共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
Following the irradiation of nondividing yeast cells with ultraviolet (UV) light, most induced mutations are inherited by both daughter cells, indicating that complementary changes are introduced into both strands of duplex DNA prior to replication. Early analyses demonstrated that such two-strand mutations depend on functional nucleotide excision repair (NER), but the molecular mechanism of this unique type of mutagenesis has not been further explored. In the experiments reported here, an ade2 adeX colony-color system was used to examine the genetic control of UV-induced mutagenesis in nondividing cultures of Saccharomyces cerevisiae. We confirmed a strong suppression of two-strand mutagenesis in NER-deficient backgrounds and demonstrated that neither mismatch repair nor interstrand crosslink repair affects the production of these mutations. By contrast, proteins involved in the error-prone bypass of DNA damage (Rev3, Rev1, PCNA, Rad18, Pol32, and Rad5) and in the early steps of the DNA-damage checkpoint response (Rad17, Mec3, Ddc1, Mec1, and Rad9) were required for the production of two-strand mutations. There was no involvement, however, for the Pol η translesion synthesis DNA polymerase, the Mms2-Ubc13 postreplication repair complex, downstream DNA-damage checkpoint factors (Rad53, Chk1, and Dun1), or the Exo1 exonuclease. Our data support models in which UV-induced mutagenesis in nondividing cells occurs during the Pol ζ-dependent filling of lesion-containing, NER-generated gaps. The requirement for specific DNA-damage checkpoint proteins suggests roles in recruiting and/or activating factors required to fill such gaps. 相似文献
4.
5.
Shar-yin Naomi Huang Sanchari Ghosh Yves Pommier 《The Journal of biological chemistry》2015,290(22):14068-14076
Ribonucleotide monophosphates (rNMPs) are among the most frequent form of DNA aberration, as high ratios of ribonucleotide triphosphate:deoxyribonucleotide triphosphate pools result in approximately two misincorporated rNMPs/kb of DNA. The main pathway for the removal of rNMPs is by RNase H2. However, in a RNase H2 knock-out yeast strain, a topoisomerase I (Top1)-dependent mutator effect develops with accumulation of short deletions within tandem repeats. Proposed models for these deletions implicated processing of Top1-generated nicks at rNMP sites and/or sequential Top1 binding, but experimental support has been lacking thus far. Here, we investigated the biochemical mechanism of the Top1-induced short deletions at the rNMP sites by generating nicked DNA substrates bearing 2′,3′-cyclic phosphates at the nick sites, mimicking the Top1-induced nicks. We demonstrate that a second Top1 cleavage complex adjacent to the nick and subsequent faulty Top1 religation led to the short deletions. Moreover, when acting on the nicked DNA substrates containing 2′,3′-cyclic phosphates, Top1 generated not only the short deletion, but also a full-length religated DNA product. A catalytically inactive Top1 mutant (Top1-Y723F) also induced the full-length products, indicating that Top1 binding independent of its enzymatic activity promotes the sealing of DNA backbones via nucleophilic attacks by the 5′-hydroxyl on the 2′,3′-cyclic phosphate. The resealed DNA would allow renewed attempt for repair by the error-free RNase H2-dependent pathway in vivo. Our results provide direct evidence for the generation of short deletions by sequential Top1 cleavage events and for the promotion of nick religation at rNMP sites by Top1. 相似文献
6.
Ibtissam Talhaoui Vladimir Shafirovich Zhi Liu Christine Saint-Pierre Zhiger Akishev Bakhyt T. Matkarimov Didier Gasparutto Nicholas E. Geacintov Murat Saparbaev 《The Journal of biological chemistry》2015,290(23):14610-14617
Oxidatively generated guanine radical cations in DNA can undergo various nucleophilic reactions including the formation of C8-guanine cross-links with adjacent or nearby N3-thymines in DNA in the presence of O2. The G*[C8-N3]T* lesions have been identified in the DNA of human cells exposed to oxidative stress, and are most likely genotoxic if not removed by cellular defense mechanisms. It has been shown that the G*[C8-N3]T* lesions are substrates of nucleotide excision repair in human cell extracts. Cleavage at the sites of the lesions was also observed but not further investigated (Ding et al. (2012) Nucleic Acids Res. 40, 2506–2517). Using a panel of eukaryotic and prokaryotic bifunctional DNA glycosylases/lyases (NEIL1, Nei, Fpg, Nth, and NTH1) and apurinic/apyrimidinic (AP) endonucleases (Apn1, APE1, and Nfo), the analysis of cleavage fragments by PAGE and MALDI-TOF/MS show that the G*[C8-N3]T* lesions in 17-mer duplexes are incised on either side of G*, that none of the recovered cleavage fragments contain G*, and that T* is converted to a normal T in the 3′-fragment cleavage products. The abilities of the DNA glycosylases to incise the DNA strand adjacent to G*, while this base is initially cross-linked with T*, is a surprising observation and an indication of the versatility of these base excision repair proteins. 相似文献
7.
从DNA修复机理看细胞癌变的发生机制 总被引:3,自引:0,他引:3
DNA损伤是引起基因突变,导致细胞恶性转化的重要原因.DNA损伤的修复过程非常复杂,是与细胞周期调节、DNA复制和DNA转录等生命活动紧密相连的.首先DNA修复需要细胞周期停滞,避免DNA损伤进入子代细胞.其次,参与DNA转录的某些基因产物参与DNA损伤的识别,有利于转录链的优先修复.最后,DNA修复系统NER、MMR参与损伤修复.上述DNA修复过程任何环节的异常,都将造成DNA修复功能减弱,导致某些功能基因突变,从而导致细胞的恶性转化. 相似文献
8.
Fran?ois Bélanger Jean-Philippe Angers émile Fortier Ian Hammond-Martel Santiago Costantino Elliot Drobetsky Hugo Wurtele 《The Journal of biological chemistry》2016,291(2):522-537
Nucleotide excision repair (NER) is a highly conserved pathway that removes helix-distorting DNA lesions induced by a plethora of mutagens, including UV light. Our laboratory previously demonstrated that human cells deficient in either ATM and Rad3-related (ATR) kinase or translesion DNA polymerase η (i.e. key proteins that promote the completion of DNA replication in response to UV-induced replicative stress) are characterized by profound inhibition of NER exclusively during S phase. Toward elucidating the mechanistic basis of this phenomenon, we developed a novel assay to quantify NER kinetics as a function of cell cycle in the model organism Saccharomyces cerevisiae. Using this assay, we demonstrate that in yeast, deficiency of the ATR homologue Mec1 or of any among several other proteins involved in the cellular response to replicative stress significantly abrogates NER uniquely during S phase. Moreover, initiation of DNA replication is required for manifestation of this defect, and S phase NER proficiency is correlated with the capacity of individual mutants to respond to replicative stress. Importantly, we demonstrate that partial depletion of Rfa1 recapitulates defective S phase-specific NER in wild type yeast; moreover, ectopic RPA1–3 overexpression rescues such deficiency in either ATR- or polymerase η-deficient human cells. Our results strongly suggest that reduction of NER capacity during periods of enhanced replicative stress, ostensibly caused by inordinate sequestration of RPA at stalled DNA replication forks, represents a conserved feature of the multifaceted eukaryotic DNA damage response. 相似文献
9.
W. Dean Rupp 《The Yale journal of biology and medicine》2013,86(4):499-505
The discovery of nucleotide excision repair in 1964 showed that DNA could berepaired by a mechanism that removed the damaged section of a strand andreplaced it accurately by using the remaining intact strand as the template.This result showed that DNA could be actively metabolized in a process that hadno precedent. In 1968, experiments describing postreplication repair, a processdependent on homologous recombination, were reported. The authors of thesepapers were either at Yale University or had prior Yale connections. Here werecount some of the events leading to these discoveries and consider the impacton further research at Yale and elsewhere. 相似文献
10.
核苷酸剪切修复(NER)途径是维持生物体基因组稳定的重要机制。人着色性干皮病B组(xeroderma pigmentosum group B,XPB)基因又名ERCC3基因,它既是NER途径不可缺少的成员又是转录因子TFIIH的最大p89亚基。它是具有从3’端→5’端依赖ATP的单链DNA解旋酶活性的蛋白质,执行依赖DNA的ATP酶和解旋酶功能,在损伤DNA修复和基因转录中均起重要作用,并将两者有机偶联。该基因突变将导致3种不同的遗传疾病:着色性干皮病(xeroderma pigmentosum,XP),科凯恩氏综合征(cockayne’s syndrome,CS),毛发硫营养不艮(trichothiodystrophy,TTD)。其基因型通过在DNA修复和转录中的功能与表型联系起来。另外,XPB与p53存在物理和功能上的相互作用。现从XPB的3个方面即“一个基因,两种功能,3种疾病”作一综述。 相似文献
11.
《Critical reviews in biochemistry and molecular biology》2013,48(3):261-290
Cellular genomes are vulnerable to an array of DNA-damaging agents, of both endogenous and environmental origin. Such damage occurs at a frequency too high to be compatible with life. As a result cell death and tissue degeneration, aging and cancer are caused. To avoid this and in order for the genome to be reproduced, these damages must be corrected efficiently by DNA repair mechanisms. Eukaryotic cells have multiple mechanisms for the repair of damaged DNA. These repair systems in humans protect the genome by repairing modified bases, DNA adducts, crosslinks and double-strand breaks. The lesions in DNA are eliminated by mechanisms such as direct reversal, base excision and nucleotide excision. The base excision repair eliminates single damaged-base residues by the action of specialized DNA glycosylases and AP endonucleases. Nucleotide excision repair excises damage within oligomers that are 25 to 32 nucleotides long. This repair utilizes many proteins to remove the major UV-induced photoproducts from DNA, as well as other types of modified nucleotides. Different DNA polymerases and ligases are utilized to complete the separate pathways. The double-strand breaks in DNA are repaired by mechanisms that involve DNA protein kinase and recombination proteins. The defect in one of the repair protein results in three rare recessive syndromes: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. This review describes the biochemistry of various repair processes and summarizes the clinical features and molecular mechanisms underlying these disorders. 相似文献
12.
Cellular DNA damage response is critical to preserving genomic integrity
following exposure to genotoxic stress. A complex series of networks and
signaling pathways become activated after DNA damage and trigger the appropriate
cellular response, including cell cycle arrest, DNA repair, and apoptosis. The
response elicited is dependent upon the type and extent of damage sustained,
with the ultimate goal of preventing propagation of the damaged DNA. A major
focus of our studies is to determine the cellular pathways involved in
processing damage induced by altered helical structures, specifically triplexes.
Our lab has demonstrated that the TFIIH factor XPD occupies a central role in
triggering apoptosis in response to triplex-induced DNA strand breaks. We have
shown that XPD co-localizes with γH2AX, and its presence is required for the
phosphorylation of H2AX tyrosine142, which stimulates the signaling pathway to
recruit pro-apoptotic factors to the damage site. Herein, we examine the
cellular pathways activated in response to triplex formation and discuss our
finding that suggests that XPD-dependent apoptosis plays a role in preserving
genomic integrity in the presence of excessive structurally induced DNA
damage. 相似文献
13.
Philip C. Hanawalt Priscilla K. Cooper Ann K. Ganesan R. Stephen Lloyd Charles A. Smith Miriam E. Zolan 《Journal of cellular biochemistry》1982,18(3):271-283
Bacteria and eukaryotic cells employ a variety of enzymatic pathways to remove damage from DNA or to lessen its impact upon cellular functions. Most of these processes were discovered in Escherichia coli and have been most extensively analyzed in this organism because suitable mutants have been isolated and characterized. Analogous pathways have been inferred to exist in mammalian cells from the presence of enzyme activities similar to those known to be involved in repair in bacteria, from the analysis of events in cells treated with DNA damaging agents, and from the analysis of the few naturally occurring mutant cell types. Excision repair of pyrimidine dimers produced by UV in E coli is initiated by an incision event catalyzed by a complex composed of uvrA, uvrB, and uvrC gene products. Multiple exonuclease and polymerase activities are available for the subsequent excision and resynthesis steps. In addition to the constitutive pathway, which produces short patches of 20–30 nucleotides, an inducible excision repair process exists that produces much longer patches. This long patch pathway is controlled by the recA-lexA regulatory circuit and also requires the recF gene. It is apparently not responsible for UV-induced mutagenesis. However, the ability to perform inducible long patch repair correlates with enhanced bacterial survival and with a major component of the Weigle reactivation of bacteriophage with double-strand DNA genomes. Mammalian cells possess an excision repair pathway similar to the constitutive pathway in E coli. Although not as well understood, the incision event is at least as complex, and repair resynthesis produces patches of about the same size as the constitutive short patches. In mammalian cells, no patches comparable in size to those produced by the inducible pathway of E coli are observed. Repair in mammalian cells may be more complicated than in bacteria because of the structure of chromatin, which can affect both the distribution of DNA damage and its accessibility to repair enzymes. A coordinated alteration and reassembly of chromatin at sites of repair may be required. We have observed that the sensitivity of digestion by staphylococcal nuclease (SN) of newly synthesized repair patches resulting from excision of furocoumarin adducts changes with time in the same way as that of patches resulting from excision of pyrimidine dimers. Since furocoumarin adducts are formed only in the SN-sensitive linker DNA between nucleosome cores, this suggests that after repair resynthesis is completed, the nucleosome cores in the region of the repair event do not return exactly to their original positions. We have also studied excision repair of UV and chemical damage in the highly repeated 172 base pair α DNA sequence in African green monkey cells. In UV irradiated cells, the rate and extent of repair resynthesis in this sequence is similar to that in bulk DNA. However, in cells containing furocoumarin adducts, repair resynthesis in α DNA is only about 30% of that in bulk DNA. Since the frequency of adducts does not seem to be reduced in α DNA, it appears that certain adducts in this unique DNA may be less accessible to repair. Endonuclease V of bacteriophage T4 incises DNA at pyrimidine dimers by cleaving first the glycosylic bond between deoxyribose and the 5′ pyrimidine of the dimer and then the phosphodiester bond between the two pyrimidines. We have cloned the gene (denV) that codes for this enzyme and have demonstrated its expression in uvrA recA and uvrB recA cells of E coli. Because T4 endonuclease V can alleviate the excision repair deficiency of xeroderma pigmentosum when added to permeabilized cells or to isolated nuclei after UV irradiation, the cloned denV gene may ultimately be of value for analyzing DNA repair pathways in cultured human cells. 相似文献
14.
15.
Tsai PS Nielen M van der Horst GT Colenbrander B Heesterbeek JA van Vlissingen JM 《Transgenic research》2005,14(6):845-857
In this study, we used an epidemiological approach to analyze an animal database of DNA repair deficient mice on reproductive
performance in five Nucleotide Excision Repair (NER) mutant mouse models on a C57BL/6 genetic background, namely CSA, CSB,
XPA, XPC [models for the human DNA repair disorders Cockayne Syndrome (CS) and xeroderma pigmentosum (XP), respectively] and
mHR23B (not associated with human disease). This approach allowed us to detect and quantify reproductive effects based on
a relatively small number of matings. We measured and quantified the scale of the effect between factors that might influence
reproductive performance (i.e. age at co-housing, seasons) and reproductive parameters (i.e. litter size and pairing-to-birth
interval –‘pbi’). Besides, we detected and quantified the differences in reproductive performance between wild type mice and
heterozygous/homozygous NER mutant mice. From our analyses, we found impaired reproduction in heterozygous and homozygous
knock out mice; in particular, reduced litter size and lengthened pbi was related to the NER mutation-mHR23B, in heterozygous
couples, even if they were otherwise phenotypically normal. Heterozygous mHR23B couples produced a 6.6-fold lower number of
mHR23B−/− pups than indicated by Mendelian expectation; other genetic deficiencies studied were not statistically significant from
each other or wild type controls. We concluded that careful epidemiological evaluations by analysis of animal database could
provide reliable information on reproductive performance and detect deviations that would remain unnoticed without this. Also,
some managerial aspects of mouse breeding could be evaluated. 相似文献
16.
Solar UV radiation induces significant levels of DNA damage in living things. This damage, if left unrepaired, is lethal in humans. Recent work has demonstrated that plants possess several repair pathways for UV-induced DNA damage, including pathways for the photoreactivation of both 6-4 products and cyclobutane pyrimidine dimers (CPDs), the two lesions most frequently induced by UV. Plants also possess the more general nucleotide excision repair (NER) pathway as well as bypass polymerases that enable the plant to replicate its DNA in the absence of DNA repair.This revised version was published online in October 2005 with corrections to the Cover Date. 相似文献
17.
Pavana M. Hegde Arijit Dutta Shiladitya Sengupta Joy Mitra Sanjay Adhikari Alan E. Tomkinson Guo-Min Li Istvan Boldogh Tapas K. Hazra Sankar Mitra Muralidhar L. Hegde 《The Journal of biological chemistry》2015,290(34):20919-20933
The human DNA glycosylase NEIL1 was recently demonstrated to initiate prereplicative base excision repair (BER) of oxidized bases in the replicating genome, thus preventing mutagenic replication. A significant fraction of NEIL1 in cells is present in large cellular complexes containing DNA replication and other repair proteins, as shown by gel filtration. However, how the interaction of NEIL1 affects its recruitment to the replication site for prereplicative repair was not investigated. Here, we show that NEIL1 binarily interacts with the proliferating cell nuclear antigen clamp loader replication factor C, DNA polymerase δ, and DNA ligase I in the absence of DNA via its non-conserved C-terminal domain (CTD); replication factor C interaction results in ∼8-fold stimulation of NEIL1 activity. Disruption of NEIL1 interactions within the BERosome complex, as observed for a NEIL1 deletion mutant (N311) lacking the CTD, not only inhibits complete BER in vitro but also prevents its chromatin association and reduced recruitment at replication foci in S phase cells. This suggests that the interaction of NEIL1 with replication and other BER proteins is required for efficient repair of the replicating genome. Consistently, the CTD polypeptide acts as a dominant negative inhibitor during in vitro repair, and its ectopic expression sensitizes human cells to reactive oxygen species. We conclude that multiple interactions among BER proteins lead to large complexes, which are critical for efficient BER in mammalian cells, and the CTD interaction could be targeted for enhancing drug/radiation sensitivity of tumor cells. 相似文献
18.
19.
Philip C. Hanawalt 《The Yale journal of biology and medicine》2013,86(4):517-523
As a graduate student with Professor Richard Setlow at Yale in the late 1950s, I
studied the effects of ultraviolet and visible light on the syntheses of DNA,
RNA, and protein in bacteria. I reflect upon my research in the Yale Biophysics
Department, my subsequent postdoctoral experiences, and the eventual analyses in
the laboratories of Setlow, Paul Howard-Flanders, and myself that constituted
the discovery of the ubiquitous pathway of DNA excision repair in the early
1960s. I then offer a brief perspective on a few more recent developments in the
burgeoning DNA repair field and their relationships to human disease. 相似文献