首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
The cellular recycling process of autophagy has been extensively characterized with standard assays in yeast and mammalian cell lines. In multicellular organisms, numerous external and internal factors differentially affect autophagy activity in specific cell types throughout the stages of organismal ontogeny, adding complexity to the analysis of autophagy in these metazoans. Here we summarize currently available assays for monitoring the autophagic process in the nematode C. elegans. A combination of measuring levels of the lipidated Atg8 ortholog LGG-1, degradation of well-characterized autophagic substrates such as germline P granule components and the SQSTM1/p62 ortholog SQST-1, expression of autophagic genes and electron microscopy analysis of autophagic structures are presently the most informative, yet steady-state, approaches available to assess autophagy levels in C. elegans. We also review how altered autophagy activity affects a variety of biological processes in C. elegans such as L1 survival under starvation conditions, dauer formation, aging, and cell death, as well as neuronal cell specification. Taken together, C. elegans is emerging as a powerful model organism to monitor autophagy while evaluating important physiological roles for autophagy in key developmental events as well as during adulthood.  相似文献   

3.
Muscle is a dynamic tissue that responds to changes in nutrition, exercise, and disease state. The loss of muscle mass and function with disease and age are significant public health burdens. We currently understand little about the genetic regulation of muscle health with disease or age. The nematode C. elegans is an established model for understanding the genomic regulation of biological processes of interest. This worm’s body wall muscles display a large degree of homology with the muscles of higher metazoan species. Since C. elegans is a transparent organism, the localization of GFP to mitochondria and sarcomeres allows visualization of these structures in vivo. Similarly, feeding animals cationic dyes, which accumulate based on the existence of a mitochondrial membrane potential, allows the assessment of mitochondrial function in vivo. These methods, as well as assessment of muscle protein homeostasis, are combined with assessment of whole animal muscle function, in the form of movement assays, to allow correlation of sub-cellular defects with functional measures of muscle performance. Thus, C. elegans provides a powerful platform with which to assess the impact of mutations, gene knockdown, and/or chemical compounds upon muscle structure and function. Lastly, as GFP, cationic dyes, and movement assays are assessed non-invasively, prospective studies of muscle structure and function can be conducted across the whole life course and this at present cannot be easily investigated in vivo in any other organism.  相似文献   

4.
Mitochondrial alterations have been documented for many years in the brains of Parkinson’s disease (PD), a disorder that is characterized by the selective loss of dopamine neurons. Recent studies have demonstrated that Parkinson’s disease-associated proteins are either present in mitochondria or translocated into mitochondria in response to stress, further reinforcing the importance of the mitochondrial function in the pathogenesis of Parkinson’s disease. Exposure to environmental chemicals such as pesticides and heavy metals has been suggested as risk factors in the development of Parkinson’s disease. It has been reported that a number of environmental agents including tobacco smoke and perfluorinated compounds, pesticides, as well as metals (Mn2+ and Pb2+) modulate mitochondrial function. However the exact mechanism of mitochondrial alteration has not been defined in the context of the development and progression of Parkinson’s disease. The complexity of the mammalian system has made it difficult to dissect the molecular components involved in the pathogenesis of Parkinson’s disease. In the present study we used the nematode Caenorhabditis elegans (C. elegans) model of neuron degeneration and investigated the effect of environmental chemicals on mitochondrial biogenesis and mitochondrial gene regulation. Chronic exposure to low concentration (2 or 4 μM) of pesticide rotenone, resulted in significant loss of dopamine neuron in C. elegans, a classic feature of Parkinson’s disease. We then determined if the rotenone-induced neuron degeneration is accompanied by a change in mitochondria biogenesis. Analysis of mitochondrial genomic replication by quantitative PCR showed a dramatic decrease in mitochondrial DNA (mtDNA) copies of rotenone-treated C. elegans compared to control. This decreased mitochondrial biogenesis occurred prior to the development of loss of dopamine neurons, and was persistent. The inhibition of mtDNA replication was also found in C. elegans exposed to another neuron toxicant Mn2+ at the concentration 50 or 100 mM. We further examined the mitochondrial gene expression and found significant lower level of mitochondrial complex IV subunits COI and COII in C. elegans exposed to rotenone. These results demonstrate that environmental chemicals cause persistent suppression of mitochondrial biogenesis and mitochondrial gene expression, and suggest a critical role of modifying mitochondrial biogenesis in toxicants-induced neuron degeneration in C. elegans model.  相似文献   

5.
The inheritance of functional mitochondria depends on faithful replication and transmission of mitochondrial DNA (mtDNA). A large and heterogeneous group of human disorders is associated with mitochondrial genome quantitative and qualitative anomalies. Several nuclear genes have been shown to account for these severe OXPHOS disorders. However, in several cases, the disease-causing mutations still remain unknown.Caenorhabditis elegans has been largely used for studying various biological functions because this multicellular organism has short life cycle and is easy to grow in the laboratory. Mitochondrial functions are relatively well conserved between human and C. elegans, and heteroplasmy exists in this organism as in human. C. elegans therefore represents a useful tool for studying mtDNA maintenance. Suppression by RNA interference of genes involved in mtDNA replication such as polg-1, encoding the mitochondrial DNA polymerase, results in reduced mtDNA copy number but in a normal phenotype of the F1 worms. By combining RNAi of genes involved in mtDNA maintenance and EtBr exposure, we were able to reveal a strong and specific phenotype (developmental larval arrest) associated to a severe decrease of mtDNA copy number. Moreover, we tested and validated the screen efficiency for human orthologous genes encoding mitochondrial nucleoid proteins. This allowed us to identify several genes that seem to be closely related to mtDNA maintenance in C. elegans.This work reports a first step in the further development of a large-scale screening in C. elegans that should allow to identify new genes of mtDNA maintenance whose human orthologs will obviously constitute new candidate genes for patients with quantitative or qualitative mtDNA anomalies.  相似文献   

6.
Although the starvation response of the model multicellular organism Caenorhabditis elegans is a subject of much research, there is no convenient phenotypic readout of caloric restriction that can be applicable to large numbers of worms. This paper describes the distribution of mass densities of populations of C. elegans, from larval stages up to day one of adulthood, using isopycnic centrifugation, and finds that density is a convenient, if complex, phenotypic readout in C. elegans. The density of worms in synchronized populations of wildtype N2 C. elegans grown under standard solid-phase culture conditions was normally distributed, with distributions peaked sharply at a mean of 1.091 g/cm3 for L1, L2 and L3 larvae, 1.087 g/cm3 for L4 larvae, 1.081 g/cm3 for newly molted adults, and 1.074 g/cm3 at 24 hours of adulthood. The density of adult worms under starvation stress fell well outside this range, falling to a mean value of 1.054 g/cm3 after eight hours of starvation. This decrease in density correlated with the consumption of stored glycogen in the food-deprived worms. The density of the worms increased when deprived of food for longer durations, corresponding to a shift in the response of the worms: worms sacrifice their bodies by retaining larvae, which consume the adults from within. Density-based screens with the drug Ivermectin on worms cultured on single plates resulted in a clear bimodal (double-peaked) distribution of densities corresponding to drug exposed and non-exposed worms. Thus, measurements of changes in density could be used to conduct screens on the effects of drugs on several populations of worms cultured on single plates.  相似文献   

7.
8.
Caenorhabditis elegans has a number of distinct advantages that are useful for understanding the basis for cellular and organismal dysfunction underlying age-associated diseases of protein misfolding. Although protein aggregation, a key feature of human neurodegenerative diseases, has been typically explored in vivo at the single-cell level using cells in culture, there is now increasing evidence that proteotoxicity has a non-cell-autonomous component and is communicated between cells and tissues in a multicellular organism. These discoveries have opened up new avenues for the use of C. elegans as an ideal animal model system to study non-cell-autonomous proteotoxicity, prion-like propagation of aggregation-prone proteins, and the organismal regulation of stress responses and proteostasis. This Review focuses on recent evidence that C. elegans has mechanisms to transmit certain classes of toxic proteins between tissues and a complex stress response that integrates and coordinates signals from single cells and tissues across the organism. These findings emphasize the potential of C. elegans to provide insights into non-cell-autonomous proteotoxic mechanisms underlying age-related protein-misfolding diseases.KEY WORDS: Caenorhabditis elegans, Cell non-autonomous proteotoxicity, Prion-like spreading  相似文献   

9.
A Transparent Window into Biology: A Primer on Caenorhabditis elegans   总被引:1,自引:0,他引:1  
A little over 50 years ago, Sydney Brenner had the foresight to develop the nematode (round worm) Caenorhabditis elegans as a genetic model for understanding questions of developmental biology and neurobiology. Over time, research on C. elegans has expanded to explore a wealth of diverse areas in modern biology including studies of the basic functions and interactions of eukaryotic cells, host–parasite interactions, and evolution. C. elegans has also become an important organism in which to study processes that go awry in human diseases. This primer introduces the organism and the many features that make it an outstanding experimental system, including its small size, rapid life cycle, transparency, and well-annotated genome. We survey the basic anatomical features, common technical approaches, and important discoveries in C. elegans research. Key to studying C. elegans has been the ability to address biological problems genetically, using both forward and reverse genetics, both at the level of the entire organism and at the level of the single, identified cell. These possibilities make C. elegans useful not only in research laboratories, but also in the classroom where it can be used to excite students who actually can see what is happening inside live cells and tissues.  相似文献   

10.
In the last decade, C. elegans has emerged as an invertebrate organism to study interactions between hosts and pathogens, including the host defense against gram-negative bacterium Salmonella typhimurium. Salmonella establishes persistent infection in the intestine of C. elegans and results in early death of infected animals. A number of immunity mechanisms have been identified in C. elegans to defend against Salmonella infections. Autophagy, an evolutionarily conserved lysosomal degradation pathway, has been shown to limit the Salmonella replication in C. elegans and in mammals. Here, a protocol is described to infect C. elegans with Salmonella typhimurium, in which the worms are exposed to Salmonella for a limited time, similar to Salmonella infection in humans. Salmonella infection significantly shortens the lifespan of C. elegans. Using the essential autophagy gene bec-1 as an example, we combined this infection method with C. elegans RNAi feeding approach and showed this protocol can be used to examine the function of C. elegans host genes in defense against Salmonella infection. Since C. elegans whole genome RNAi libraries are available, this protocol makes it possible to comprehensively screen for C. elegans genes that protect against Salmonella and other intestinal pathogens using genome-wide RNAi libraries.  相似文献   

11.

Background

Developing methods for protecting organisms in metal-polluted environments is contingent upon our understanding of cellular detoxification mechanisms. In this regard, half-molecule ATP-binding cassette (ABC) transporters of the HMT-1 subfamily are required for cadmium (Cd) detoxification. HMTs have conserved structural architecture that distinguishes them from other ABC transporters and allows the identification of homologs in genomes of different species including humans. We recently discovered that HMT-1 from the simple, unicellular organism, Schizosaccharomyces pombe, SpHMT1, acts independently of phytochelatin synthase (PCS) and detoxifies Cd, but not other heavy metals. Whether HMTs from multicellular organisms confer tolerance only to Cd or also to other heavy metals is not known.

Methodology/Principal Findings

Using molecular genetics approaches and functional in vivo assays we showed that HMT-1 from a multicellular organism, Caenorhabditis elegans, functions distinctly from its S. pombe counterpart in that in addition to Cd it confers tolerance to arsenic (As) and copper (Cu) while acting independently of pcs-1. Further investigation of hmt-1 and pcs-1 revealed that these genes are expressed in different cell types, supporting the notion that hmt-1 and pcs-1 operate in distinct detoxification pathways. Interestingly, pcs-1 and hmt-1 are co-expressed in highly endocytic C. elegans cells with unknown function, the coelomocytes. By analyzing heavy metal and oxidative stress sensitivities of the coelomocyte-deficient C. elegans strain we discovered that coelomocytes are essential mainly for detoxification of heavy metals, but not of oxidative stress, a by-product of heavy metal toxicity.

Conclusions/Significance

We established that HMT-1 from the multicellular organism confers tolerance to multiple heavy metals and is expressed in liver-like cells, the coelomocytes, as well as head neurons and intestinal cells, which are cell types that are affected by heavy metal poisoning in humans. We also showed that coelomocytes are involved in detoxification of heavy metals. Therefore, the HMT-1-dependent detoxification pathway and coelomocytes of C. elegans emerge as novel models for studies of heavy metal-promoted diseases.  相似文献   

12.
Caenorhabditis elegans is a simple genetic organism amenable to large-scale forward and reverse genetic screens and chemical genetic screens. The C. elegans genome includes potential antipsychotic drug (APD) targets conserved in humans, including genes encoding proteins required for neurotransmitter synthesis and for synaptic structure and function. APD exposure produces developmental delay and/or lethality in nematodes in a concentration-dependent manner. These phenotypes are caused, in part, by APD-induced inhibition of pharyngeal pumping1,2. Thus, the developmental phenotype has a neuromuscular basis, making it useful for pharmacogenetic studies of neuroleptics. Here we demonstrate detailed procedures for testing APD effects on nematode development and pharyngeal pumping. For the developmental assay, synchronized embryos are placed on nematode growth medium (NGM) plates containing APDs, and the stages of developing animals are then scored daily. For the pharyngeal pumping rate assay, staged young adult animals are tested on NGM plates containing APDs. The number of pharyngeal pumps per unit time is recorded, and the pumping rate is calculated. These assays can be used for studying many other types of small molecules or even large molecules.  相似文献   

13.
Glycobiology research with Caenorhabditis elegans (C. elegans) has benefitted from the numerous genetic and cell biology tools available in this system. However, the lack of a cell line and the relative inaccessibility of C. elegans somatic cells in vivo have limited the biochemical approaches available in this model. Here we report that C. elegans primary embryonic cells in culture incorporate azido-sugar analogs of N-acetylgalactosamine (GalNAc) and N-acetylglucosamine (GlcNAc), and that the labeled glycoproteins can be analyzed by mass spectrometry. By using this metabolic labeling approach, we have identified a set of novel C. elegans glycoprotein candidates, which include several mitochondrially-annotated proteins. This observation was unexpected given that mitochondrial glycoproteins have only rarely been reported, and it suggests that glycosylation of mitochondrially-annotated proteins might occur more frequently than previously thought. Using independent experimental strategies, we validated a subset of our glycoprotein candidates. These include a mitochondrial, atypical glycoprotein (ATP synthase α-subunit), a predicted glycoprotein (aspartyl protease, ASP-4), and a protein family with established glycosylation in other species (actin). Additionally, we observed a glycosylated isoform of ATP synthase α-subunit in bovine heart tissue and a primate cell line (COS-7). Overall, our finding that C. elegans primary embryonic cells are amenable to metabolic labeling demonstrates that biochemical studies in C. elegans are feasible, which opens the door to labeling C. elegans cells with other radioactive or azido-substrates and should enable the identification of additional post-translationally modified targets and analysis of the genes required for their modification using C. elegans mutant libraries.  相似文献   

14.
RNA interference is a powerful method to understand gene function, especially when conducted at a whole-genome scale and in a quantitative context. In C. elegans, gene function can be knocked down simply and efficiently by feeding worms with bacteria expressing a dsRNA corresponding to a specific gene 1. While the creation of libraries of RNAi clones covering most of the C. elegans genome 2,3 opened the way for true functional genomic studies (see for example 4-7), most established methods are laborious. Moy and colleagues have developed semi-automated protocols that facilitate genome-wide screens 8. The approach relies on microscopic imaging and image analysis. Here we describe an alternative protocol for a high-throughput genome-wide screen, based on robotic handling of bacterial RNAi clones, quantitative analysis using the COPAS Biosort (Union Biometrica (UBI)), and an integrated software: the MBioLIMS (Laboratory Information Management System from Modul-Bio) a technology that provides increased throughput for data management and sample tracking. The method allows screens to be conducted on solid medium plates. This is particularly important for some studies, such as those addressing host-pathogen interactions in C. elegans, since certain microbes do not efficiently infect worms in liquid culture.We show how the method can be used to quantify the importance of genes in anti-fungal innate immunity in C. elegans. In this case, the approach relies on the use of a transgenic strain carrying an epidermal infection-inducible fluorescent reporter gene, with GFP under the control of the promoter of the antimicrobial peptide gene nlp 29 and a red fluorescent reporter that is expressed constitutively in the epidermis. The latter provides an internal control for the functional integrity of the epidermis and nonspecific transgene silencing9. When control worms are infected by the fungus they fluoresce green. Knocking down by RNAi a gene required for nlp 29 expression results in diminished fluorescence after infection. Currently, this protocol allows more than 3,000 RNAi clones to be tested and analyzed per week, opening the possibility of screening the entire genome in less than 2 months.  相似文献   

15.
Traditional healers in Sarawak, Malaysia, use plants such as Picria fel-terrae, Linariantha bicolor and Lansium domesticum to treat gastrointestinal infections. This study aimed to test whether their nematocidal activities could be confirmed in vitro using highly standardised Caenorhabditis elegans models. We applied eight different ethanol solubilised plant extracts and two commercial anthelmintic drugs to larval and adult stages of C. elegans in vitro. Seven C. elegans strains were evaluated, one wild type and six strains with GFP-tagged stress response pathways to help characterise and compare the pathways affected by plant extracts. Our in vitro screen confirmed that both of the commercial anthelmintic drugs and five of the eight traditionally used plant extracts had significant nematocidal activity against both larval and adult C. elegans. The most effective extracts were from P. fel-terrae. The plant extracts triggered different stress response pathways from the commercial anthelmintic drugs. This study showed that using traditional knowledge of plant medicinal properties in combination with a C. elegans in vitro screen provided a rapid and economical test with a high hit rate compared with the random screening of plants for nematocidal activities. The use of transgenic C. elegans strains may allow this approach to be refined further to investigate the mode of action of active extracts.  相似文献   

16.
Apoptotic cell death is an integral part of cell turnover in many tissues, and proper corpse clearance is vital to maintaining tissue homeostasis in all multicellular organisms. Even in tissues with high cellular turnover, apoptotic cells are rarely seen because of efficient clearance mechanisms in healthy individuals. In Caenorhabditis elegans, two parallel and partly redundant conserved pathways act in cell corpse engulfment. The pathway for cytoskeletal rearrangement requires the small GTPase CED-10 Rac1 acting for an efficient surround of the dead cell. The CED-10 Rac pathway is also required for the proper migration of the distal tip cells (DTCs) during the development of the C. elegans gonad. Parkin, the mammalian homolog of the C. elegans PDR-1, interacts with Rac1 in aged human brain and it is also implicated with actin dynamics and cytoskeletal rearrangements in Parkinsons''s disease, suggesting that it might act on engulfment. Our genetic and biochemical studies indicate that PDR-1 inhibits apoptotic cell engulfment and DTC migration by ubiquitylating CED-10 for degradation.  相似文献   

17.
This protocol describes the use of fluorescence microscopy to image dividing cells within developing Caenorhabditis elegans embryos. In particular, this protocol focuses on how to image dividing neuroblasts, which are found underneath the epidermal cells and may be important for epidermal morphogenesis. Tissue formation is crucial for metazoan development and relies on external cues from neighboring tissues. C. elegans is an excellent model organism to study tissue morphogenesis in vivo due to its transparency and simple organization, making its tissues easy to study via microscopy. Ventral enclosure is the process where the ventral surface of the embryo is covered by a single layer of epithelial cells. This event is thought to be facilitated by the underlying neuroblasts, which provide chemical guidance cues to mediate migration of the overlying epithelial cells. However, the neuroblasts are highly proliferative and also may act as a mechanical substrate for the ventral epidermal cells. Studies using this experimental protocol could uncover the importance of intercellular communication during tissue formation, and could be used to reveal the roles of genes involved in cell division within developing tissues.  相似文献   

18.
Parasitic helminths continue to pose problems in human and veterinary medicine, as well as in agriculture. Resistance to current anthelmintics has prompted the search for new drugs. Anthelmintic metabolites from medicinal plants could be good anthelmintic drug candidates. However, the compounds active against nematodes have not been identified in most medicinal plants with anthelmintic activity. In this study, we aimed to identify the active compounds against helminths in Warburgia ugandensis Sprague subspecies ugandensis (Canellaceae) and study the underlying mechanism of action. A bioassay-guided isolation of anthelmintic compounds from the plant was performed using a Caenorhabditis elegans (C. elegans) test model with a WMicrotracker instrument to monitor motility. Three active compounds were purified and identified by nuclear magnetic resonance and high resolution MS: warburganal (IC50: 28.2?±?8.6?μM), polygodial (IC50: 13.1?±?5.3?μM) and alpha-linolenic acid (ALA, IC50: 70.1?±?17.5?μM). A checkerboard assay for warburganal and ALA as well as polygodial and ALA showed a fractional inhibitory concentration index of 0.41 and 0.37, respectively, suggesting that polygodial and ALA, as well as warburganal and ALA, have a synergistic effect against nematodes. A preliminary structure–activity relationship study for polygodial showed that the α,β-unsaturated 1,4-dialdehyde structural motif is essential for the potent activity. None of a panel of C. elegans mutant strains, resistant against major anthelmintic drug classes, showed significant resistance to polygodial, implying that polygodial may block C. elegans motility through a mechanism which differs from that of currently marketed drugs. Further measurements showed that polygodial inhibits mitochondrial ATP synthesis of C. elegans in a dose-dependent manner (IC50: 1.8?±?1.0?μM). Therefore, we believe that the underlying mechanism of action of polygodial is probably inhibition of mitochondrial ATP synthesis. In conclusion, polygodial could be a promising anthelmintic drug candidate worth considering for further development.  相似文献   

19.
As part of our research program assessing the use of liquid hog manure (LHM) to control root-lesion nematodes, Pratylenchus penetrans, a series of acute toxicity tests was conducted to: (i) examine if non-ionized forms of volatile fatty acids (VFA) are responsible for the mortality of P. penetrans exposed to LHM under acidic conditions, (ii) determine if Caenorhabditis elegans can be a surrogate for P. penetrans in screening tests by comparing their sensitivities to VFA, (iii) characterize the nematicidal effect of individual VFA in LHM to P. penetrans, and (iv) determine whether individual VFA in LHM interact in their toxicity to P. penetrans. LHM was significantly (P ≤ 0.05) more toxic to P. penetrans than a mixture of its main VFA components at concentrations of 5% and 10% (vol. VFA or LHM /vol. in buffer). Pratylenchus penetrans was more sensitive to acetic acid than C. elegans, whereas the sensitivity of both nematode species to n-caproic acid was similar. Individual VFA vary in their lethality to P. penetrans. n-valeric acid was the most toxic (LC95= 6.8 mM), while isobutyric acid was the least toxic (LC95 = 45.7 mM). Individual VFA did not interact in their toxicity to P. penetrans, and their effects were considered additive. VFA account for the majority of the lethal effect of LHM to P. penetrans under acidic conditions. Caenorhabditis elegans cannot be used as a surrogate to P. penetrans in toxicity studies using VFA. The efficacy of LHM to control P. penetrans can be evaluated by assessing its VFA content prior to application, and this evaluation is facilitated by the fact that the interaction of individual VFA appears to be simply additive.  相似文献   

20.
The folding and assembly of proteins is essential for protein function, the long-term health of the cell, and longevity of the organism. Historically, the function and regulation of protein folding was studied in vitro, in isolated tissue culture cells and in unicellular organisms. Recent studies have uncovered links between protein homeostasis (proteostasis), metabolism, development, aging, and temperature-sensing. These findings have led to the development of new tools for monitoring protein folding in the model metazoan organism Caenorhabditis elegans. In our laboratory, we combine behavioral assays, imaging and biochemical approaches using temperature-sensitive or naturally occurring metastable proteins as sensors of the folding environment to monitor protein misfolding. Behavioral assays that are associated with the misfolding of a specific protein provide a simple and powerful readout for protein folding, allowing for the fast screening of genes and conditions that modulate folding. Likewise, such misfolding can be associated with protein mislocalization in the cell. Monitoring protein localization can, therefore, highlight changes in cellular folding capacity occurring in different tissues, at various stages of development and in the face of changing conditions. Finally, using biochemical tools ex vivo, we can directly monitor protein stability and conformation. Thus, by combining behavioral assays, imaging and biochemical techniques, we are able to monitor protein misfolding at the resolution of the organism, the cell, and the protein, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号