首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Conventional frequency quantitative ultrasound in conjunction with textural analysis techniques was investigated to monitor noninvasively the effects of cancer therapies in an in vivo preclinical model. METHODS: Conventional low-frequency (~7 MHz) and high-frequency (~20 MHz) ultrasound was used with spectral analysis, coupled with textural analysis on spectral parametric maps, obtained from xenograft tumor-bearing animals (n = 20) treated with chemotherapy to extract noninvasive biomarkers of treatment response. RESULTS: Results indicated statistically significant differences in quantitative ultrasound-based biomarkers in both low- and high-frequency ranges between untreated and treated tumors 12 to 24 hours after treatment. Results of regression analysis indicated a high level of correlation between quantitative ultrasound-based biomarkers and tumor cell death estimates from histologic analysis. Applying textural characterization to the spectral parametric maps resulted in an even stronger correlation (r2 = 0.97). CONCLUSION: The results obtained in this research demonstrate that quantitative ultrasound at a clinically relevant frequency can monitor tissue changes in vivo in response to cancer treatment administration. Using higher order textural information extracted from quantitative ultrasound spectral parametric maps provides more information at a high sensitivity related to tumor cell death.  相似文献   

2.
The aim of this study was to assess the efficacy of quantitative ultrasound imaging in characterizing cancer cell death caused by enhanced radiation treatments. This investigation focused on developing this ultrasound modality as an imaging-based non-invasive method that can be used to monitor therapeutic ultrasound and radiation effects. High-frequency (25 MHz) ultrasound was used to image tumor responses caused by ultrasound-stimulated microbubbles in combination with radiation. Human prostate xenografts grown in severe combined immunodeficiency (SCID) mice were treated using 8, 80, or 1000 µL/kg of microbubbles stimulated with ultrasound at 250, 570, or 750 kPa, and exposed to 0, 2, or 8 Gy of radiation. Tumors were imaged prior to treatment and 24 hours after treatment. Spectral analysis of images acquired from treated tumors revealed overall increases in ultrasound backscatter intensity and the spectral intercept parameter. The increase in backscatter intensity compared to the control ranged from 1.9±1.6 dB for the clinical imaging dose of microbubbles (8 µL/kg, 250 kPa, 2 Gy) to 7.0±4.1 dB for the most extreme treatment condition (1000 µL/kg, 750 kPa, 8 Gy). In parallel, in situ end-labelling (ISEL) staining, ceramide, and cyclophilin A staining demonstrated increases in cell death due to DNA fragmentation, ceramide-mediated apoptosis, and release of cyclophilin A as a result of cell membrane permeabilization, respectively. Quantitative ultrasound results indicated changes that paralleled increases in cell death observed from histology analyses supporting its use for non-invasive monitoring of cancer treatment outcomes.  相似文献   

3.

Background

The Retinoblastoma protein (pRB) is a key tumor suppressor that is functionally inactivated in most cancers. pRB regulates the cell division cycle and cell cycle exit through protein–protein interactions mediated by its multiple binding interfaces. The LXCXE binding cleft region of pRB mediates interactions with cellular proteins that have chromatin regulatory functions. Chromatin regulation mediated by pRB is required for a stress responsive cell cycle arrest, including oncogene induced senescence. The in vivo role of chromatin regulation by pRB during senescence, and its relevance to cancer is not clear.

Methodology/Principal Findings

Using gene-targeted mice, uniquely defective for pRB mediated chromatin regulation, we investigated its role during transformation and tumor progression in response to activation of oncogenic ras. We report that the pRB∆L mutation confers susceptibility to escape from HrasV12 induced senescence and allows transformation in vitro, although these cells possess high levels of DNA damage. Intriguingly, LSL-Kras, Rb1 ∆L/∆L mice show delayed lung tumor formation compared to controls. This is likely due to the increased apoptosis seen in the early hyperplastic lesions shortly following ras activation that inhibits tumor progression. Furthermore, DMBA treatment to induce sporadic ras mutations in other tissues also failed to reveal greater susceptibility to cancer in Rb1 ∆L/∆L mice.

Conclusions/Significance

Our data suggests that chromatin regulation by pRB can function to limit proliferation, but its loss fails to contribute to cancer susceptibility in ras driven tumor models because of elevated levels of DNA damage and apoptosis.  相似文献   

4.
Ceramide is synthesized in yeast by two redundant acyl-CoA dependent synthases, Lag1 and Lac1. In lag1∆ lac1∆ cells, free fatty acids and sphingoid bases are elevated, and ceramides are produced through the redundant alkaline ceramidases Ypc1 and Ydc1, working backwards. Even with all four of these genes deleted, cells are surviving and continue to contain small amounts of complex sphingolipids. Here we show that these residual sphingolipids are not synthesized by YPR114w or YJR116w, proteins of unknown function showing a high degree of homology to Lag1 and Lac1. Indeed, the hextuple lag1∆ lac1∆ ypc1∆ ydc1∆ ypr114w∆ yjr116w∆ mutant still contains ceramides and complex sphingolipids. Yjr116w∆ exhibit an oxygen-dependent hypersensitivity to Cu2+ due to an increased mitochondrial production of reactive oxygen species (ROS) and a mitochondrially orchestrated programmed cell death in presence of copper, but also a general copper hypersensitivity that cannot be counteracted by the antioxidant N-acetyl-cysteine (NAC). Myriocin efficiently represses the synthesis of sphingoid bases of ypr114w∆, but not its growth. Both yjr116w∆ and ypr114w∆ have fragmented vacuoles and produce less ROS than wild type, before and after diauxic shift. Ypr114w∆/ypr114w∆ have an increased chronological life span. Thus, Yjr116w and Ypr114w are related, but not functionally redundant.  相似文献   

5.
Despite extensive analysis of pRB phosphorylation in vitro, how this modification influences development and homeostasis in vivo is unclear. Here, we show that homozygous Rb∆K4 and Rb∆K7 knock‐in mice, in which either four or all seven phosphorylation sites in the C‐terminal region of pRb, respectively, have been abolished by Ser/Thr‐to‐Ala substitutions, undergo normal embryogenesis and early development, notwithstanding suppressed phosphorylation of additional upstream sites. Whereas Rb∆K4 mice exhibit telomere attrition but no other abnormalities, Rb∆K7 mice are smaller and display additional hallmarks of premature aging including infertility, kyphosis, and diabetes, indicating an accumulative effect of blocking pRb phosphorylation. Diabetes in Rb∆K7 mice is insulin‐sensitive and associated with failure of quiescent pancreatic β‐cells to re‐enter the cell cycle in response to mitogens, resulting in induction of DNA damage response (DDR), senescence‐associated secretory phenotype (SASP), and reduced pancreatic islet mass and circulating insulin level. Pre‐treatment with the epigenetic regulator vitamin C reduces DDR, increases cell cycle re‐entry, improves islet morphology, and attenuates diabetes. These results have direct implications for cell cycle regulation, CDK‐inhibitor therapeutics, diabetes, and longevity.  相似文献   

6.
Filtration can achieve circulating tumor cell (CTC) enrichment from blood. Key parameters such as flow-rate, applied pressure, and fixation, vary largely between assays and their influence is not well understood. Here, we used a filtration system, to monitor these parameters and determine their relationships. Whole blood, or its components, with and without spiked tumor cells were filtered through track-etched filters. We characterize cells passing through filter pores by their apparent viscosity; the viscosity of a fluid that would pass with the same flow. We measured a ratio of 5·104∶102∶1 for the apparent viscosities of 15 µm diameter MDA-231 cells, 10 µm white cells and 90 fl red cells passing through a 5 µm pore. Fixation increases the pressure needed to pass cells through 8 µm pores 25-fold and halves the recovery of spiked tumor cells. Filtration should be performed on unfixed samples at a pressure of ∼10 mbar for a 1 cm2 track-etched filter with 5 µm pores. At this pressure MDA-231 cells move through the filter in 1 hour. If fixation is needed for sample preservation, a gentle fixative should be selected. The difference in apparent viscosity between CTC and blood cells is key in optimizing recovery of CTC.  相似文献   

7.
8.
The plasma membrane of the fungal pathogen Candida albicans forms a protective barrier that also mediates many processes needed for virulence, including cell wall synthesis, invasive hyphal morphogenesis, and nutrient uptake. Because compartmentalization of the plasma membrane is believed to coordinate these diverse activities, we examined plasma membrane microdomains termed eisosomes or membrane compartment of Can1 (MCC), which correspond to ∼200-nm-long furrows in the plasma membrane. A pil1∆ lsp1∆ mutant failed to form eisosomes and displayed strong defects in plasma membrane organization and morphogenesis, including extensive cell wall invaginations. Mutation of eisosome proteins Slm2, Pkh2, and Pkh3 did not cause similar cell wall defects, although pkh2∆ cells formed chains of furrows and pkh3∆ cells formed wider furrows, identifying novel roles for the Pkh protein kinases in regulating furrows. In contrast, the sur7∆ mutant formed cell wall invaginations similar to those for the pil1∆ lsp1∆ mutant even though it could form eisosomes and furrows. A PH-domain probe revealed that the regulatory lipid phosphatidylinositol 4,5-bisphosphate was enriched at sites of cell wall invaginations in both the sur7∆ and pil1∆ lsp1∆ cells, indicating that this contributes to the defects. The sur7∆ and pil1∆ lsp1∆ mutants displayed differential susceptibility to various types of stress, indicating that they affect overlapping but distinct functions. In support of this, many mutant phenotypes of the pil1∆ lsp1∆ cells were rescued by overexpressing SUR7. These results demonstrate that C. albicans eisosomes promote the ability of Sur7 to regulate plasma membrane organization.  相似文献   

9.
Vascular integrity is essential for organ homeostasis to prevent edema formation and infiltration of inflammatory cells. Long non‐coding RNAs (lncRNAs) are important regulators of gene expression and often expressed in a cell type‐specific manner. By screening for endothelial‐enriched lncRNAs, we identified the undescribed lncRNA NTRAS to control endothelial cell functions. Silencing of NTRAS induces endothelial cell dysfunction in vitro and increases vascular permeability and lethality in mice. Biochemical analysis revealed that NTRAS, through its CA‐dinucleotide repeat motif, sequesters the splicing regulator hnRNPL to control alternative splicing of tight junction protein 1 (TJP1; also named zona occludens 1, ZO‐1) pre‐mRNA. Deletion of the hnRNPL binding motif in mice (Ntras ∆CA/∆CA) significantly repressed TJP1 exon 20 usage, favoring expression of the TJP1α‐ isoform, which augments permeability of the endothelial monolayer. Ntras ∆CA/∆CA mice further showed reduced retinal vessel growth and increased vascular permeability and myocarditis. In summary, this study demonstrates that NTRAS is an essential gatekeeper of vascular integrity.  相似文献   

10.
We have examined the effect of neutralizing TGF-β antibodies on cisplatin-mediated cytotoxicity against MDA-231 human breast tumor cell spheroids. These tridimensionalin vitrosystems have been shown to recapitulate the drug sensitivity pattern of tumor cellsin vivo.MDA-231 tumor cell spheroids exhibit higher protein levels of the cyclin-dependent kinase (Cdk) inhibitors p21 and p27 and >10-fold lower Cdk2 activity compared to adherent cell monolayers, as well as pRb hypophosphorylation, a predominant G1 population, and a cisplatin 1-h IC50of approximately 100 μM. Treatment of MDA-231 cells in monolayer with cisplatin for 1 h, subsequently grown as spheroids, increased steady-state TGF-β1 mRNA levels, secretion of active TGF-β, cellular Cdk2 activity, pRb phosphorylation, and p21 protein levels, while downregulating p27. Accumulation of cells in G2M and progression into S were noted 48 h after treatment with 100 μM cisplatin. We tested whether drug-induced upregulation of TGF-β1 and p21, perhaps by preventing cell cycle progression, were protective mechanisms against drug-mediated toxicity by using neutralizing anti-TGF-β antibodies. Anti-TGF-β antibodies diminished the induction of p21, enhanced the activation of Cdk2, and facilitated progression into S and G2M following cisplatin treatment. This resulted in a >twofold enhancement of drug-induced DNA fragmentation and a shift in the cisplatin 1-h IC50from 100 to <10 μM. These data suggest that tumor cell TGF-β1 may protect from DNA damage and that postchemotherapy administration of TGF-β inhibitors may facilitate progression beyond G1/S, potentially increasing the efficacy of cytotoxic chemotherapy.  相似文献   

11.
The regulator of ATPase of vacuoles and endosomes (RAVE) complex is implicated in vacuolar H+-translocating ATPase (V-ATPase) assembly and activity. In yeast, rav1∆ mutants exhibit a Vma growth phenotype characteristic of loss of V-ATPase activity only at high temperature. Synthetic genetic analysis identified mutations that exhibit a full, temperature-independent Vma growth defect when combined with the rav1∆ mutation. These include class E vps mutations, which compromise endosomal sorting. The synthetic Vma growth defect could not be attributed to loss of vacuolar acidification in the double mutants, as there was no vacuolar acidification in the rav1∆ mutant. The yeast V-ATPase a subunit is present as two isoforms, Stv1p in Golgi and endosomes and Vph1p in vacuoles. Rav1p interacts directly with the N-terminal domain of Vph1p. STV1 overexpression suppressed the growth defects of both rav1∆ and rav1∆vph1∆, and allowed RAVE-independent assembly of active Stv1p-containing V-ATPases in vacuoles. Mutations causing synthetic genetic defects in combination with rav1∆ perturbed the normal localization of Stv1–green fluorescent protein. We propose that RAVE is necessary for assembly of Vph1-containing V-ATPase complexes but not Stv1-containing complexes. Synthetic Vma phenotypes arise from defects in Vph1p-containing complexes caused by rav1∆, combined with defects in Stv1p-containing V-ATPases caused by the second mutation. Thus RAVE is the first isoform-specific V-ATPase assembly factor.  相似文献   

12.
13.

Introduction

Severe fatigue is a major health problem in fibromyalgia (FM). Obesity is common in FM, but the influence of adipokines and growth factors is not clear. The aim was to examine effects of exercise on fatigue, in lean, overweight and obese FM patients.

Methods

In a longitudinal study, 48 FM patients (median 52 years) exercised for 15 weeks. Nine patients were lean (body mass index, BMI 18.5 to 24.9), 26 overweight (BMI 25 to 29.9) and 13 obese. Fatigue was rated on a 0 to 100 mm scale (fibromyalgia impact questionnaire [FIQ] fatigue) and multidimensional fatigue inventory (MFI-20) general fatigue (MFIGF). Higher levels in FIQ fatigue and MFIGF indicate greater degree of fatigue. Free and total IGF-1, neuropeptides, adipokines were determined in serum and cerebrospinal fluid (CSF).

Results

Baseline FIQ fatigue correlated negatively with serum leptin (r = -0.345; P = 0.016) and nerve growth factor (NGF; r = -0.412; P = 0.037). In lean patients, baseline MFIGF associated negatively with serum resistin (r = -0.694; P = 0.038). FIQ Fatigue associated negatively with CSF resistin (r = -0.365; P = 0.073). Similarly, FIQ fatigue (r = -0.444; P = 0.026) and MFIGF correlated negatively with CSF adiponectin (r = -0.508; P = 0.01). In lean patients, FIQ fatigue (P = 0.046) decreased after 15 weeks. After 30 weeks, MFIGF decreased significantly in lean (MFIGF: P = 0.017), overweight (MFIGF: P = 0.001), and obese patients (MFIGF: P = 0.016). After 15 weeks, total IGF-1 increased in lean (P = 0.043) patients. ∆Total IGF-1 differed significantly between lean and obese patients (P = 0.010). ∆Total IGF-1 related negatively with ∆MFIGF after 15 weeks (r = -0.329; P = 0.050). After 30 weeks, ∆FIQ fatigue negatively correlated with ∆NGF (r = -0.463; P = 0.034) and positively with ∆neuropeptide Y (NPY) (r = 0.469; P = 0.032). Resistin increased after 30 weeks (P = 0.034). ∆MFIGF correlated negatively with ∆resistin (r = -0.346; P = 0.031), being strongest in obese patients (r = -0.815; P = 0.007). In obese patients, ∆FIQ fatigue after 30 weeks correlated negatively with ∆free IGF-1 (r = -0.711; P = 0.032).

Conclusions

Exercise reduced fatigue in all FM patients, this effect was achieved earlier in lean patients. Baseline levels of resistin in both serum and CSF associated negatively with fatigue. Resistin was increased after the exercise period which correlated with decreased fatigue. Changes in IGF-1 indicate similar long-term effects in obese patients. This study shows reduced fatigue after moderate exercise in FM and indicates the involvement of IGF-1 and resistin in these beneficial effects.

Trial registration

ClinicalTrials.gov: NCT00643006  相似文献   

14.
In C. elegans and Drosophila, retromer mediated retrograde transport of Wntless (Wls) from endosomes to the trans-Golgi network (TGN) is required for Wnt secretion. When this retrograde transport pathway is blocked, Wls is missorted to lysosomes and degraded, resulting in reduced Wnt secretion and various Wnt related phenotypes. In the mammalian intestine, Wnt signaling is essential to maintain stem cells. This prompted us to ask if retromer mediated Wls recycling is also important for Wnt signaling and stem cell maintenance in this system. To answer this question, we generated a conditional Vps35 fl allele. As Vps35 is an essential subunit of the retromer complex, this genetic tool allowed us to inducibly interfere with retromer function in the intestinal epithelium. Using a pan-intestinal epithelial Cre line (Villin-CreERT2), we did not observe defects in crypt or villus morphology after deletion of Vps35 from the intestinal epithelium. Wnt secreted from the mesenchyme of the intestine may compensate for a reduction in epithelial Wnt secretion. To exclude the effect of the mesenchyme, we generated intestinal organoid cultures. Loss of Vps35 in intestinal organoids did not affect the overall morphology of the organoids. We were able to culture Vps35 ∆/∆ organoids for many passages without Wnt supplementation in the growth medium. However, Wls protein levels were reduced and we observed a subtle growth defect in the Vps35 ∆/∆ organoids. These results confirm the role of retromer in the retrograde trafficking of Wls in the intestine, but show that retromer mediated Wls recycling is not essential to maintain Wnt signaling or stem cell proliferation in the intestinal epithelium.  相似文献   

15.
16.
The application of stable isotopes to characterize the complexities of a species foraging behavior and trophic relationships is dependent on assumptions of δ15N diet-tissue discrimination factors (∆15N). As ∆15N values have been experimentally shown to vary amongst consumers, tissues and diet composition, resolving appropriate species-specific ∆15N values can be complex. Given the logistical and ethical challenges of controlled feeding experiments for determining ∆15N values for large and/or endangered species, our objective was to conduct an assessment of a range of reported ∆15N values that can hypothetically serve as surrogates for describing the predator-prey relationships of four shark species that feed on prey from different trophic levels (i.e., different mean δ15N dietary values). Overall, the most suitable species-specific ∆15N values decreased with increasing dietary-δ15N values based on stable isotope Bayesian ellipse overlap estimates of shark and the principal prey functional groups contributing to the diet determined from stomach content analyses. Thus, a single ∆15N value was not supported for this speciose group of marine predatory fishes. For example, the ∆15N value of 3.7‰ provided the highest percent overlap between prey and predator isotope ellipses for the bonnethead shark (mean diet δ15N = 9‰) whereas a ∆15N value < 2.3‰ provided the highest percent overlap between prey and predator isotope ellipses for the white shark (mean diet δ15N = 15‰). These data corroborate the previously reported inverse ∆15N-dietary δ15N relationship when both isotope ellipses of principal prey functional groups and the broader identified diet of each species were considered supporting the adoption of different ∆15N values that reflect the predators’ δ15N-dietary value. These findings are critical for refining the application of stable isotope modeling approaches as inferences regarding a species’ ecological role in their community will be influenced with consequences for conservation and management actions.  相似文献   

17.
Prostate cancer (CaP) is the most commonly diagnosed and the second leading cause of death from cancer in males in USA. Prostate orthotopic mouse model has been widely used to study human CaP in preclinical settings. Measurement of changes in tumor size obtained from noninvasive diagnostic images is a standard method for monitoring responses to anticancer modalities. This article reports for the first time the usage of a three-dimensional (3D) ultrasound system equipped with photoacoustic (PA) imaging in monitoring longitudinal prostate tumor growth in a PC-3 orthotopic NODSCID mouse model (n = 8). Two-dimensional and 3D modes of ultrasound show great ability in accurately depicting the size and shape of prostate tumors. PA function on two-dimensional and 3D images showed average oxygen saturation and average hemoglobin concentration of the tumor. Results showed a good fit in representative exponential tumor growth curves (n = 3; r2 = 0.948, 0.955, and 0.953, respectively) and a good correlation of tumor volume measurements performed in vivo with autopsy (n = 8, r = 0.95, P < .001). The application of 3D ultrasound imaging proved to be a useful imaging modality in monitoring tumor growth in an orthotopic mouse model, with advantages such as high contrast, uncomplicated protocols, economical equipment, and nonharmfulness to animals. PA mode also enabled display of blood oxygenation surrounding the tumor and tumor vasculature and angiogenesis, making 3D ultrasound imaging an ideal tool for preclinical cancer research.  相似文献   

18.
In angiosperms, the NADH dehydrogenase-like (NDH) complex mediates cyclic electron transport around PSI (CET). K+ Efflux Antiporter3 (KEA3) is a putative thylakoid H+/K+ antiporter and allows an increase in membrane potential at the expense of the ∆pH component of the proton motive force. In this study, we discovered that the chlororespiratory reduction2-1 (crr2-1) mutation, which abolished NDH-dependent CET, enhanced the kea3-1 mutant phenotypes in Arabidopsis (Arabidopsis thaliana). The NDH complex pumps protons during CET, further enhancing ∆pH, but its physiological function has not been fully clarified. The observed effect only took place upon exposure to light of 110 µmol photons m−2 s−1 after overnight dark adaptation. We propose two distinct modes of NDH action. In the initial phase, within 1 min after the onset of actinic light, the NDH-dependent CET engages with KEA3 to enhance electron transport efficiency. In the subsequent phase, in which the ∆pH-dependent down-regulation of the electron transport is relaxed, the NDH complex engages with KEA3 to relax the large ∆pH formed during the initial phase. We observed a similar impact of the crr2-1 mutation in the genetic background of the PROTON GRADIENT REGULATION5 overexpression line, in which the size of ∆pH was enhanced. When photosynthesis was induced at 300 µmol photons m−2 s−1, the contribution of KEA3 was negligible in the initial phase and the ∆pH-dependent down-regulation was not relaxed in the second phase. In the crr2-1 kea3-1 double mutant, the induction of CO2 fixation was delayed after overnight dark adaptation.

Photosynthesis consists of two sets of reactions, the light reactions and the Calvin-Benson cycle. It takes place in the chloroplast and fixes CO2 into organic compounds using solar energy. In the light reactions, the absorption of photons activates electron transport in two photosystems. In linear electron transport (LET), PSII catalyzes the light-dependent oxidation of water, resulting in the release of oxygen and protons (H+) in the thylakoid lumen. The water-derived excised electrons are transferred to PSI through the cytochrome (Cyt) b6f complex and ultimately to NADP+, producing NADPH. This electron transport is coupled with the translocation of H+ from the stroma to the thylakoid lumen via the quinone cycle at the Cyt b6f complex, resulting in the formation of a proton concentration gradient across the thylakoid membrane. This ∆pH contributes to the formation of proton motive force (pmf) in addition to the membrane potential formed across the thylakoid membrane (∆ψ) that results from the uneven distribution of ions across the membrane. The pmf energizes ATP synthesis via FoF1-ATP synthase in chloroplasts (Kramer et al., 2003; Soga et al., 2017) and thus influences the efficiency of the light reactions.The Calvin-Benson cycle depends on NADPH and ATP produced by the light reactions. To fix a molecule of CO2 into a carbohydrate, three molecules of ATP and two molecules of NADPH are needed. However, this ratio of ATP to NADPH (1.5) is not satisfied by LET (Shikanai, 2007). Photorespiration, which takes place due to the low specificity of Rubisco, the CO2-fixing enzyme for CO2, increases the energetic requirements in terms of ATP, raising the above ratio to 1.67. The additional ATP is thought to be supplied by cyclic electron transport around PSI (CET; Yamori and Shikanai, 2016). In contrast to LET, CET is driven solely by PSI and does not contribute to the net production of reducing power. CET recycles electrons from ferredoxin (Fd) to the plastoquinone (PQ) pool and contributes to the additional generation of ∆pH via the quinone cycle. As a result, CET balances the production ratio of ATP and NADPH. In angiosperms, CET has been proposed to consist of two pathways: the PROTON GRADIENT REGULATION5 (PGR5)/PGR5-like Photosynthetic Phenotype1 (PGRL1) protein-dependent, antimycin A-sensitive pathway and the NADH dehydrogenase-like (NDH) complex-dependent antimycin A-insensitive pathway (Munekage et al., 2004). The NDH complex pumps four protons, coupled with the movement of two electrons, from Fd to PQ, further increasing the efficiency of ∆pH formation (Strand et al., 2017).In addition to ATP synthesis, the ∆pH component of pmf also contributes to the down-regulation of electron transport (Shikanai, 2014). Acidification of the thylakoid lumen triggers the thermal dissipation of excessively absorbed light energy from the PSII antennae, a process that is monitored by nonphotochemical quenching (NPQ) of chlorophyll fluorescence (Müller et al., 2001). Low lumenal pH also down-regulates the activity of the Cyt b6f complex, slowing down the rate of electron transport toward PSI (Stiehl and Witt, 1969). CET-dependent ∆pH formation is also necessary to induce the down-regulation of electron transport, as indicated by the phenotype of the pgr5 mutant. The Arabidopsis (Arabidopsis thaliana) pgr5 mutant cannot induce thermal dissipation under excessive light conditions (Munekage et al., 2002), suggesting that CET-generated ∆pH plays an important role in providing a sufficiently acidic lumen pH that can trigger NPQ. The pgr5 mutant is also defective in the down-regulation of Cyt b6f activity, resulting in hypersensitivity of PSI to fluctuating light intensity (Tikkanen et al., 2010). Compared with the physiological function of the PGR5/PGRL1-dependent CET, the contribution of the NDH-dependent CET to photoprotection is somewhat minor, although clear phenotypes have been observed in these mutants at low light intensities and fluctuating light levels (Ueda et al., 2012; Yamori et al., 2015, 2016). Furthermore, the physiological function of the NDH complex has not been fully clarified.Both ∆pH and ∆ψ contribute to pmf, but only ∆pH down-regulates electron transport. To optimize the operation of the accelerator (ATP synthesis) and the brake on electron transport, it is necessary to precisely regulate the ratio of the two pmf components as well as the total size of pmf (Cruz et al., 2001; Kramer et al., 2003). Several channels and antiporters localized to the thylakoid membrane regulate the partitioning of the pmf components (Spetea et al., 2017). K+ Efflux Antiporter3 (KEA3) is thought to be an H+/K+ antiporter localized to the thylakoid membrane (Armbruster et al., 2014; Kunz et al., 2014), although its antiport activity has not been experimentally demonstrated (Tsujii et al., 2019). Based on its structure, topology, and the mutant phenotypes, KEA3 most likely moves H+ from the thylakoid lumen while taking up K+ as a counter ion. Consequently, KEA3 transforms ∆pH to ∆ψ and is necessary to rapidly relax the down-regulation of electron transport by raising the luminal pH (i.e. by alkalinizing the lumen). The C-terminal domain of KEA3, KTN (K+ transport/nucleotide binding), is exposed to the stroma (Wang et al., 2017) and is thought to regulate its activity by monitoring ATP or NADPH levels (Schlosser et al., 1993; Roosild et al., 2002). However, information on the regulation of KEA3 is limited. Armbruster et al. (2014) demonstrated that KEA3 contributes to efficient photosynthesis under fluctuating light conditions. The disturbed proton gradient regulation is a dominant mutant allele of KEA3, and its mutant phenotype is evident after a long period of dark adaptation (overnight; Wang et al., 2017). KEA3 is likely important during the induction of photosynthesis as well as under fluctuating light intensities. The similarity between the two conditions suggests that KEA3 is required for readjusting the ∆pH-dependent regulation immediately after any drastic change in light conditions.In this study, we characterized double mutants defective in the CET pathways and KEA3 to understand whether and how the synergy between CET and KEA3 in the regulatory network of photosynthesis affects this process. We focused on the contribution of NDH-dependent CET during the induction of photosynthesis after overnight dark adaptation in the kea3-1 mutant context. Based on our results, we propose a novel physiological function of the NDH complex: that of allowing flexibility of the regulatory network during the induction of photosynthesis.  相似文献   

19.
Centromeric histone H3, CENP-ACse4, is essential for faithful chromosome segregation. Stringent regulation of cellular levels of CENP-ACse4 restricts its localization to centromeres. Mislocalization of CENP-ACse4 is associated with aneuploidy in yeast and flies and tumorigenesis in human cells; thus defining pathways that regulate CENP-A levels is critical for understanding how mislocalization of CENP-A contributes to aneuploidy in human cancers. Previous work in budding yeast shows that ubiquitination of overexpressed Cse4 by Psh1, an E3 ligase, partially contributes to proteolysis of Cse4. Here we provide the first evidence that Cse4 is sumoylated by E3 ligases Siz1 and Siz2 in vivo and in vitro. Ubiquitination of Cse4 by the small ubiquitin-related modifier (SUMO)-targeted ubiquitin ligase (STUbL) Slx5 plays a critical role in proteolysis of Cse4 and prevents mislocalization of Cse4 to euchromatin under normal physiological conditions. Accumulation of sumoylated Cse4 species and increased stability of Cse4 in slx5∆ strains suggest that sumoylation precedes ubiquitin-mediated proteolysis of Cse4. Slx5-mediated Cse4 proteolysis is independent of Psh1, since slx5∆ psh1∆ strains exhibit higher levels of Cse4 stability and mislocalization than either slx5∆ or psh1∆ strains. Our results demonstrate a role for Slx5 in ubiquitin-mediated proteolysis of Cse4 to prevent its mislocalization and maintain genome stability.  相似文献   

20.
Mitogen-activated protein kinases (MAPKs) have been demonstrated to be involved in fungal development, sexual reproduction, pathogenicity and/or virulence in many filamentous plant pathogenic fungi, but genes for MAPKs in the fungal cereal pathogen Bipolaris sorokiniana have not been characterized. In this study, orthologues of three MAPK genes (CsSLT2, CsHOG1 and CsFUS3) and one MAPK kinase kinase (MAPKKK) gene (CsSTE11) were identified in the whole genome sequence of the B. sorokiniana isolate ND90Pr, and knockout mutants were generated for each of them. The ∆Csfus3 and ∆Csste11 mutants were defective in conidiation and formation of appressoria-like structures, showed hypersensitivity to oxidative stress and lost pathogenicity on non-wounded leaves of barley cv. Bowman. When inoculated on wounded leaves of Bowman, the ∆Csfus3 and ∆Csste11 mutants were reduced in virulence compared to the wild type. No morphological changes were observed in the ∆Cshog1 mutants in comparison with the wild type; however, they were slightly reduced in growth under oxidative stress and were hypersensitive to hyperosmotic stress. The ∆Cshog1 mutants formed normal appressoria-like structures but were reduced in virulence when inoculated on Bowman leaves. The ∆Csslt2 mutants produced more vegetative hyphae, had lighter pigmentation, were more sensitive to cell wall degrading enzymes, and were reduced in virulence on Bowman leaves, although they formed normal appressoria like the wild type. Root infection assays indicated that the ∆Cshog1 and ∆Csslt2 mutants were able to infect barley roots while the ∆Csfus3 and ∆Csste11 failed to cause any symptoms. However, no significant difference in virulence was observed for ∆Cshog1 mutants while ∆Csslt2 mutants showed significantly reduced virulence on barley roots in comparison with the wild type. Our results indicated that all of these MAPK and MAPKKK genes are involved in the regulation of fungal development under normal and stress conditions and required for full virulence on barley plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号