首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To investigate the direct effect of leukocyte adherence to microvessel walls on microvessel permeability, we developed a method to measure changes in hydraulic conductivity (L(p)) before and after leukocyte adhesion in individually perfused venular microvessels in frog mesentery. In 19 microvessels that were initially free of leukocyte sticking or rolling along the vessel wall, control L(p) was measured first with Ringer-albumin perfusate. Blood flow was then restored in each vessel with a reduced flow rate in the range of 30-116 microm/s to facilitate leukocyte adhesion. Each vessel was recannulated in 45 min. The mean number of leukocytes adhering to the vessel wall was 237 +/- 22 leukocytes/mm(2). At the same time, L(p) increased to 4.7 +/- 0.5 times the control value. Superfusion of isoproterenol (10 microM) after leukocyte adhesion brought the increased L(p) back to 1.1 +/- 0.2 times the control in 5-10 min (n = 9). Superfusing isoproterenol before leukocyte adhesion prevented the increase in L(p) (n = 6). However, the number of leukocytes adhering to the vessel wall was not significantly affected. These results demonstrated that leukocyte adhesion caused an increase in microvessel permeability that could be prevented or restored by increasing cAMP levels in endothelial cells using isoproterenol. Thus cAMP-dependent mechanisms that regulate inflammatory agent-induced increases in permeability also modulate leukocyte adhesion-induced increases in permeability but act independently of mechanisms that regulate leukocyte adhesion to the microvessel wall. Application of ketotifen, a mast cell stabilizer, and desferrioxamine mesylate, an iron-chelating reagent, attenuated the increase in L(p) induced by leukocyte adhesion, suggesting the involvement of oxidants and the activation of mast cells in leukocyte adhesion-induced permeability increase. Furthermore, with the use of an in vivo silver stain technique, the locations of the adherent leukocytes on the microvessel wall were identified quantitatively in intact microvessels.  相似文献   

2.
The isolated blood-perfused lung preparation is widely used to visualize and define signaling in single microvessels. By coupling this preparation with real time imaging, it becomes feasible to determine permeability changes in individual pulmonary microvessels. Herein we describe steps to isolate rat lungs and perfuse them with autologous blood. Then, we outline steps to infuse fluorophores or agents via a microcatheter into a small lung region. Using these procedures described, we determined permeability increases in rat lung microvessels in response to infusions of bacterial lipopolysaccharide. The data revealed that lipopolysaccharide increased fluid leak across both venular and capillary microvessel segments. Thus, this method makes it possible to compare permeability responses among vascular segments and thus, define any heterogeneity in the response. While commonly used methods to define lung permeability require postprocessing of lung tissue samples, the use of real time imaging obviates this requirement as evident from the present method. Thus, the isolated lung preparation combined with real time imaging offers several advantages over traditional methods to determine lung microvascular permeability, yet is a straightforward method to develop and implement.  相似文献   

3.
We demonstrated previously that inhibition of endothelial nitric oxide synthase (NOS), using pharmacological inhibitors, attenuated the ionomycin- and ATP-induced increases in microvessel permeability (Am J Physiol Heart Circ Physiol 272: H176-H185, 1997). Recently, the scaffolding domain of caveolin-1 (CAV) has been implicated as a negative regulator of endothelial NOS (eNOS). To examine the role of CAV-eNOS interaction in regulation of permeability in intact microvessels, the effect of internalized CAV on the platelet-activating factor (PAF)-induced permeability increase was investigated in rat mesenteric venular microvessels. Internalization of CAV was achieved by perfusion of individual vessels using a fusion peptide of CAV with Antennapedia homeodomain (AP-CAV) and visualized by fluorescence imaging and electron microscopy. Changes in microvessel permeability were evaluated by measuring hydraulic conductivity (Lp) in individually perfused microvessels. We found that the PAF (10 nM)-induced Lp increase was significantly attenuated from 6.0 +/- 0.9 (n = 7) to 2.0 +/- 0.3 (n = 5) times control after microvessels were perfused with 10 microM AP-CAV for 2 h. The magnitude of this reduction is comparable with that of the inhibitory effect of Nomega-monomethyl-l-arginine on the PAF-induced Lp increase. In contrast, perfusion with 10 microM AP alone for 2 h modified neither basal Lp nor the vessel response to PAF. These results indicate that CAV plays an important role in regulation of microvessel permeability. The inhibitory action of CAV on permeability increase might be attributed to its direct inactivation of eNOS. In addition, this study established a method for studying protein-protein interaction-induced functional changes in intact microvessels and demonstrated AP as an efficient vector for translocation of peptide across the cell membrane in vivo.  相似文献   

4.
A theoretical model of transvascular exchange of fluid and plasma proteins in the microcirculation is developed based on fundamental laws of the fluid mechanics and on phenomenological transport equations of the irreversible thermodynamics. Intravascular axial changes of the pressure, flow and plasma protein concentration are taken into account as well as axial gradients of vascular permeability. Proper nondimensionalization of the resulting equations leads to the identification of dimensionless parameters which combine the transport characteristics of the endothelial wall and the intravascular flow resistance. In the theory, the dependence of the reflection coefficient on the transport coefficients of the vascular wall and on the plasma protein concentration is established. The model is applied to the cat mesentery and the rat intestinal muscle. The numerical simulations indicate that taking into account vascular protein permeability yields considerable differences in the axial distribution of the plasma protein concentration and transvascular fluxes in comparison with the case of protein impermeability of the endothelial wall. The results show that the maximum of the transvascular fluid and plasma protein movement resides at the site of the small venules while a minimum of the exchange occurs at the site of the midcapillaries.  相似文献   

5.
Endothelial surface glycocalyx plays an important role in the regulation of microvessel permeability by possibly changing its charge and configuration. To investigate the mechanisms by which surface properties of the endothelial cells control the changes in microvessel permeability, we extended the electrodiffusion model developed by Fu et al. [Am. J. Physiol. 284, H1240-1250 (2003)], which is for the interendothelial cleft with a negatively charged surface glycocalyx layer, to include the filtration due to hydrostatic and oncotic pressures across the microvessel wall as well as the electrical potential across the glycocalyx layer On the basis of the hypotheses proposed by Curry [Microcirculation 1(1): 11-26 (1994)], the predictions from this electrodiffusion-filtration model provide a good agreement with experimental data for permeability of negatively charged a-lactalbumin summarized in Curry [Microcirculation 1(1), 11-26 (1994)] under various conditions. In addition, we applied this new model to describe the transport of negatively charged macromolecules, bovine serum albumin (BSA), across venular microvessels in frog mesentery. According to the model, the convective component of the albumin transport is greatly diminished by the presence of a negatively charged glycocalyx under both normal and increased permeability conditions.  相似文献   

6.
The objective of this study was to investigate whether leukocyte adhesion and/or emigration are critical steps in increased microvessel permeability during acute inflammation. To conduct this study, we combined autologous blood perfusion with a single microvessel perfusion technique, which allows microvessel permeability to be measured precisely after the endothelium has interacted with blood-borne stimuli. Experiments were carried out in intact venular microvessels in rat mesenteries. Firm attachment of leukocytes to endothelial cells was induced by intravenous injection of TNF-alpha (3.5 microg/kg) and resuming autoperfusion in a precannulated microvessel. Leukocyte emigration was facilitated by superfusion of formyl-Met-Leu-Phe-OH. Microvessel permeability was measured as hydraulic conductivity (L(p)) or the solute permeability coefficient to tetramethylrhodamine isothiocyanate-labeled alpha-lactalbumin before and after leukocyte adhesion and emigration in individually perfused microvessels. We found that perfusion of a microvessel with TNF-alpha did not affect basal microvessel permeability, but intravenous injection of TNF-alpha caused significant leukocyte adhesion. However, the significant leukocyte adhesion and emigration did not cause corresponding increases in either L(p) or solute permeability. Thus our results suggest that leukocyte adhesion and emigration do not necessarily increase microvessel permeability and the mechanisms that regulate the adhesion process act independently from mechanisms that regulate permeability. In addition, silver staining of endothelial boundaries demonstrated that leukocytes preferentially adhere at the junctions of endothelial cells. The appearance of the silver lines indicates that the TNF-alpha-induced firm adhesion of leukocyte to microvessel walls did not involve apparent changes in the junctional structure of endothelial cells, which is consistent with the results of permeability measurements.  相似文献   

7.
Experiments in cultured endothelial cell monolayers demonstrate that increased intracellular cAMP strongly inhibits the acute permeability responses by both protein kinase A (PKA)-dependent and -independent pathways. The contribution of the PKA-independent pathways to the anti-inflammatory mechanisms of cAMP in intact mammalian microvessels has not been systematically investigated. We evaluated the role of the cAMP-dependent activation of the exchange protein activated by cAMP (Epac), a guanine nucleotide exchange factor for the small GTPase Rap1, in rat venular microvessels exposed to the platelet-activating factor (PAF). The cAMP analog 8-pCPT-2'-O-methyl-cAMP (O-Me-cAMP), which stimulates the Epac/Rap1 pathway but has no effect on PKA, significantly attenuated the PAF increase in microvessel permeability as measured by hydraulic conductivity (Lp). We also demonstrated that PAF induced a rearrangement of vascular endothelial (VE)-cadherin seen as numerous lateral spikes and frequent short breaks in the otherwise continuous peripheral immunofluorescent label. Pretreatment with O-Me-cAMP completely prevented the PAF-induced rearrangement of VE-cadherin. We conclude that the action of the Epac/Rap1 pathway to stabilize cell-cell adhesion is a significant component of the activity of cAMP to attenuate an acute increase in vascular permeability. Our results indicate that increased permeability in intact microvessels by acute inflammatory agents such as PAF is the result of the decreased effectiveness of the Epac/Rap1 pathway modulation of cell-cell adhesion.  相似文献   

8.
Our previous study (Am J Physiol Heart Circ Physiol 288: H1331-H1338, 2005) demonstrated that TNF-alpha induced significant leukocyte adhesion without causing increases in microvessel permeability, and that formyl-Met-Leu-Phe-OH (fMLP)-stimulated neutrophils in the absence of adhesion increased microvessel permeability via released reactive oxygen species (ROS). The objective of our present study is to investigate the mechanisms that regulate neutrophil respiratory burst and the roles of fMLP-stimulated ROS release from adherent leukocytes in microvessel permeability. A technique that combines single-microvessel perfusion with autologous blood perfusion was employed in venular microvessels of rat mesenteries. Leukocyte adhesion was induced by systemic application of TNF-alpha. Microvessel permeability was assessed by measuring hydraulic conductivity (L(p)). The 2-h autologous blood perfusion after TNF-alpha application increased leukocyte adhesion from 1.2 +/- 0.2 to 13.3 +/- 1.6 per 100 microm of vessel length without causing increases in L(p). When fMLP (10 microM) was applied to either perfusate (n = 5) or superfusate (n = 8) in the presence of adherent leukocytes, L(p) transiently increased to 4.9 +/- 0.9 and 4.4 +/- 0.3 times the control value, respectively. Application of superoxide dismutase or an iron chelator, deferoxamine mesylate, after fMLP application prevented or attenuated the L(p) increase. Chemiluminescence measurements in isolated neutrophils demonstrated that TNF-alpha alone did not induce ROS release but that preexposure of neutrophils to TNF-alpha in vivo or in vitro potentiated fMLP-stimulated ROS release. These results suggest a priming role of TNF-alpha in fMLP-stimulated neutrophil respiratory burst and indicate that the released ROS play a key role in leukocyte-mediated permeability increases during acute inflammation.  相似文献   

9.
A nonlinear, coupled biphasic-mass transport model that includes transvascular fluid exchange is proposed for flow-controlled infusions in brain tissue. The model accounts for geometric and material nonlinearities, a hydraulic conductivity dependent on deformation, and transvascular fluid exchange according to Starling’s law. The governing equations were implemented in a custom-written code assuming spherical symmetry and using an updated Lagrangian finite-element algorithm. Results of the model indicate that, using normal physiological values of vascular permeability, transvascular fluid exchange has negligible effects on tissue deformation, fluid pressure, and transport of the infused agent. As vascular permeability may be increased artificially through methods such as administering nitric oxide, a parametric study was conducted to determine how increased vascular permeability affects flow-controlled infusion. Increased vascular permeability reduced both tissue deformation and fluid pressure, possibly reducing damage to tissue adjacent to the infusion catheter. Furthermore, the loss of fluid to the vasculature resulted in a significantly increased interstitial fluid concentration but a modestly increased tissue concentration. From a clinical point of view, this increase in concentration could be beneficial if limited to levels below which toxicity would not occur. However, the modestly increased tissue concentration may make the increase in interstitial fluid concentration difficult to assess in vivo using co-infused radiolabeled agents.  相似文献   

10.
We reported previously that increasing cAMP levels in endothelial cells attenuated ATP-induced increases in hydraulic conductivity (L(p)), and that the activation of cGMP-dependent pathways was a necessary step to increase L(p) in response to inflammatory mediators. The aim of the present study was to evaluate the role of basal levels of cAMP in microvessel permeability under resting conditions and to evaluate the cross talk between cAMP- and cGMP-dependent signaling mechanisms in regulation of microvessel permeability under stimulated conditions, using individually perfused microvessels from frog and rat mesenteries. We found that reducing cAMP levels by inhibition of adenylate cyclase or inhibiting cAMP-dependent protein kinase through the use of H-89 increased basal L(p) in both frog and rat mesenteric venular microvessels. We also found that 8-bromocAMP (8-BrcAMP, 0.2 and 2 mM) was sufficient to attenuate or abolish the increases in L(p) due to exposure of frog mesenteric venular microvessels to 8-BrcGMP (2 mM) and ATP (10 microM). Similarly, in rat mesenteric venular microvessels, application of 8-BrcAMP (2 mM) abolished the increases in L(p) due to exposure to 8-BrcGMP alone (2 mM) or with the combination of bradykinin (1 nM). In addition, application of erythro-9-(2-hydroxy-3-nonyl)adenine, an inhibitor of cGMP-stimulated phosphodiesterase, significantly attenuated both 8-BrcGMP- and bradykinin-induced increases in L(p). These results demonstrate that basal levels of cAMP are critical to maintaining normal permeability under resting conditions, and that increased levels of cAMP are capable of overcoming the activation of cGMP-dependent pathways, therefore preventing increases in microvessel permeability. The balance between endothelial concentrations of these two opposing cyclic nucleotides controls microvessel permeability, and cAMP levels play a dominant role.  相似文献   

11.
The present study addresses the effect of a sustained change in pressure on microvascular permeability assessed by hydraulic conductivity (Lp) measurements from microvessels of the rat mesentery. With a microperfusion technique, transvascular filtration (normalized to surface area; Jv/S) and Lp were measured in small arterioles (baseline Lp= 0.26 x 10(-7) cm.s(-1).cmH2O(-1)) and venules (baseline Lp= 2.88 x 10(-7) cm.s(-1).cmH2O(-1)). The main finding of this study is that step increases in microvascular pressure led to time-dependent alterations of L(p). Immediately after a twofold step increase in pressure, Jv/S increased in proportion to the pressure change. This observation is consistent with Starling's law that predicts filtration proportional to the overall pressure gradient when Lp is constant. However, when Jv/S measurements continued for 60-90 min past the step in pressure, there was an initial decrease in Jv/S for 30 min ("sealing effect") followed by a substantial increase in Jv/S out to 90 min. The sustained increase in Jv/S suggests an increase in Lp of 36 +/- 7% for small arterioles and 42 +/- 5% for small venules (P < 0.05 for both). In addition, the increase in Lp in response to an increase in pressure was attenuated significantly by nitric oxide synthase inhibition. These results indicate that a pressure-induced mechanical stimulus (possibly Jv) activates a NO-dependent biochemical response that leads to an increase in hydraulic conductivity.  相似文献   

12.
目的 研究实体肿瘤抗肿瘤血管生成治疗作用下,血管正常化期肿瘤血管微环境动力学参数的变化(包括渗透率、水力传导系数、胶体渗透压、表面积与体积的比例和血管管径)对血液灌注的影响.方法 数值模拟肿瘤血管止常化期过程中的血液灌注.设血液为不可压缩牛顿流体,肿瘤内间质流动遵循Darcy定律,管内流量用扩展的Poiseuille定律,跨壁流量采用Starling定律.用差分迭代法数值计算肿瘤血液灌注组织间质压强.结果 在"血管止常化窗口期",肿瘤组织间质压强下降,压强梯度增大.结论 抗血管生成治疗不仅抑制了肿瘤血管生成,而且随肿瘤血管血液动力学参数的变化,在"血管正常化窗口期"改善了肿瘤血液动力学环境,有利于其他治疗肿瘤药物的输运.抗肿瘤血管生成和其它方法联合可望有较好的疗效.  相似文献   

13.
Leukocyte-platelet aggregation and aggregate adhesion have been indicated as biomarkers of the severity of tissue injury during inflammation or ischemic reperfusion. The objective of this study is to investigate the mechanisms of the aggregate adhesion and quantitatively evaluate its relationship with microvessel permeability. A combined autologous blood perfusion with single microvessel perfusion technique was employed in rat mesenteric venular microvessels. The aggregate adhesion was induced by systemic application of TNF-alpha plus local application of platelet-activating factor (PAF). Changes in permeability were determined by measurements of hydraulic conductivity (Lp) before and after aggregate adhesion in the same individually perfused microvessels. The compositions of the adherent aggregates were identified with fluorescent labeling and confocal imaging. In contrast to leukocyte adhesion as single cells resulting in no increase in microvessel permeability, aggregate adhesion induced prolonged increases in microvessel Lp (6.1 +/- 0.9 times the control, n = 9) indicated by the initial Lp measurements after 3 h of blood perfusion, which is distinct from the transient Lp increase caused by PAF-induced endothelial activation in the absence of blood. Isoproteronol (Iso) attenuated aggregate adhesion-mediated Lp increases if applied after autologous blood perfusion and prevented the aggregate adhesion if the initial endothelial activation is inhibited by applying Iso before PAF administration but showed less effect on single leukocyte adhesion. This study demonstrated that leukocyte-platelet aggregate adhesion via a mechanism different from that of single leukocyte adhesion caused a prolonged increase in microvessel permeability. Our results also indicate that the initial activation of endothelial cells by PAF plays a crucial role in the initiation of leukocyte-platelet aggregate adhesion.  相似文献   

14.
The present work is a mathematical model of the fluid filtration in the glomerular network occurring in snakes. The model is based on the differential form of Starling's hypothesis and takes into account the angioarchitecture of the network and the behaviour on the microrheology of blood with nucleated red cells. The model predicts the hemodynamics and the transvascular fluxes in each vascular segment within the network. The model is applied to a vascular network of the glomerulus of the garter snake. A value of 0.593 microns/(s.mmHg) was determined for the hydraulic conductivity of the glomerular capillaries using the geometrical data of the network together with experimental data for the pressures and the blood flow rate reported in the literature. The analysis shows that the local filtration rates cover a wide range. In some of the vascular segments, the filtration leads to such a high increase in colloid-osmotic pressure that the level of the transvascular hydrostatic pressure difference is reached. Mathematical simulations of the variation of the glomerular blood flow rate due to vasoactivity of preglomerular arterioles show the effect on the filtration rate and the hemorheologic parameters.  相似文献   

15.
F E Curry 《FASEB journal》1992,6(7):2456-2466
It has been proposed that calcium ion influx into endothelial cells modulates the permeability of venular microvessels via a calcium-dependent contractile process. The results of recent investigations using permeabilized endothelial cell monolayers conform to this hypothesis by demonstrating a calcium-dependent interaction of endothelial actin and myosin during the retraction of adjacent endothelial cells exposed to inflammatory agents. Little is known about the pathway for calcium influx into endothelial cells after exposure to mediators of inflammation, but evidence suggests that the properties of the calcium entry pathways are similar to the calcium entry pathways that regulate the release of endothelium-derived relaxing factor (EDRF). Substances that stimulate EDRF release from arterial endothelium also increase venular microvessel permeability. Recently developed methods to measure cytoplasmic calcium concentration in the endothelial cells forming the walls of individually perfused microvessels enable a direct investigation of the modulation of the permeability of venular microvessels by calcium influx. These experiments demonstrate that the magnitude of the initial increase in the permeability of microvessels after exposure to an agent that increases permeability, such as a calcium ionophore, is determined by the magnitude of calcium ion influx into the endothelial cells. Furthermore, the magnitude of the calcium influx into endothelial cells is modulated by the membrane potential of the endothelial cells. Depolarization of the endothelial cell membrane reduces calcium influx and attenuates increases in permeability whereas hyperpolarization of the endothelial membrane increases calcium influx and potentiates increases in permeability. These data conform to the hypothesis that a passive conductance channel for calcium is a major pathway for calcium ion flux responsible to eliciting an increase in the permeability of the endothelial barrier in microvessels.  相似文献   

16.
In this study, addition of phospholipase A2 (PLA2) to salt-perfused isolated rabbit lungs containing rabbit polymorphonuclear leukocytes leads to an increase in pulmonary capillary permeability. We add 1.5 X 10(8) polymorphonuclear leukocytes to the perfusate. Next, indomethacin is added to the perfusate and 40 units of PLA2 are infused into the pulmonary arterial inflow of the lungs. At the end of the study, a lung sample is removed for measurement of transvascular albumin flux using I125-albumin as a measure of the permeability-surface area product. Control studies demonstrate no increase in transvascular albumin flux. Addition of a dual cyclooxygenase and lipoxygenase inhibitor, BW755C, to the perfusate prevents the increase in transvascular albumin flux. We conclude that PLA2 interacts with polymorphonuclear leukocytes to increase protein permeability. Since PLA2 can release endogenous arachidonic acid and platelet-activating factor from cells, this suggests that release of such products may contribute to an increase in pulmonary capillary permeability from polymorphonuclear leukocytes. The ability of BW755C to prevent the increase suggests the possibility that lipoxygenase products contribute.  相似文献   

17.
We determined the role of vascular endothelial (VE)-cadherin complex in regulating the permeability of pulmonary microvessels. Studies were made in mouse lungs perfused with albumin-Krebs containing EDTA, a Ca(2+) chelator, added to study the VE-cadherin junctional disassembly. We then repleted the perfusate with Ca(2+) to restore VE-cadherin integrity. Confocal microscopy showed a disappearance of VE-cadherin immunostaining in a time- and dose-dependent manner after Ca(2+) chelation and reassembly of the VE-cadherin complex within 5 min after Ca(2+) repletion. We determined the (125)I-labeled albumin permeability-surface area product and capillary filtration coefficient (K(fc)) to quantify alterations in the pulmonary microvessel barrier. The addition of EDTA increased (125)I-albumin permeability-surface area product and K(fc) in a concentration-dependent manner within 5 min. The permeability response was reversed within 5 min after repletion of Ca(2+). An anti-VE-cadherin monoclonal antibody against epitopes responsible for homotypic adhesion augmented the increase in K(fc) induced by Ca(2+) chelation and prevented reversal of the response. We conclude that the disassembled VE-cadherins in endothelial cells are mobilized at the junctional plasmalemmal membrane such that VE-cadherins can rapidly form adhesive contact and restore microvessel permeability by reannealing the adherens junctions.  相似文献   

18.
Segmental barrier properties of the pulmonary microvascular bed.   总被引:3,自引:0,他引:3  
We determined liquid flux across single pulmonary microvessels of dog, ferret, and rat by our split-drop technique (J. Appl. Physiol. 64: 2562-2567, 1988). Data are reported from 58 lungs excised under halothane or pentobarbital sodium anesthesia and then blood perfused. We stopped blood flow at known vascular pressures and then micropunctured microvessels to inject oil, which we split with albumin solution. From measurements of vessel diameter and split oil drop length, we calculated Jv, the liquid transport rate per unit surface area [x 10(-6) ml/(cm2.s)]. At constant vascular pressure, Jv was not significantly different after different periods of oil-endothelium contact and at different sites within a single vessel. From measurements of Jv at different vascular pressures, we determined Lp, the hydraulic conductivity [x 10(-7) ml/(cm2.s.cmH2O)], and Pzf, the zero filtration pressure. From determinations of Pzf at different albumin concentrations, we quantified sigma alb, the albumin reflection coefficient. Lp and Pzf did not differ among venules of the same lung. However, in venules, Lp was 40% higher and sigma alb 25% lower than in arterioles (P less than 0.01). We conclude that 1) micropuncture procedures incidental to our split-drop technique do not progressively deteriorate the experimental microvessel and 2) in lung, permeability is higher in venules than in arterioles.  相似文献   

19.
Summary Isolated rat mesentery, mounted in a diffusion cell, is used as a model for the study of vascular endothelium permeability characteristics. The passage of tracer molecules is measured in the absence of osmotic or hydrostatic pressure gradients across the mesentery. The permeability coefficient of the membrane for cortisol and progesterone is similar. When bound to transcortin, cortisol crosses mesentery at a significantly slower rate. Metyrapone diatartrate increases by 30% the passage of free and of transcortinbound cortisol, but is without effect on the passage of progesterone or glucose in the same conditions. When the transfer of cholesterol across mesentery is studied, a high percentage of the tracer is trapped by the membrane.  相似文献   

20.
We demonstrated previously that inhibition of the small GTPase Rac-1 by Clostridium sordellii lethal toxin (LT) increased the hydraulic conductivity (L(p)) of rat venular microvessels and induced gap formation in cultured myocardial endothelial cells (MyEnd). In MyEnd cells, we also demonstrated that both LT and cytochalasin D reduced cellular adhesion of vascular endothelial (VE)-cadherin-coated beads. Here we further evaluate the contribution of actin depolymerization, myosin-based contraction, and VE-cadherin linkage to the actin cytoskeleton to LT-induced permeability. The actin-depolymerizing agent cytochalasin D increased L(p) in single rat mesenteric microvessels to the same extent as LT over 80 min. However, whereas the actin-stabilizing agent jasplakinolide blunted the L(p) increase due to cytochalasin D by 78%, it had no effect on the LT response. This conforms to the hypothesis that the predominant mechanism whereby Rac-1 stabilizes the endothelial barrier in intact microvessels is separate from actin polymerization and likely at the level of the VE-cadherin linkage to the actin cytoskeleton. In intact vessels, neither inhibition of contraction (butanedione monoxime, an inhibitor of myosin ATPase) nor inhibition of Rho kinase (Y-27632) modified the response to LT, even though both inhibitors lowered resting L(p). In contrast butanedione monoxime and inhibition of myosin light chain kinase completely inhibited LT-induced intercellular gap formation and largely reduced the LT-induced permeability increase in MyEnd monolayers. These results support the hypothesis that the contractile mechanisms that contribute to the formation of large gaps between cultured endothelial cells exposed to inflammatory conditions do not significantly contribute to increased permeability in intact microvessels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号