共查询到20条相似文献,搜索用时 15 毫秒
1.
Olga Kuten-Pella Andrea De Luna Karina Kramer Markus Neubauer Stefan Nehrer Zsombor Lacza 《Current issues in molecular biology》2021,43(2):665
Intra-articular injection of different types of blood-derived products is gaining popularity and clinical importance in the treatment of degenerative cartilage disorders such as osteoarthritis. The regenerative potential of two types of platelet-rich plasma (PRP), prepared in the presence of EDTA (EPRP) and citrate (CPRP) and an alternative blood product-hyperacute serum (hypACT) was evaluated using a 3D osteoarthritic chondrocyte pellet model by assessing the metabolic cell activity, cartilage-related gene expression and extracellular matrix deposition within the pellets. Chondrocyte viability was determined by XTT assay and it revealed no significant difference in metabolic activity of OA chondrocyte pellets after supplementation with different blood products. Nevertheless, the selection of blood products influenced the cartilage-related genes expression, ECM morphology and the tissue quality of pellets. Both PRP types had a different biological effect depending upon concentration and even though CPRP is widely used in clinics our assessment did not reveal good results in gene expression either tissue quality. HypACT supplementation resulted in superior cartilage-related genes expression together with tissue quality and seemed to be the most stable product since no remarkable changes were observed between the two different concentrations. All in all, for successful regenerative therapy, possible molecular mechanisms induced by blood-derived products should be always carefully investigated and adapted to the specific medical indications. 相似文献
2.
Xiaofeng Cui Guifang Gao Tomo Yonezawa Guohao Dai 《Journal of visualized experiments : JoVE》2014,(88)
Bioprinting, which is based on thermal inkjet printing, is one of the most attractive enabling technologies in the field of tissue engineering and regenerative medicine. With digital control cells, scaffolds, and growth factors can be precisely deposited to the desired two-dimensional (2D) and three-dimensional (3D) locations rapidly. Therefore, this technology is an ideal approach to fabricate tissues mimicking their native anatomic structures. In order to engineer cartilage with native zonal organization, extracellular matrix composition (ECM), and mechanical properties, we developed a bioprinting platform using a commercial inkjet printer with simultaneous photopolymerization capable for 3D cartilage tissue engineering. Human chondrocytes suspended in poly(ethylene glycol) diacrylate (PEGDA) were printed for 3D neocartilage construction via layer-by-layer assembly. The printed cells were fixed at their original deposited positions, supported by the surrounding scaffold in simultaneous photopolymerization. The mechanical properties of the printed tissue were similar to the native cartilage. Compared to conventional tissue fabrication, which requires longer UV exposure, the viability of the printed cells with simultaneous photopolymerization was significantly higher. Printed neocartilage demonstrated excellent glycosaminoglycan (GAG) and collagen type II production, which was consistent with gene expression. Therefore, this platform is ideal for accurate cell distribution and arrangement for anatomic tissue engineering. 相似文献
3.
Helen Harrington Felicity R.A.J. Rose Jonathan W. Aylott Amir M. Ghaemmaghami 《Journal of visualized experiments : JoVE》2013,(81)
Culturing cells in 3D on appropriate scaffolds is thought to better mimic the in vivo microenvironment and increase cell-cell interactions. The resulting 3D cellular construct can often be more relevant to studying the molecular events and cell-cell interactions than similar experiments studied in 2D. To create effective 3D cultures with high cell viability throughout the scaffold the culture conditions such as oxygen and pH need to be carefully controlled as gradients in analyte concentration can exist throughout the 3D construct. Here we describe the methods of preparing biocompatible pH responsive sol-gel nanosensors and their incorporation into poly(lactic-co-glycolic acid) (PLGA) electrospun scaffolds along with their subsequent preparation for the culture of mammalian cells. The pH responsive scaffolds can be used as tools to determine microenvironmental pH within a 3D cellular construct. Furthermore, we detail the delivery of pH responsive nanosensors to the intracellular environment of mammalian cells whose growth was supported by electrospun PLGA scaffolds. The cytoplasmic location of the pH responsive nanosensors can be utilized to monitor intracellular pH (pHi) during ongoing experimentation. 相似文献
4.
5.
Cardiovascular disease is one of the leading cause of mortality in the US and especially, coronary artery disease increases with an aging population and increasing obesity1. Currently, bypass surgery using autologous vessels, allografts, and synthetic grafts are known as a commonly used for arterial substitutes2. However, these grafts have limited applications when an inner diameter of arteries is less than 6 mm due to low availability, thrombotic complications, compliance mismatch, and late intimal hyperplasia3,4. To overcome these limitations, tissue engineering has been successfully applied as a promising alternative to develop small-diameter arterial constructs that are nonthrombogenic, robust, and compliant. Several previous studies have developed small-diameter arterial constructs with tri-lamellar structure, excellent mechanical properties and burst pressure comparable to native arteries5,6. While high tensile strength and burst pressure by increasing collagen production from a rigid material or cell sheet scaffold, these constructs still had low elastin production and compliance, which is a major problem to cause graft failure after implantation. Considering these issues, we hypothesized that an elastometric biomaterial combined with mechanical conditioning would provide elasticity and conduct mechanical signals more efficiently to vascular cells, which increase extracellular matrix production and support cellular orientation.The objective of this report is to introduce a fabrication technique of porous tubular scaffolds and a dynamic mechanical conditioning for applying them to arterial tissue engineering. We used a biodegradable elastomer, poly (glycerol sebacate) (PGS)7 for fabricating porous tubular scaffolds from the salt fusion method. Adult primary baboon smooth muscle cells (SMCs) were seeded on the lumen of scaffolds, which cultured in our designed pulsatile flow bioreactor for 3 weeks. PGS scaffolds had consistent thickness and randomly distributed macro- and micro-pores. Mechanical conditioning from pulsatile flow bioreactor supported SMC orientation and enhanced ECM production in scaffolds. These results suggest that elastomeric scaffolds and mechanical conditioning of bioreactor culture may be a promising method for arterial tissue engineering. 相似文献
6.
目的研究MC3T3-E1细胞在自组装多肽水凝胶支架上的生长和成骨分化.方法在多肽水凝胶支架RADA16上接种MC3T3-E1细胞,荧光染色观察细胞形态和存活情况;组织化学染色检测MC3T3-E1细胞碱性磷酸酶活性以及细胞外钙质沉积;RT-PCR分析成骨特异性基因的表达.结果 MC3T3-E1细胞在水凝胶支架RADA16上粘附铺展良好,呈纺锤样形态.诱导培养后支架上的细胞有较高水平的碱性磷酸酶表达和矿化基质沉积.此外,骨分化特异性基因骨桥蛋白和骨涎蛋白也有表达,且表达量随培养时间的延长而增多.结论 在自组装水凝胶内MC3T3-E1细胞可向成骨方向分化,并能在凝胶内产生矿化的细胞外基质. 相似文献
7.
Kathy Yuan Ye Kelly Elizabeth Sullivan Lauren Deems Black 《Journal of visualized experiments : JoVE》2011,(55)
Culturing cells in a three dimensional hydrogel environment is an important technique for developing constructs for tissue engineering as well as studying cellular responses under various culture conditions in vitro. The three dimensional environment more closely mimics what the cells observe in vivo due to the application of mechanical and chemical stimuli in all dimensions 1. Three-dimensional hydrogels can either be made from synthetic polymers such as PEG-DA 2 and PLGA 3 or a number of naturally occurring proteins such as collagen 4, hyaluronic acid 5 or fibrin 6,7. Hydrogels created from fibrin, a naturally occurring blood clotting protein, can polymerize to form a mesh that is part of the body''s natural wound healing processes 8. Fibrin is cell-degradable and potentially autologous 9, making it an ideal temporary scaffold for tissue engineering.Here we describe in detail the isolation of neonatal cardiomyocytes from three day old rat pups and the preparation of the cells for encapsulation in fibrin hydrogel constructs for tissue engineering. Neonatal myocytes are a common cell source used for in vitro studies in cardiac tissue formation and engineering 4. Fibrin gel is created by mixing fibrinogen with the enzyme thrombin. Thrombin cleaves fibrinopeptides FpA and FpB from fibrinogen, revealing binding sites that interact with other monomers 10. These interactions cause the monomers to self-assemble into fibers that form the hydrogel mesh. Because the timing of this enzymatic reaction can be adjusted by altering the ratio of thrombin to fibrinogen, or the ratio of calcium to thrombin, one can injection mold constructs with a number of different geometries 11,12. Further we can generate alignment of the resulting tissue by how we constrain the gel during culture 13.After culturing the engineered cardiac tissue constructs for two weeks under static conditions, the cardiac cells have begun to remodel the construct and can generate a contraction force under electrical pacing conditions 6. As part of this protocol, we also describe methods for analyzing the tissue engineered myocardium after the culture period including functional analysis of the active force generated by the cardiac muscle construct upon electrical stimulation, as well as methods for determining final cell viability (Live-Dead assay) and immunohistological staining to examine the expression and morphology of typical proteins important for contraction (Myosin Heavy Chain or MHC) and cellular coupling (Connexin 43 or Cx43) between myocytes. 相似文献
8.
Background
Many human tissues are comprised of multilayered tissue structures in which spatial organization is essential to provide biological tissue functions.Methods
Recently, strategies such as 3D bioprinting, photolithography, 3D auto-assembly, molding or bulk acoustic cells manipulation have been developed to fabricate layered tissue mimics. These methods have broad applications in tissue engineering for the bioengineering of multilayered structures, and for the fundamental understanding of many microphysiological and pathological process like cell differentiation. Each method relies on the use of a special scaffold structure made of natural or artificially created biopolymers, and of specific cell types.In the field of neuronal 3D constructs fabrication, where ex-vivo samples are difficult to get, different strategies have been developed going from rat neurons culture to embryonic stem cells culture and differentiation into neurons after their encapsulation in 3D scaffolds.Conclusion
All those possibilities open new perspectives for the future, aiming to the development of different types of tissues composed of different multilayer structures. 相似文献9.
目的:探讨同种异体软骨细胞移植联合骨形态发生蛋白(BMP)/碱性成纤维细胞生长因子(bFGF)对关节软骨损伤的修复作用。方法:取24只14周龄成年大白兔,随机分为A、B、C、D组,每组6只,于双侧膝关节软骨处制作软骨缺损模型,A组采用软骨细胞移植联合应用BMP/bFGF处理,B组采用单纯软骨细胞移植,C组采用单纯BMP/bFGF修复,D组采用磷酸盐缓冲液(PBS)作为阴性对照,于处理后8、12、24周行形态学、电镜观察及组织学评分。结果:8周时,A组关节修复面与周围结合紧密,可见大量软骨细胞出现,电镜下有软骨基质形成;B、C组仅有少量软骨细胞;D组未见修复。12周时,A组关节修复面与周围组织界限模糊,软骨细胞增殖活跃,电镜下可见成熟软骨基质;B、C组修复块周围有肉芽组织生成,电镜下可见未成熟的软骨基质出现;D组可见肉芽组织形成。24周时,A组修复面周围组织融合,电镜下软骨细胞纵行排列;B、C组关节面修复不完全,电镜下软骨细胞分布不均;D组见大量肉芽组织形成。24周时,A组组织学评分(1.87±0.65),明显低于B组(3.49±0.71)、C组(3.43±0.83)组和D组(13.45±0.97),差异均有统计学意义(P〈0.05),B、C组均明显低于D组,差异有统计学意义(P〈0.05),B、C组之间比较无明显差异。结论:软骨细胞联合BMP/bFGF移植能够促进软骨生长,提高软骨损伤的修复质量。 相似文献
10.
Hyun-Do Jung Hyun Lee Hyoun-Ee Kim Young-Hag Koh Juha Song 《Journal of visualized experiments : JoVE》2015,(106)
Biometal systems have been widely used for biomedical applications, in particular, as load-bearing materials. However, major challenges are high stiffness and low bioactivity of metals. In this study, we have developed a new method towards fabricating a new type of bioactive and mechanically reliable porous metal scaffolds-densified porous Ti scaffolds. The method consists of two fabrication processes, 1) the fabrication of porous Ti scaffolds by dynamic freeze casting, and 2) coating and densification of the porous scaffolds. The dynamic freeze casting method to fabricate porous Ti scaffolds allowed the densification of porous scaffolds by minimizing the chemical contamination and structural defects. The densification process is distinctive for three reasons. First, the densification process is simple, because it requires a control of only one parameter (degree of densification). Second, it is effective, as it achieves mechanical enhancement and sustainable release of biomolecules from porous scaffolds. Third, it has broad applications, as it is also applicable to the fabrication of functionally graded porous scaffolds by spatially varied strain during densification. 相似文献
11.
Karolina Chwalek Disha Sood William L. Cantley James D. White Min Tang-Schomer David L. Kaplan 《Journal of visualized experiments : JoVE》2015,(104)
Despite huge efforts to decipher the anatomy, composition and function of the brain, it remains the least understood organ of the human body. To gain a deeper comprehension of the neural system scientists aim to simplistically reconstruct the tissue by assembling it in vitro from basic building blocks using a tissue engineering approach. Our group developed a tissue-engineered silk and collagen-based 3D brain-like model resembling the white and gray matter of the cortex. The model consists of silk porous sponge, which is pre-seeded with rat brain-derived neurons, immersed in soft collagen matrix. Polarized neuronal outgrowth and network formation is observed with separate axonal and cell body localization. This compartmental architecture allows for the unique development of niches mimicking native neural tissue, thus enabling research on neuronal network assembly, axonal guidance, cell-cell and cell-matrix interactions and electrical functions. 相似文献
12.
Sébastien Meghezi Dawit G. Seifu Nina Bono Larry Unsworth Kibret Mequanint Diego Mantovani 《Journal of visualized experiments : JoVE》2015,(100)
Synthetic materials are known to initiate clinical complications such as inflammation, stenosis, and infections when implanted as vascular substitutes. Collagen has been extensively used for a wide range of biomedical applications and is considered a valid alternative to synthetic materials due to its inherent biocompatibility (i.e., low antigenicity, inflammation, and cytotoxic responses). However, the limited mechanical properties and the related low hand-ability of collagen gels have hampered their use as scaffold materials for vascular tissue engineering. Therefore, the rationale behind this work was first to engineer cellularized collagen gels into a tubular-shaped geometry and second to enhance smooth muscle cells driven reorganization of collagen matrix to obtain tissues stiff enough to be handled.The strategy described here is based on the direct assembling of collagen and smooth muscle cells (construct) in a 3D cylindrical geometry with the use of a molding technique. This process requires a maturation period, during which the constructs are cultured in a bioreactor under static conditions (without applied external dynamic mechanical constraints) for 1 or 2 weeks. The “static bioreactor” provides a monitored and controlled sterile environment (pH, temperature, gas exchange, nutrient supply and waste removal) to the constructs. During culture period, thickness measurements were performed to evaluate the cells-driven remodeling of the collagen matrix, and glucose consumption and lactate production rates were measured to monitor the cells metabolic activity. Finally, mechanical and viscoelastic properties were assessed for the resulting tubular constructs. To this end, specific protocols and a focused know-how (manipulation, gripping, working in hydrated environment, and so on) were developed to characterize the engineered tissues. 相似文献
13.
Methods for culturing mammalian cells ex vivo are increasingly needed to study cell and tissue physiology and to grow replacement tissue for regenerative medicine. Two‐dimensional culture has been the paradigm for typical in vitro cell culture; however, it has been demonstrated that cells behave more natively when cultured in three‐dimensional environments. Permissive, synthetic hydrogels and promoting, natural hydrogels have become popular as three‐dimensional cell culture platforms; yet, both of these systems possess limitations. In this perspective, we discuss the use of both synthetic and natural hydrogels as scaffolds for three‐dimensional cell culture as well as synthetic hydrogels that incorporate sophisticated biochemical and mechanical cues as mimics of the native extracellular matrix. Ultimately, advances in synthetic–biologic hydrogel hybrids are needed to provide robust platforms for investigating cell physiology and fabricating tissue outside of the organism. Biotechnol. Bioeng. 2009;103: 655–663. © 2009 Wiley Periodicals, Inc. 相似文献
14.
关节软骨损伤后的自我修复是医学界一直在研究和探讨的难题。3D生物打印技术可以精准的分配载细胞生物材料,构建复杂的三维活体组织,在优化软骨缺损修复组织的内部结构、机械性能以及生物相容性上有很大优势,因此近年来成为软骨修复组织工程领域的研究热点。重点介绍了软骨生物3D生物打印的最新进展,包括软骨生物打印“墨水”材料的选择、种子细胞的来源以及3D生物打印技术的发展。此外,还阐述了3D生物打印技术在组织工程学应用上的部分局限性,并对其在软骨修复领域的发展与应用进行了预测。 相似文献
15.
For tissue engineering applications, the preparation of biodegradable and biocompatible scaffolds is the most desirable but challenging task. Among the various fabrication methods, electrospinning is the most attractive one due to its simplicity and versatility. Additionally, electrospun nanofibers mimic the size of natural extracellular matrix ensuring additional support for cell survival and growth. This study showed the viability of the fabrication of long fibers spanning a larger deposit area for a novel biodegradable and biocompatible polymer named poly(glycerol-dodecanoate) (PGD)1 by using a newly designed collector for electrospinning. PGD exhibits unique elastic properties with similar mechanical properties to nerve tissues, thus it is suitable for neural tissue engineering applications. The synthesis and fabrication set-up for making fibrous scaffolding materials was simple, highly reproducible, and inexpensive. In biocompatibility testing, cells derived from mouse embryonic stem cells could adhere to and grow on the electrospun PGD fibers. In summary, this protocol provided a versatile fabrication method for making PGD electrospun fibers to support the growth of mouse embryonic stem cell derived neural lineage cells. 相似文献
16.
Joseph S. Uzarski Jimmy Su Yan Xie Zheng J. Zhang Heather H. Ward Angela Wandinger-Ness William M. Miller Jason A. Wertheim 《Journal of visualized experiments : JoVE》2015,(102)
This protocol details the generation of acellular, yet biofunctional, renal extracellular matrix (ECM) scaffolds that are useful as small-scale model substrates for organ-scale tissue development. Sprague Dawley rat kidneys are cannulated by inserting a catheter into the renal artery and perfused with a series of low-concentration detergents (Triton X-100 and sodium dodecyl sulfate (SDS)) over 26 hr to derive intact, whole-kidney scaffolds with intact perfusable vasculature, glomeruli, and renal tubules. Following decellularization, the renal scaffold is placed inside a custom-designed perfusion bioreactor vessel, and the catheterized renal artery is connected to a perfusion circuit consisting of: a peristaltic pump; tubing; and optional probes for pH, dissolved oxygen, and pressure. After sterilizing the scaffold with peracetic acid and ethanol, and balancing the pH (7.4), the kidney scaffold is prepared for seeding via perfusion of culture medium within a large-capacity incubator maintained at 37 °C and 5% CO2. Forty million renal cortical tubular epithelial (RCTE) cells are injected through the renal artery, and rapidly perfused through the scaffold under high flow (25 ml/min) and pressure (~230 mmHg) for 15 min before reducing the flow to a physiological rate (4 ml/min). RCTE cells primarily populate the tubular ECM niche within the renal cortex, proliferate, and form tubular epithelial structures over seven days of perfusion culture. A 44 µM resazurin solution in culture medium is perfused through the kidney for 1 hr during medium exchanges to provide a fluorometric, redox-based metabolic assessment of cell viability and proliferation during tubulogenesis. The kidney perfusion bioreactor permits non-invasive sampling of medium for biochemical assessment, and multiple inlet ports allow alternative retrograde seeding through the renal vein or ureter. These protocols can be used to recellularize kidney scaffolds with a variety of cell types, including vascular endothelial, tubular epithelial, and stromal fibroblasts, for rapid evaluation within this system. 相似文献
17.
Dorothy R. Ahlf Wheatcraft Xin Liu Amanda B. Hummon 《Journal of visualized experiments : JoVE》2014,(94)
Three dimensional cell cultures are attractive models for biological research. They combine the flexibility and cost-effectiveness of cell culture with some of the spatial and molecular complexity of tissue. For example, many cell lines form 3D structures given appropriate in vitro conditions. Colon cancer cell lines form 3D cell culture spheroids, in vitro mimics of avascular tumor nodules. While immunohistochemistry and other classical imaging methods are popular for monitoring the distribution of specific analytes, mass spectrometric imaging examines the distribution of classes of molecules in an unbiased fashion. While MALDI mass spectrometric imaging was originally developed to interrogate samples obtained from humans or animal models, this report describes the analysis of in vitro three dimensional cell cultures, including improvements in sample preparation strategies. Herein is described methods for growth, harvesting, sectioning, washing, and analysis of 3D cell cultures via matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) imaging. Using colon carcinoma 3D cell cultures as a model system, this protocol demonstrates the ability to monitor analytes in an unbiased fashion across the 3D cell culture system with MALDI-MSI. 相似文献
18.
实验使用海藻酸钠水凝胶作为细胞支架.模拟软骨细胞体内生长的三维环境,研究了体外三维培养条件下,不同浓度的胎牛血清(FBS)和硒酸复合液(ITS)体系对兔透明软骨细胞(hyaline cartilage)的牛长、增殖和细胞外基质分泌活动的影响.结果 表明,三维模式培养21天,透明软骨细胞仍然具有较好的增殖活性.在硒酸复合液及低浓度血清时,细胞未去分化,保持分泌Ⅱ型胶原(Collagen Ⅱ)和软骨聚集蛋白聚糖(Aggrecan)的能力,与之比较,高浓度胎牛血清(10%)培养条件下,在21天开始细胞去分化,即硒酸复合液在一定的血清浓度下有助于维持软骨细胞生长、增殖,避免了软骨细胞受高浓度血清影响而去分化. 相似文献
19.
Nicola H. Green Bernard M. Corfe Jonathan P. Bury Sheila MacNeil 《Journal of visualized experiments : JoVE》2015,(99)
The incidence of both esophageal adenocarcinoma and its precursor, Barrett’s Metaplasia, are rising rapidly in the western world. Furthermore esophageal adenocarcinoma generally has a poor prognosis, with little improvement in survival rates in recent years. These are difficult conditions to study and there has been a lack of suitable experimental platforms to investigate disorders of the esophageal mucosa.A model of the human esophageal mucosa has been developed in the MacNeil laboratory which, unlike conventional 2D cell culture systems, recapitulates the cell-cell and cell-matrix interactions present in vivo and produces a mature, stratified epithelium similar to that of the normal human esophagus. Briefly, the model utilizes non-transformed normal primary human esophageal fibroblasts and epithelial cells grown within a porcine-derived acellular esophageal scaffold. Immunohistochemical characterization of this model by CK4, CK14, Ki67 and involucrin staining demonstrates appropriate recapitulation of the histology of the normal human esophageal mucosa.This model provides a robust, biologically relevant experimental model of the human esophageal mucosa. It can easily be manipulated to investigate a number of research questions including the effectiveness of pharmacological agents and the impact of exposure to environmental factors such as alcohol, toxins, high temperature or gastro-esophageal refluxate components. The model also facilitates extended culture periods not achievable with conventional 2D cell culture, enabling, inter alia, the study of the impact of repeated exposure of a mature epithelium to the agent of interest for up to 20 days. Furthermore, a variety of cell lines, such as those derived from esophageal tumors or Barrett’s Metaplasia, can be incorporated into the model to investigate processes such as tumor invasion and drug responsiveness in a more biologically relevant environment. 相似文献
20.
Xiao Li Jiankang He Yaxiong Liu Qian Zhao Wanquan Wu Dichen Li Zhongmin Jin 《仿生工程学报(英文版)》2013,10(1):57-64
Biomaterial scaffolds play an important role in maintaining the viability and biological functions of highly metabolic hepatocytes in liver tissue engineering. One of the major challenges involves building a complex microchannel network inside three-dimensional (3D) scaffolds for efficient mass transportation. Here we presented a biomimetic strategy to generate a microchannel network within porous biomaterial scaffolds by mimicking the vascular tree of rat liver. The typical parameters of the blood vessels were incorporated into the biomimetic design of the microchannel network such as branching angle and diameter. Silk fibroin-gelatin scaffolds with biomimetic vascular tree were fabricated by combining micromolding, freeze drying and 3D rolling techniques. The relationship between the micro-channeled design and flow pattern was revealed by a flow experiment, which indicated that the scaffolds with biomimetic vascular tree exhibited unique capability in improving mass transportation inside the 3D scaffold. The 3D scaffolds, preseeded with primary hepatocytes, were dynamically cultured in a bioreactor system. The results confirmed that the pre-designed biomimetic microchannel network facilitated the generation and expansion of hepatocytes. 相似文献