首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eosinophils play important roles in regulation of cellular responses under conditions of homeostasis or infection. Intestinal infection with the parasitic nematode, Trichinella spiralis, induces a pronounced eosinophilia that coincides with establishment of larval stages in skeletal muscle. We have shown previously that in mouse strains in which the eosinophil lineage is ablated, large numbers of T. spiralis larvae are killed by NO, implicating the eosinophil as an immune regulator. In this report, we show that parasite death in eosinophil-ablated mice correlates with reduced recruitment of IL-4(+) T cells and enhanced recruitment of inducible NO synthase (iNOS)-producing neutrophils to infected muscle, as well as increased iNOS in local F4/80(+)CD11b(+)Ly6C(+) macrophages. Actively growing T. spiralis larvae were susceptible to killing by NO in vitro, whereas mature larvae were highly resistant. Growth of larvae was impaired in eosinophil-ablated mice, potentially extending the period of susceptibility to the effects of NO and enhancing parasite clearance. Transfer of eosinophils into eosinophil-ablated ΔdblGATA mice restored larval growth and survival. Regulation of immunity was not dependent upon eosinophil peroxidase or major basic protein 1 and did not correlate with activity of the IDO pathway. Our results suggest that eosinophils support parasite growth and survival by promoting accumulation of Th2 cells and preventing induction of iNOS in macrophages and neutrophils. These findings begin to define the cellular interactions that occur at an extraintestinal site of nematode infection in which the eosinophil functions as a pivotal regulator of immunity.  相似文献   

2.
3.
Myostatin (Mstn) is a secreted growth factor predominately expressed in skeletal muscle that negatively regulates skeletal muscle mass. Recent studies have indicated that loss function of myostatin not only increases muscle mass but also improves insulin sensitivity in vivo. In the present report, we demonstrated that myostatin regulates glucose metabolism by promoting glucose consumption and glucose uptake, increasing glycolysis, and inhibiting glycogen synthesis in skeletal muscle cells. Microarray analysis revealed that myostatin upregulates several genes involved in regulating glucose metabolism such as Glut1, Glut4, Hk2, and IL-6. Further investigation of the molecular basis of these phenomena revealed that AMP-activated protein kinase (AMPK), a key component for maintaining energy homeostasis, was activated by myostatin for promotion of glycolysis. Taken together, these findings provide the first experimental evidence that myostatin regulates glucose metabolism through the AMPK signal pathway in muscle cells. Importantly, our findings highlight that continued investigation of the metabolic function of myostatin is necessary for a comprehensive understanding of its active role in the regulation of skeletal muscle energy metabolism.  相似文献   

4.
In hogs naturally infected with Taenia solium larvae (i.e., Cysticercus cellulosae), we studied the host response induced by antigens obtained from the larvae. Histopathological studies of cysticerci removed after 4 and 8 weeks of immunization showed an intense inflammatory reaction surrounding the larvae. The response was greater in the 8-week specimens. A dense layer of eosinophils was in close contact with the external membrane of the bladder wall and, in several cases, the eosinophils had infiltrated this tegument. Many eosinophils were seen in the spiral canal of larvae. This infiltration by eosinophils increased with time. Preparations from the 8-week samples showed many degenerated and disrupted eosinophils whose granules were found in close contact with the outer membrane of the larval tegument and, in some cases, had entered through the broken surface of this structure. More than 90% of the larvae were found in various stages of degeneration; the rest were completely destroyed and surrounded by a mass of eosinophils. After immunization, peripheral blood eosinophilia increased to 17%, whereas the eosinophilia of the control hog was 4% throughout the study. The larval worms removed from control hogs showed intact structures, with a low degree of infiltration by eosinophils and a discrete inflammatory reaction surrounding the bladder wall of the larvae.  相似文献   

5.
Reports of natural infections of sylvatic carnivores by adult worms of species similar to Lagochilascaris minor in the Neotropical region led to attempts to establish experimental cycles in laboratory mice and in cats. Also, larval development was seen in the skeletal muscle of an agouti (Dasyprocta leporina) infected per os with incubated eggs of the parasite obtained from a human case. In cats, adult worms develop and fertile eggs are expelled in the feces; in mice, larval stages of the parasite develop, and are encapsulate in the skeletal muscle, and in the adipose and subcutaneous connective tissue. From our observations, we conclude that the larva infective for the mouse is the early 3rd stage, while for the final host the infective form is the later 3rd stage. A single moult was seen in the mouse, giving rise to a small population of 4th stage larvae, long after the initial infection.  相似文献   

6.
为了揭示病原真菌白僵菌Beauveria侵染昆虫过程中如何利用虫体内糖类物质作为自身营养, 本研究测定了布氏白僵菌Beauveria brongniartii (Sacc.) Petch (2382菌株)感染油松毛虫Dendrolimus tabulaeformis Tsai et Liu幼虫后, 虫体血淋巴中酸性海藻糖降解酶活性及海藻糖和葡萄糖含量的变化。油松毛虫4龄幼虫感染菌株孢子悬浮液后, 血淋巴中酸性海藻糖降解酶的活性明显高于对照组, 感染后第3天酶活性达到最大值(0.2786 U/mg), 此后第4-6 天酶活性逐渐降低; 染菌后的6 d中, 血淋巴中海藻糖含量显著低于对照组, 同样在感染后第4天其含量逐渐降低, 第6天时降到最低值。相比之下, 处理组血淋巴中的葡萄糖含量显著高于对照组; 处理组其含量在第1-3天内呈现快速升高趋势, 在第3天达到最大值(7.7615 mmol/L), 然后逐渐降低。结果说明, 白僵菌侵入昆虫血淋巴后, 菌株代谢产生酸性海藻糖降解酶, 将血淋巴中的海藻糖水解成为葡萄糖, 然后为真菌利用, 破坏了虫体内的血糖平衡, 这是一个相互连接的生理代谢和生化反应过程。  相似文献   

7.
Previous studies have demonstrated that interleukin-15 (IL-15) has important anabolic effects on muscle protein metabolism. In the present investigation we have analysed the effects of IL-15 on glucose metabolism in skeletal muscle. Administration of a single dose of the cytokine (100 microg/kg body weight) resulted in a 32% increase on glucose uptake (as measured by the uptake of 2-deoxyglucose) in skeletal muscle. The effects observed on glucose uptake were direct since in vitro incubations of rat EDL muscles in the presence of the cytokine resulted in a 30% increase in glucose uptake. Similarly, IL-15 increased glucose uptake in C2C12 cell cultures, this being related with an increase in both glucose oxidation to CO2 and the incorporation into muscle lipid. The effects of the cytokine were associated with an increase in GLUT-4 mRNA, suggesting a higher effect in insulin sensitivity. In conclusion, the data presented here indicate that IL-15 facilitates glucose metabolism in skeletal muscle and, therefore, a possible role of the cytokine as an antidiabetogenic drug merits future investigations.  相似文献   

8.
Infection of the gypsy moth, Lymantria dispar, with the microsporidium Vairimorpha sp. strongly influences the development of the host in ways typical of many species of terrestrial entomopathogenic Microsporidia; growth is reduced while development time is extended in infected insects. The appearance of the different stages of the parasite in the host relative to the elapsed time after oral infection, as well as the influence of the parasite proliferation on food utilization of the host, were examined. At 3 days postinfection, midgut muscle cells were infected with primary spores, and the fat body tissues contained meronts, sporonts, and primary spores. Many more fat body cells contained vegetative stages and primary spores at 4 and 5 days postinfection, and diplokaryotic spores and immature octospores were also present. Approximate digestibility of infected larvae increased during this time period, whereas the conversion of ingested and digested food to body substance decreased. The relative growth rate of infected and uninfected groups did not differ significantly between 4 and 5 days postinfection, although the relative consumption rate in infected L. dispar larvae was higher. Between 8 and 10 days postinfection, the relative growth rate of uninfected larvae increased. The infected group did not demonstrate this increase at a time period characterized by maturation of diplokaryotic spores and octospores in larval fat body tissues. Total body weight of uninfected larvae remained higher than that of infected larvae after 8 days postinfection.  相似文献   

9.
Previous studies have demonstrated that interleukin-15 (IL-15) has important anabolic effects on muscle protein metabolism. In the present investigation we have analysed the effects of IL-15 on glucose metabolism in skeletal muscle. Administration of a single dose of the cytokine (100 μg/kg body weight) resulted in a 32% increase on glucose uptake (as measured by the uptake of 2-deoxyglucose) in skeletal muscle. The effects observed on glucose uptake were direct since in vitro incubations of rat EDL muscles in the presence of the cytokine resulted in a 30% increase in glucose uptake. Similarly, IL-15 increased glucose uptake in C2C12 cell cultures, this being related with an increase in both glucose oxidation to CO2 and the incorporation into muscle lipid. The effects of the cytokine were associated with an increase in GLUT-4 mRNA, suggesting a higher effect in insulin sensitivity. In conclusion, the data presented here indicate that IL-15 facilitates glucose metabolism in skeletal muscle and, therefore, a possible role of the cytokine as an antidiabetogenic drug merits future investigations.  相似文献   

10.
Intrauterine growth restriction (IUGR) leads to obesity, glucose intolerance, and type 2 diabetes mellitus in the adult. To determine the mechanism(s) behind this "metabolic imprinting" phenomenon, we examined the effect of total calorie restriction during mid- to late gestation modified by postnatal ad libitum access to nutrients (CM/SP) or nutrient restriction (SM/SP) vs. postnatal nutrient restriction alone (SM/CP) on skeletal muscle and white adipose tissue (WAT) insulin-responsive glucose transporter isoform (GLUT4) expression and insulin-responsive translocation. A decline in skeletal muscle GLUT4 expression and protein concentrations was noted only in the SM/SP and SM/CP groups. In contrast, WAT demonstrated no change in GLUT4 expression and protein concentrations in all experimental groups. The altered in utero hormonal/metabolic milieu was associated with a compensatory adaptation that persisted in the adult and consisted of an increase in the skeletal muscle basal plasma membrane-associated GLUT4 concentrations. This perturbation led to no further exogenous insulin-induced GLUT4 translocation, thereby disabling the insulin responsiveness of the skeletal muscle but retaining it in WAT. These changes, which present at birth, collectively maximize basal glucose transport to the compromised skeletal muscle with a relative resistance to exogenous/postprandial insulin. Preservation of insulin responsiveness in WAT may serve as a sink that absorbs postprandial nutrients that can no longer efficiently access skeletal muscle. We speculate that, in utero, GLUT4 aberrations may predict type 2 diabetes mellitus, whereas postnatal nutrient intake may predict obesity, thereby explaining the heterogeneous phenotype of the IUGR adult offspring.  相似文献   

11.
Neuregulin, a growth factor involved in myogenesis, has rapid effects on muscle metabolism. In a manner analogous to insulin and exercise, neuregulins stimulate glucose transport through recruitment of glucose transporters to surface membranes in skeletal muscle. Like muscle contraction, neuregulins have additive effects with insulin on glucose uptake. Therefore, we examined whether neuregulins are involved in the mechanism by which muscle contraction regulates glucose transport. We show that caffeine-induced increases in cytosolic Ca2+ mediate a metalloproteinase-dependent release of neuregulins, which stimulates tyrosine phosphorylation of ErbB4 receptors. Activation of ErbB4 is necessary for Ca2+-derived effects on glucose transport. Furthermore, blockage of ErbB4 abruptly impairs contraction-induced glucose uptake in slow twitch muscle fibers, and to a lesser extent, in fast twitch muscle fibers. In conclusion, we provide evidence that contraction-induced activation of neuregulin receptors is necessary for the stimulation of glucose transport and a key element of energetic metabolism during muscle contraction.  相似文献   

12.
Protective immunity to Strongyloides stercoralis infective larvae in mice has been shown to be dependent on IL-5 based on mAb depletion studies. The goal of this study was to determine the functional role of IL-5 during the innate and adaptive immune response to larval S. stercoralis in mice. In these studies, three strains of mice were used: wild-type C57BL/6J (WT), IL-5 knockout (KO), and IL-5 transgenic (TG). Innate responses to the larvae indicated that there was enhanced survival in the KO animals and decreased survival in the TG animals compared with WT. Furthermore, killing of larvae in TG mice was associated with eosinophil infiltration and degranulation. In studying the adaptive immune response, it was observed that immunization of KO mice did not lead to the development of protective immunity. Experiments were then performed to determine whether KO mice reconstituted with Abs or cells could then develop protective immunity. KO mice displayed protective immunity via a granulocyte-dependent mechanism following injection of purified IgM from immune wild-type animals. Immunity in KO mice could also be reconstituted by the injection of eosinophils at the time of immunization. These eosinophils did not participate in actively killing the challenge infection, but rather were responsible for the induction of a protective Ab response. We conclude that IL-5 is required in the protective immune response for the production of eosinophils, and that eosinophils were involved in larval killing during innate immunity and in the induction of protective Abs in the adaptive immune response.  相似文献   

13.
As substantial progress has been achieved in modern poultry production with large-scale and intensive feeding and farming in recent years, stress becomes a vital factor affecting chicken growth, development, and production yield, especially the quality and quantity of skeletal muscle mass. The review was aimed to outline and understand the stress-related genetic regulatory mechanism, which significantly affects glucose metabolism regulation in chicken skeletal muscle tissues. Progress in current studies was summarized relevant to the molecular mechanism and regulatory pathways of glucose metabolism regulation under stress in chicken skeletal muscle tissues. Particularly, the elucidation of those concerned pathways promoted by insulin and insulin receptors would give key clues to the understanding of biological processes of stress response and glucose metabolism regulation under stress, as well as their later effects on chicken muscle development.  相似文献   

14.
The present study investigates how Trichinella infection induces host hypoglycaemia and explores a potential relationship between infection and the insulin signalling pathway. The results showed that mice infected with Trichinella spiralis or Trichinella pseudospiralis exhibited a temporary decrease in blood glucose level between 8 and 28 days p.i. and the kinetics of the glucose levels corresponded to the process of muscle larval growth and development. Histochemical results showed that glycogen accumulation increased in infected muscle cells during the period of hypoglycaemia. Analysis of gene expression profiles with quantitative PCR demonstrated that insulin signalling pathway-related genes, such as insulin receptor (IR), insulin receptor substance 1 (IRS-1), IRS-2, phosphatidylinositol 3-kinase (PI3-K) and V-akt murine thymoma viral oncogene homologue 2 (Akt2) were up-regulated in infected muscle cells during infection and these expression changes correlated with the kinetics of blood glucose level, glycogen accumulation and the process of larval growth and development in infected muscle cells. Western blot analysis clarified that the expression of IR and Akt2 proteins increased in muscle tissues infected with both species of Trichinella. This study suggests that hypoglycaemia induced by Trichinella infection is the result of an increase in glucose uptake by infected muscle cells via up-regulation of insulin signalling pathway factors.  相似文献   

15.
Infection of the mammalian host by schistosome larvae occurs via the skin, although nothing is known about the development of immune responses to multiple exposures of schistosome larvae, and/or their excretory/secretory (E/S) products. Here, we show that multiple (4x) exposures, prior to the onset of egg laying by adult worms, modulate the skin immune response and induce CD4(+) cell hypo-responsiveness in the draining lymph node, and even modulate the formation of hepatic egg-induced granulomas. Compared to mice exposed to a single infection (1x), dermal cells from multiply infected mice (4x), were less able to support lymph node cell proliferation. Analysis of dermal cells showed that the most abundant in 4x mice were eosinophils (F4/80(+)MHC-II(-)), but they did not impact the ability of antigen presenting cells (APC) to support lymphocyte proliferation to parasite antigen in vitro. However, two other cell populations from the dermal site of infection appear to have a critical role. The first comprises arginase-1(+), Ym-1(+) alternatively activated macrophage-like cells, and the second are functionally compromised MHC-II(hi) cells. Through the administration of exogenous IL-12 to multiply infected mice, we show that these suppressive myeloid cell phenotypes form as a consequence of events in the skin, most notably an enrichment of IL-4 and IL-13, likely resulting from an influx of RELMα-expressing eosinophils. We further illustrate that the development of these suppressive dermal cells is dependent upon IL-4Rα signalling. The development of immune hypo-responsiveness to schistosome larvae and their effect on the subsequent response to the immunopathogenic egg is important in appreciating how immune responses to helminth infections are modulated by repeated exposure to the infective early stages of development.  相似文献   

16.
Insulin-independent glucose metabolism, including anaerobic glycolysis that is promoted in resistance training, plays critical roles in glucose disposal and systemic metabolic regulation. However, the underlying mechanisms are not completely understood. In this study, through genetically manipulating the glycolytic process by overexpressing human glucose transporter 1 (GLUT1), hexokinase 2 (HK2) and 6-phosphofructo-2-kinase-fructose-2,6-biphosphatase 3 (PFKFB3) in mouse skeletal muscle, we examined the impact of enhanced glycolysis in metabolic homeostasis. Enhanced glycolysis in skeletal muscle promoted accelerated glucose disposal, a lean phenotype and a high metabolic rate in mice despite attenuated lipid metabolism in muscle, even under High-Fat diet (HFD). Further study revealed that the glucose metabolite sensor carbohydrate-response element-binding protein (ChREBP) was activated in the highly glycolytic muscle and stimulated the elevation of plasma fibroblast growth factor 21 (FGF21), possibly mediating enhanced lipid oxidation in adipose tissue and contributing to a systemic effect. PFKFB3 was critically involved in promoting the glucose-sensing mechanism in myocytes. Thus, a high level of glycolysis in skeletal muscle may be intrinsically coupled to distal lipid metabolism through intracellular glucose sensing. This study provides novel insights for the benefit of resistance training and for manipulating insulin-independent glucose metabolism.  相似文献   

17.
The CCR3 binds at least seven different CC chemokines and is expressed on eosinophils, mast cells (MC), and a subset of Th cells (Th2) that generate cytokines implicated in mucosal immune responses. Using mice with a targeted disruption of CCR3 (CCR3(-/-)) and their +/+ littermates, we investigated the role of CCR3 in the amplification of tissue eosinophilia and MC hyperplasia in the mouse after infection with Trichinella spiralis. In CCR3(-/-) mice, eosinophils are not recruited to the jejunal mucosa after infection and are not present in the skeletal muscle adjacent to encysting larvae. In addition, the number of cysts in the skeletal muscle is increased and the frequency of encysted larvae exhibiting necrosis is reduced. The CCR3(-/-) mice exhibit the expected MC hyperplasia in the jejunum and caecum and reject the adult worms from the small intestine at a normal rate. This study is consistent with distinct functions for MC (adult worm expulsion) and eosinophils (toxicity to larvae) in immunity to a helminth, T. spiralis, and defines the essential requirement for CCR3 in eosinophil, but not MC recruitment to tissues.  相似文献   

18.
To determine the role of interleukin-5 (IL-5) and eosinophils in protection against Strongyloides ratti, mice treated with anti-IL-5 monoclonal antibody (mAb) were infected with S. ratti larvae. Strongyloides ratti egg numbers in faeces (EPG) in mAb treated mice were higher than those in control mice on days 6 and 7 after inoculation. The numbers of migrating worms in mAb treated mice 36 h after inoculation were higher than those observed in control mice. Intestinal worm numbers in mAb treated mice 5 days after inoculation were higher than those in control mice. These results show that eosinophils effectively protected the host against S. ratti infection by mainly the larval stage in primary infections. The involvement of eosinophils in protection against secondary infection was also examined. Before secondary infection, mice were treated with anti-IL-5 mAb and infected with S. ratti. Patent infections were not observed in either mAb treated or control Ab treated mice. The numbers of migrating worms in the head and lungs of mAb treated mice increased to 60% of that in primary infected mice. Intestinal worms were not found in mAb treated mice or in control mice after oral implantation of adult worms. Eosinophils were therefore mainly involved in protection against tissue migrating worms in secondary infections.  相似文献   

19.
Skeletal muscle plays a major role in glucose and lipid metabolism. Active hepatocyte growth factor (HGF) is present in the extracellular matrix in skeletal muscle. However, the effects of HGF on glucose and lipid metabolism in skeletal muscle are completely unknown. We therefore examined the effects of HGF on deoxyglucose uptake (DOGU), glucose utilization, and fatty acid oxidation (FAO) in skeletal muscle cells. HGF significantly enhanced DOGU in mouse soleus muscles in vitro. Furthermore, HGF significantly increased: (i) DOGU in a time- and dose-dependent manner; (ii) glucose utilization; and (iii) plasma membrane expression of Glut-1 and Glut-4 in the rat skeletal muscle model of L6 myotubes. HGF-mediated effect on DOGU was dependent on the activation of phosphatidylinositol 3-kinase signaling pathway. On the other hand, HGF markedly and significantly decreased FAO in L6 myotubes without affecting the activities of carnitine palmitoyltransferase I and II. Collectively, these results indicate that HGF is a potent activator of glucose transport and metabolism and also a strong inhibitor of FAO in rodent myotubes. HGF, through its ability to stimulate glucose transport and metabolism and to impair FAO, may participate in the regulation of glucose disposal in skeletal muscle.  相似文献   

20.
This study examined whether ecoparasitic larval Unionicola foili exhibited a sex bias when infecting laboratory populations of the host insect Chironomus tentans and whether an association with male or female midges increased the likelihood of larval mites returning to the aquatic habitat. When laboratory populations of C. tentans were exposed to larval U. foili, there was a higher prevalence of mites among female hosts at emergence (17 of 30 males vs. 25 of 30 females infected by mites). However, there was no significant difference in the distribution or abundance of larvae among infected male (mean = 2.3 larvae per host) and female (mean = 2.6 larvae per host) midges. Larval mites parasitizing both male and female chironomids were more likely to return to water than could be expected by chance. Mite larvae infesting female C. tentans were more likely to return to water when female hosts deposited egg masses in water, suggesting that oviposition plays an important role in cueing larvae parasitizing female midges to detach. The mechanism responsible for increasing the likelihood that mites parasitizing male hosts return to water remains unclear. Future studies will address the possibility of parasite-mediated changes in host behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号