首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent decades the mouse has become the primary animal model of a variety of lung diseases. In models of emphysema or fibrosis, the essential phenotypic changes are best assessed by measurement of the changes in lung elasticity. To best understand specific mechanisms underlying such pathologies in mice, it is essential to make functional measurements that can reflect the developing pathology. Although there are many ways to measure elasticity, the classical method is that of the total lung pressure-volume (PV) curve done over the whole range of lung volumes. This measurement has been made on adult lungs from nearly all mammalian species dating back almost 100 years, and such PV curves also played a major role in the discovery and understanding of the function of pulmonary surfactant in fetal lung development. Unfortunately, such total PV curves have not been widely reported in the mouse, despite the fact that they can provide useful information on the macroscopic effects of structural changes in the lung. Although partial PV curves measuring just the changes in lung volume are sometimes reported, without a measure of absolute volume, the nonlinear nature of the total PV curve makes these partial ones very difficult to interpret. In the present study, we describe a standardized way to measure the total PV curve. We have then tested the ability of these curves to detect changes in mouse lung structure in two common lung pathologies, emphysema and fibrosis. Results showed significant changes in several variables consistent with expected structural changes with these pathologies. This measurement of the lung PV curve in mice thus provides a straightforward means to monitor the progression of the pathophysiologic changes over time and the potential effect of therapeutic procedures.  相似文献   

2.
小鼠肺腺癌模型的建立及肿瘤病理分析   总被引:2,自引:0,他引:2  
目的用乙基亚硝脲(ENU)在BABL/c小鼠建立肺腺癌模型并对ENU所诱发的肺腺癌进行病理观察。方法妊娠17d的SPF级母鼠腹腔接受ENU或缓冲液注射,在子代鼠的鼠龄满32周时收获其全肺标本,对肺组织进行常规石蜡半连续切片,HE染色,镜下观察肿瘤病理。结果 ENU经胎盘一次性诱发子代鼠多发性肺肿瘤形成,病理显示这些肿瘤为处于不同发展阶段的腺瘤和腺癌,腺癌的类型有细支气管肺泡癌样腺癌(雌性:5/6,雄性:4/6)和分化不等的腺癌(雌性:4/6,雄性:5/6),诱癌频率在雌、雄性小鼠均为5/6,癌变频率在雌性16/43,雄性12/31。结论成功建立了小鼠肺腺癌模型,肿瘤病理的多样性提示癌变机制在分子水平的复杂性。  相似文献   

3.
Activation of the Fas/Fas ligand (FasL) system in the lungs results in a form of injury characterized by alveolar epithelial apoptosis and neutrophilic inflammation. Studies in vitro show that Fas activation induces apoptosis in alveolar epithelial cells and cytokine production in alveolar macrophages. The main goal of this study was to determine the contribution of alveolar macrophages to Fas-induced lung inflammation in mice, by depleting alveolar macrophages using clodronate-containing liposomes. Liposomes containing clodronate or PBS were instilled by intratracheal instillation. After 24 h, the mice received intratracheal instillations of the Fas-activating monoclonal antibody Jo2 or an isotype control antibody and were studied 18 h later. The Jo2 MAb induced increases in bronchoalveolar lavage fluid (BALF) total neutrophils, lung caspase-3 activity, and BALF total protein and worsened histological lung injury in the macrophage-depleted mice. Studies in vitro showed that Fas activation induced the release of the cytokine KC in a mouse lung epithelial cell line, MLE-12. These results suggest that the lung inflammatory response to Fas activation is not primarily dependent on resident alveolar macrophages and may instead depend on cytokine release by alveolar epithelial cells.  相似文献   

4.
The use of a model that mimics the condition of lung diseases in humans is critical for studying the pathophysiology and/or etiology of a particular disease and for developing therapeutic intervention. With the increasing availability of knockout and transgenic derivatives, together with a vast amount of genetic information, mice provide one of the best models to study the molecular mechanisms underlying the pathology and physiology of lung diseases. Inhalation, intranasal instillation, intratracheal instillation, and intratracheal intubation are the most widely used techniques by a number of investigators to administer materials of interest to mouse lungs. There are pros and cons for each technique depending on the goals of a study. Here a noninvasive intratracheal intubation method that can directly deliver exogenous materials to mouse lungs is presented. This technique was applied to administer bleomycin to mouse lungs as a model to study pulmonary fibrosis.  相似文献   

5.
Intratracheal instillations deliver solutes directly into the lungs. This procedure targets the delivery of the instillate into the distal regions of the lung, and is therefore often incorporated in studies aimed at studying alveoli. We provide a detailed survival protocol for performing intratracheal instillations in mice. Using this approach, one can target delivery of test solutes or solids (such as lung therapeutics, surfactants, viruses, and small oligonucleotides) into the distal lung. Tracheal instillations may be the preferred methodology, over inhalation protocols that may primarily target the upper respiratory tract and possibly expose the investigator to potentially hazardous substances. Additionally, in using the tracheal instillation protocol, animals can fully recover from the non-invasive procedure. This allows for making subsequent physiological measurements on test animals, or reinstallation using the same animal. The amount of instillate introduced into the lung must be carefully determined and osmotically balanced to ensure animal recovery. Typically, 30-75 μL instillate volume can be introduced into mouse lung.Download video file.(31M, mov)  相似文献   

6.
Organ volume is a critical parameter in morphometric analysis. The special problems of the lung as a nonsolid organ are overcome by tracheal instillation of fixatives at a constant airway pressure (P(aw)). Lung volume can change significantly after fixation as P(aw) change. To determine the variation of lung volume after fixation, we measured the volume of intact fixed lungs by serial immersion in saline (V(imm)) at selected time points, compared with measurements obtained by point counting [Cavalieri Principle (V(cav))] after tissue sectioning to release P(aw). V(imm) was systematically higher than V(cav) by 25% in dog lungs and 13% in guinea pig lungs (P = 0.0003 between species). This size-dependent variability reflects residual elastic recoil, refolding and/or crumpling of alveolar septa after fixation. V(imm) remained 14% higher than V(cav) in dog lungs even after pressure release. V(cav)/V(imm) was systematically lower in the upper than the lower strata of the same lung. We conclude that V(cav) measured on lung slices after relaxation of P(aw) more precisely represents the state of the tissue to be used for subsequent morphometric analysis, particularly for large lungs.  相似文献   

7.
Several recent studies have demonstrated localization of donor bone marrow-derived cells in recipient lungs following transplantation from male to female mice or patients. Donor cells are identified by detection of the Y chromosome by fluorescence in situ hybridization (FISH). However, protein digestion pretreatments usually required for tissue FISH significantly limit the ability to detect cell type-specific markers by immunohistochemistry. We have used an alternative protein digest approach that entails heating the slides in 10 mM sodium citrate rather than utilizing a protease digestion. This approach preserves cell proteins following FISH, and allows lung tissue to remain intact for subsequent detection of cell-specific markers by immunohistochemistry. We have examined this technique in mouse lungs using a Y chromosome paint and three cell-specific markers, a pan-cytokeratin for epithelial cells, PECAM-1 for endothelial cells, and CD45 for leukocytes. Excellent visualization of both the Y chromosome and cell-specific surface protein markers was obtained on a single slide. This approach will significantly enhance the ability to detect and identify donor bone marrow cells in recipient mouse lungs following male to female transplantation.  相似文献   

8.
Emphysema is characterized by enlargement of the alveoli, which is the most important parameter to assess the presence and severity of this disease. Alveolar enlargement is primarily defined on morphological criteria; therefore, characterization of this disease with morphological parameters is a prerequisite to study the pathogenesis. For this purpose, different methods of lung fixation were evaluated in a murine model of LPS-induced lung emphysema. Five different methods of lung fixation were evaluated: intratracheal instillation of fixatives, in situ fixation, fixed-volume fixation, vascular whole body perfusion, and vacuum inflation. In addition, the effects of three different fixatives (10% formalin, Carnoy's, and agarose/10% formalin solution) and two embedding methods (paraffin and plastic) were investigated on the murine lung morphology. Mice received intranasal administration of LPS to induce alveolar wall destruction. Quantification of air space enlargement was determined by mean linear intercept analysis, and the histological sections were analyzed for the most optimal fixation method. Additionally, routine immunohistological staining was performed on lung tissue of PBS-treated mice. Intratracheal instillation of formalin or agarose/formalin solution, in situ fixation, and fixed-volume fixation provided a normal lung architecture, in contrast to the lungs fixed via whole body perfusion and vacuum inflation. Formalin-fixed lungs resulted in the most optimal lung morphology for lung emphysema analysis when embedded in paraffin, while for Carnoy's fixed lungs, plastic embedding was preferred. The histological findings, the mean linear intercept measurement, and the immunohistochemistry data demonstrated that fixation by intratracheal instillation of 10% formalin or in situ fixation with 10% formalin are the two most optimal methods to fix lungs for alveolar enlargement analysis to study lung emphysema.  相似文献   

9.
A method is described using desorption electrospray ionization (DESI) mass spectrometry (MS) to obtain phospholipid mass spectral profiles from crude lung tissue extracts. The measured DESI mass spectral lipid fingerprints were then analyzed by unsupervised learning principal components analysis (PCA). This combined approach was used to differentiate the effect(s) of two vaccination routes on lipid composition in mouse lungs. Specifically, the two vaccination routes compared were intranasal (i.n.) and intradermal (i.d.) inoculation of the Francisella tularensis live vaccine strain (Ft–LVS). Lung samples of control and LVS-inoculated mice were quickly extracted with a methanol/chloroform solution, and the crude extract was directly analyzed by DESI–MS, with a total turnaround time of less than 10 min/sample. All of the measured DESI mass spectra (in both positive and negative ion mode) were compared via PCA, resulting in clear differentiation of mass spectral profiles of i.n.-inoculated mouse lung tissues from those of i.d.-inoculated and control mouse lung tissues. Lipid biomarkers responsible for sample differentiation were identified via tandem MS (MS/MS) measurements or by comparison with mass spectra of lipid standards. The DESI–MS approach described here provided a practical and rapid means to analyze tissue samples without extensive extractions and solvent changes.  相似文献   

10.

Background

The formation of discrete elastin bands at the tips of secondary alveolar septa is important for normal alveolar development, but the mechanisms regulating the lung elastogenic program are incompletely understood. JNK suppress elastin synthesis in the aorta and is important in a host of developmental processes. We sought to determine whether JNK suppresses pulmonary fibroblast elastogenesis during lung development.

Methods

Alveolar size, elastin content, and mRNA of elastin-associated genes were quantitated in wild type and JNK-deficient mouse lungs, and expression profiles were validated in primary lung fibroblasts. Tropoelastin protein was quantitated by Western blot. Changes in lung JNK activity throughout development were quantitated, and pJNK was localized by confocal imaging and lineage tracing.

Results

By morphometry, alveolar diameters were increased by 7% and lung elastin content increased 2-fold in JNK-deficient mouse lungs compared to wild type. By Western blot, tropoelastin protein was increased 5-fold in JNK-deficient lungs. Postnatal day 14 (PND14) lung JNK activity was 11-fold higher and pJNK:JNK ratio 6-fold higher compared to PN 8 week lung. Lung tropoelastin, emilin-1, fibrillin-1, fibulin-5, and lysyl oxidase mRNAs inversely correlated with lung JNK activity during alveolar development. Phosphorylated JNK localized to pulmonary lipofibroblasts. PND14 JNK-deficient mouse lungs contained 7-fold more tropoelastin, 2,000-fold more emilin-1, 800-fold more fibrillin-1, and 60-fold more fibulin-5 than PND14 wild type lungs. Primarily lung fibroblasts from wild type and JNK-deficient mice showed similar differences in elastogenic mRNAs.

Conclusions

JNK suppresses fibroblast elastogenesis during the alveolar stage of lung development.  相似文献   

11.
Because most studies addressing the regulatory mechanisms of intercellular adhesion molecule (ICAM)-1 expression have used cultured endothelial cells, we set out to develop an isolated mouse lung preparation to study gene and protein expression in its proper cellular context in the organ. Lungs from CD1 mice were isolated and perfused (2 ml/min, 37 degrees C) with a recirculating volume of RPMI 1640 solution supplemented with 3 g/100 ml albumin. Lungs maintained their isogravimetric state for 4 h. Tumor necrosis factor (TNF-alpha; 2,000 U/ml) was added to the perfusate for 0.5, 1, 2, or 3.5 h to induce ICAM-1 expression or lungs received no treatment (control). After quick-freezing the lungs using liquid nitrogen at different time points, the prepared tissue homogenates were analyzed for ICAM-1 protein expression by Western blotting and NF-kappaB activation by electrophoretic mobility shift assay. TNF-alpha caused a progressive increase in NF-kappaB activity after 0.5 h and ICAM-1 protein expression two- to threefold of basal after 2 h. Untreated lungs expressed a low and constant level of ICAM-1 between 0 and 3.5 h. TNF-alpha failed to induce NF-kappaB activation and ICAM-1 expression in lungs of NADPH oxidase-deficient mice lacking p47(phox). We disaggregated mouse lungs using collagenase and stained the cells for ICAM-1 and VE-cadherin (used as an endothelial marker) to assess the in situ endothelial-specific expression of ICAM-1. We observed that TNF-alpha challenge resulted in increased ICAM-1 expression in endothelial cells freshly isolated from lungs. These data show the role of NADPH oxidase-derived oxidant signaling in the mechanism of NF-kappaB activation and ICAM-1 expression in mouse lung endothelial cells. Moreover, the general method presented herein has potential value in assessing mechanisms of gene and protein expression in the isolated-perfused mouse lung model.  相似文献   

12.
Summary The localization of manganese superoxide dismutase (MnSOD) was determined using immunohistochemistry of various tissues of normal and transgenic mice which express the human enzyme, with emphasis on studies of mouse kidney and lung. Mouse kidney and lung were studied using both frozen section analysis and paraffin sections following fixation in a variety of fixatives. Formalin fixation resulted in a loss of antigenicity, while fixation in zinc formalin or B5 fixative gave results similar to those from frozen sections. Immunoperoxidase studies using antibodies to MnSOD showed greater staining in transgenic kidney or lung than in identical tissues in normal mice when appropriate fixation was used. In contrast, equal immunostaining was obtained in kidney or lung from normal and transgenic mice when antibodies to catalase or copper zinc superoxide dismutase were utilized. Immunogold ultrastructural analysis of MnSOD localization for lung and kidney was also performed. As compared to normal mice, transgenic mice exhibited greater staining of the mitochondria of kidney interstitial fibroblasts and glomerular, endothelial, and smooth muscle cells. In the lungs of transgenic animals, all cells showed increased staining; smooth muscle cells demonstrated the most marked increase in immunolabelling. The results indicate that these transgenic mice overexpress MnSOD in their mitochondria, and that this occurs selectively in at least some mesenchymal tissues.This study was supported by the Medical Research Service of the Department of Veterans Affairs (TDO), by National Institutes of Health grants No. CA-41267 (LWO), No. HL-39585 and No. HL-44571 (Y-SH), and by the Department of Anesthesiology Research and Development Funds (DBC, HPC).  相似文献   

13.
Maximal lung volume or total lung capacity in experimental animals is dependent on the pressure to which the lungs are inflated. Although 25-30 cm H2O are nominally used for such inflations, mouse pressure-volume (P-V) curves show little flattening on inflation to those pressures. In the present study, we examined P-V relations and mean alveolar chord length in three strains (C3H/HeJ, A/J, and C57BL/6J) at multiple inflation pressures. Mice were anesthetized, and their lungs were degassed in vivo by absorption of 100% O2. P-V curves were then recorded in situ with increasing peak inflation pressure in 10-cm H2O increments up to 90 cm H2O. Lungs were quickly frozen at specific pressures for morphometric analysis. The inflation limbs never showed the appearance of a plateau, with lung volume increasing 40-60% as inflation pressure was increased from 30 to 60 cm H2O. In contrast, parallel flat deflation limbs were always observed, regardless of the inflation pressure, indicating that the presence of a flat deflation curve cannot be used to justify measurement of total lung capacity in mice. Alveolar size increased monotonically with increasing pressure in all strains, and there was no evidence of irreversible lung damage from these inflations to high pressures. These results suggest that the mouse lung never reaches a maximal volume, even up to nonphysiological pressures >80 cm H2O.  相似文献   

14.
Fas (CD95) is a membrane surface receptor, which, in the lungs, is expressed in macrophages, neutrophils, and epithelial cells. In mice, Fas activation leads to a form of lung injury characterized by increased alveolar permeability. We investigated whether Fas-mediated lung injury occurs primarily as a result of Fas activation in myeloid cells (such as macrophages) or in nonmyeloid cells (such as epithelial cells). Chimeric mice lacking Fas in either myeloid or nonmyeloid cells were generated by transplanting marrow cells from lpr mice (which lack Fas) into lethally irradiated C57BL/6 mice (MyFas(-) group) or vice versa (MyFas(+) group). Additional mice transplanted with marrow cells from their same strain served as controls (Fas(+) ctr and Fas(-) ctr groups). Sixty days after transplantation, the mice received intratracheal instillations of the Fas-activating mAb Jo2 (n = 10/group), or an isotype control Ab (n = 10/group), and were euthanized 24-h later. Only animals expressing Fas in nonmyeloid cells (Fas(+) ctr and MyFas(-)) showed significant increases in lung neutrophil content and in alveolar permeability. These same mice showed tissue evidence of lung injury and caspase-3 activation in cells of the alveolar walls. Despite differences in the neutrophilic response and lung injury, there was no statistical difference in the lung cytokine concentrations (KC and MIP-2) among groups. We conclude that Fas-mediated lung injury requires expression of Fas on nonmyeloid cells of the lungs. These findings suggest that the alveolar epithelium is the primary target of Fas-mediated acute lung injury, and demonstrate that apoptotic processes may be associated with neutrophilic inflammation.  相似文献   

15.
The presence of growth hormone (GH) and GH receptors (GHRs) in the lung suggests it is an autocrine/paracrine target site for pulmonary GH action and/or an endocrine site of pituitary GH action. Roles for GH in lung growth or pulmonary function are, however, uncertain. The possibility that pituitary and/or pulmonary GH have physiological roles in lung development has therefore been investigated in GHR knockout (KO or -/-) mice, using a proteomics approach to determine if an absence of GH-signaling affects the proteome of the developing lung. More than 600 proteins were detected by 2-DE in the lungs of control [GHR (+/+)] and GHR (-/-) mice at the end of the alveolarization period (at day 14 postnatally). Of these, 39 differed significantly in protein content at the p>0.05 level [6 were of higher abundance in the GHR (-/-) group, 33 were of lower abundance] and 17 differed at the p>0.02 level [5 of higher abundance in the GHR (-/-) group, 12 of lower abundance] and 7 were definitively identified by MS. Vimentin, a protein involved in cellular proliferation, was reduced in content by approximately 75% in the lungs of the GHR (-/-) mice. Three proteins involved in oxidative protection [SH3 domain-binding glutamic acid-rich-like protein, peroxiredoxin 6 (Prdx6), and isocitrate dehydrogenase 1] were also of lower content in the GHR (-/-) lungs (by approximately 88%, 81% and 70%, respectively). Prdx6 is also involved in lipid and surfactant metabolism, as is apolipoprotein A-IV, the lung content of which was reduced by approximately 73% in these mice. Proteasome 26S ATPase subunit 4, a protein involved in the non-lysosomal degradation of intracellular proteins, and electron flavoprotein alpha subunit , involved in intracellular metabolism, were also reduced in content in the lungs of the GHR (-/-) mice (by approximately 70% and 49%, respectively). These results therefore suggest that these proteins are normally dependent upon GH signaling, and that GH is normally involved in early lung growth, oxidative protection, lipid and energy metabolism and in proteasomal activity. These roles may reflect endocrine actions of pituitary GH and/or local autocrine/paracrine actions of GH produced within the lung.  相似文献   

16.
Deficiency of vitamin D is associated with accelerated decline in lung function. Vitamin D is a ligand for nuclear hormone vitamin D receptor (VDR), and upon binding it modulates various cellular functions. The level of VDR is reduced in lungs of patients with chronic obstructive pulmonary disease (COPD) which led us to hypothesize that deficiency of VDR leads to significant alterations in lung phenotype that are characteristics of COPD/emphysema associated with increased inflammatory response. We found that VDR knock-out (VDR–/–) mice had increased influx of inflammatory cells, phospho-acetylation of nuclear factor-kappaB (NF-κB) associated with increased proinflammatory mediators, and up-regulation of matrix metalloproteinases (MMPs) MMP-2, MMP-9, and MMP-12 in the lung. This was associated with emphysema and decline in lung function associated with lymphoid aggregates formation compared to WT mice. These findings suggest that deficiency of VDR in mouse lung can lead to an early onset of emphysema/COPD because of chronic inflammation, immune dysregulation, and lung destruction.  相似文献   

17.
Although the biology the PLUNC (recently renamed BPI fold, BPIF) family of secreted proteins is poorly understood, multiple array based studies have suggested that some are differentially expressed in lung diseases. We have examined the expression of BPIFB1 (LPLUNC1), the prototypic two-domain containing family member, in lungs from CF patients and in mouse models of CF lung disease. BPIFB1 was localized in CF lung samples along with BPIFA1, MUC5AC, CD68 and NE and directly compared to histologically normal lung tissues and that of bacterial pneumonia. We generated novel antibodies to mouse BPIF proteins to conduct similar studies on ENaC transgenic (ENaC-Tg) mice, a model for CF-like lung disease. Small airways in CF demonstrated marked epithelial staining of BPIFB1 in goblet cells but staining was absent from alveolar regions. BPIFA1 and BPIFB1 were not co-localised in the diseased lungs. In ENaC-Tg mice there was strong staining of both proteins in the airways and luminal contents. This was most marked for BPIFB1 and was noted within 2?weeks of birth. The two proteins were present in distinct cells within epithelium. BPIFB1 was readily detected in BAL from ENaC-Tg mice but was absent from wild-type mice. Alterations in the expression of BPIF proteins is associated with CF lung disease in humans and mice. It is unclear if this elevation of protein production, which results from phenotypic alteration of the cells within the diseased epithelium, plays a role in the pathogenesis of the disease.  相似文献   

18.
Lung fibrosis is often treated with corticosteroids to reduce the inflammatory response, however, no effective treatment options exist for the underlying disease. An important player in the fibrotic cascade is the cytokine, transforming growth factor beta (TGFβ). TGFβ is converted from an inactive procytokine complex to active TGFβ by enzymes such as thrombospondin-1 (TSP-1). It is therefore presumed that TSP-1 deficient mice would fare better to bleomycin-induced pulmonary fibrosis because TGFβ would not be efficiently converted to the active form. Interestingly, a recent article by Ezzie and colleagues shows that TSP-1 deficiency does not protect mice from systemic bleomycin challenge. Indeed, they find the opposite, as TSP-1-null mice appear to exhibit greater lung fibrosis than wild type mice, although similar TGFβ signaling was observed in the lungs of both mouse strains.  相似文献   

19.
Adenosine signaling has diverse actions on inflammation and tissue injury. Levels of adenosine are rapidly elevated in response to tissue injury; however, the mechanisms responsible for adenosine production in response to injury are not well understood. In this study, we found that adenosine levels are elevated in the lungs of mice injured by the drug bleomycin. In addition, increased activity of ecto-5'-nucleotidase (CD73) was found in the lungs in conjunction with adenosine elevations. To determine the contribution of CD73 to the generation of adenosine in the lung, CD73(-/-) mice were subjected to bleomycin challenges. Results demonstrated that CD73(-/-) mice challenged with bleomycin no longer accumulated adenosine in their lungs, suggesting that the primary means of adenosine production following bleomycin injury resulted from the release and subsequent dephosphorylation of adenine nucleotides. CD73(-/-) mice challenged with bleomycin exhibited enhanced pulmonary inflammation and fibrosis as well as exaggerated expression of proinflammatory and profibrotic mediators in the lung. Intranasal instillations of exogenous nucleotidase restored the ability of lungs of CD73(-/-) mice to accumulate adenosine following bleomycin challenge. Furthermore, these treatments were associated with a decrease in pulmonary inflammation and fibrosis. CD73(+/+) animals challenged with bleomycin and supplemented with exogenous nucleotidase also exhibited reduced inflammation. Together, these findings suggest that CD73-dependent adenosine production contributes to anti-inflammatory pathways in bleomycin-induced lung injury.  相似文献   

20.
We have observed extensive mast cell degranulation in the reperfused hindlimb muscle of the mouse, accompanied by pathological changes within the muscle. As quantitated by the tissue:blood (125)I permeability ratio, both the hindlimbs and lungs exhibited a significant increment in permeability during hindlimb reperfusion. In lungs of the same mice, mast cell-derived chymase mMCP-1 coats alveolar macrophages, an event noted by us in acid-induced direct lung injury. Mast cells in the lung contain mMCP-1, whereas those in the muscle do not. Neither extensive muscle injury nor an increased pulmonary permeability index occurs in the mast cell-deficient W/W(v) mice. We conclude that the mast cell is a key mediator in both local ischemia-reperfusion injury (I-R) of muscle and consequent remote lung injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号