a naphthalene-degradative pathway are present on plasmid pVI150 from P. putida CF600, and on plasmid NAH7 from P. putida PpG7, respectively. Comparison of the nucleotide sequences of the xylXYZLTEGFJQKIH genes with other isofunctional genes suggested that the xylTEGFJQKIH genes on the TOL plasmid diverged from these homologues 20 to 50 million years ago, while the xylXYZL genes diverged from the A. calcoaceticus homologues 100 to 200 million years ago. In codons where amino acids are not conserved, the substitution rate in the third base was higher than that in synonymous codons. This result was interpreted as indicating that both single and multiple nucleotide substitutions contributed to the amino acid-substituting mutations, and hence to enzyme evolution. This observation seems to be general because mammalian globin genes exhibit the same tendency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号