共查询到20条相似文献,搜索用时 15 毫秒
1.
Kevin F. Morris Riley M. Geoghegan Emily E. Palmer Matthew George Yayin Fang 《Biochemistry and Biophysics Reports》2020
Molecular dynamics (MD) simulations were used to investigate the binding of four ligands to the Val122Ile mutant of the protein transthyretin. Dissociation, misfolding, and subsequent aggregation of mutated transthyretin proteins are associated with the disease Familial Amyloidal Cardiomyopathy. The ligands investigated were the drug candidate AG10 and its decarboxy and N-methyl derivatives along with the drug tafamidis. These ligands bound to the receptor in two halogen binding pockets (HBP) designated AB and A’B’. Inter-ligand distances, solvent accessible surface areas, root mean squared deviation measurements, and extracted structures showed very little change in the AG10 ligands' conformations or locations within the HBP during the MD simulation. In addition, the AG10 ligands experienced stable, two-point interactions with the protein by forming hydrogen bonds with Ser-117 residues in both the AB and A’B’ binding pockets and Lysine-15 residues found near the surface of the receptor. Distance measurements showed these H-bonds formed simultaneously during the MD simulation. Removal of the AG10 carboxylate functional group to form decarboxy-AG10 disrupted this two-point interaction causing the ligand in the AB pocket to undergo a conformational change during the MD simulation. Likewise, addition of a methyl group to the AG10 hydrazone functional group also disrupted the two-point interaction by decreasing hydrogen bonding interactions with the receptor. Finally, MD simulations showed that the tafamidis ligands experienced fewer hydrogen bonding interactions than AG10 with the protein receptor. The tafamidis ligand in pocket A’B’ was also found to move deeper into the HBP during the MD simulation. 相似文献
2.
《Journal of molecular biology》2023,435(11):167953
Membranes form the first line of defence of bacteria against potentially harmful molecules in the surrounding environment. Understanding the protective properties of these membranes represents an important step towards development of targeted anti-bacterial agents such as sanitizers. Use of propanol, isopropanol and chlorhexidine can significantly decrease the threat imposed by bacteria in the face of growing anti-bacterial resistance via mechanisms that include membrane disruption. Here we have employed molecular dynamics simulations and nuclear magnetic resonance to explore the impact of chlorhexidine and alcohol on the S. aureus cell membrane, as well as the E. coli inner and outer membranes. We identify how sanitizer components partition into these bacterial membranes, and show that chlorhexidine is instrumental in this process. 相似文献
3.
《Saudi Journal of Biological Sciences》2021,28(12):6884-6896
Sunflower occupies the fourth position among oilseed crops the around the world. Eceriferum (CER) is an important gene family that plays critical role in very-long-chain fatty acids elongation and biosynthesis of epicuticular waxes under both biotic and abiotic stress conditions. The aim of present study was to investigate the effect of sunflower CER genes during drought stress condition. Thus, comparative analysis was undertaken for sunflower CER genes with Arabidopsis genome to determine phylogenetic relationship, chromosomal mapping, gene structures, gene ontology and conserved motifs. Furthermore, we subjected the sunflower cultivars under drought stress and used qRT-PCR analysis to explore the expression pattern of CER genes during drought conditions. We identified thirty-seven unevenly distributed CER genes in the sunflower genome. The phylogenetic analysis revealed that CER genes were grouped into seven clades in Arabidopsis, Helianthus annuus, and Gossypium hirsutum. Expression analysis showed that genes CER10 and CER60 were upregulated in sunflower during drought conditions, indicating that these genes are activated during drought stress. The results obtained will serve to characterize the CER gene family in sunflower and exploit the role of these genes in wax biosynthesis under limited water conditions.Key messageCuticular waxes protect the plants from drought stress, so we observed the expression of wax bio synthesis genes in recently sequences genome of Helianthus annuus. We observed that expression of wax biosynthesis genes CER10 and CER60 was upregulated when the plants were subjected to drought stress. 相似文献
4.
《Saudi Journal of Biological Sciences》2023,30(9):103774
Interleukin 19 (IL-19) is a cytokine produced by monocytes and belongs to the family of IL-10. The IL-19 protein stimulates fibronectin (FN) expression and assembly, metastasis, and cell division in breast cancer (BC) cells. IL-19, which is connected to breast pathogenesis and has an autocrine action in BC cells, is a key predictor of prognosis for many tumour forms, including breast cancer. Augmented IL-19 expression has been related to poorer clinical outcomes for patients with BC and directly enhances proliferation and migration while also serving as a microenvironment for tumour formation. The main aim of our study was to examine the expression profile, functional role, and prognostic significance of interleukin-19 in BC pathogenesis and also to find out the molecular mechanism of IL-19 in BC. In this work, we used the various computational approach and tools, to evaluate the expression profile and prognostic implication of IL-19 in BC and discover the role of IL-19 in BC pathogenesis. IL-19 was shown to be highly upregulated in BC as compared to other interleukins. Also, its levels were highly overexpressed in liminal BC patients, mostly in 3rd stage groups under the age group of 21–40 years. IL-19 levels were increased in BC and elevated expression of IL-19 was examined to have worse overall survival (OS). The KEGG analysis and gene ontology of IL-19 depict that IL-19 is significantly augmented in cytokine activity and receptor-ligand activity and also in the JAK-STAT signaling pathway. Moreover, IL-19 showed a high correlation with IL20RA, as later is involved with the JAK-STAT signaling pathway. The in-vivo and in-vitro studies have also reflected that upregulation of IL-19 enhances tumor development and affects clinical outcomes in BC patients through several pathways including the JAK TAT signalling pathway. Overall, our study indicates that IL-19 increases tumour growth and that inhibiting it in addition to standard treatments will greatly improve BC patient’s therapeutic responses. 相似文献
5.
Ishfaq Ahmad Wani Susheel Verma Shazia Mushtaq Abdulaziz Abdullah Alsahli Mohammed Nasser Alyemeni Mohd Tariq Shreekar Pant 《Saudi Journal of Biological Sciences》2021,28(4):2109-2122
The natural populations of Dactylorhiza hatagirea have been greatly affected due to incessant exploitation. As such, studies on its population attributes together with habitat suitability and environmental factors affecting its distribution are needed to be undertaken for its conservation in nature. Present study aimed at accessing an impact of anthropogenic pressure on population structure and locate suitable habitats for the conservation of this critically endangered orchid. Considerable changes in the phytosociological attributes were observed on account of the changing magnitude and extent of anthropogenic threat in their natural abode. The distribution pattern of species indicated that more than 90% of the populations exhibit substantially aggregated spatial distribution. Maximum Entropy (MaxEnt) distribution modelling algorithm was used to predict suitable habitat and potential area for its cultivation and reintroduction. Twenty-seven occurrence records, nineteen bioclimatic variables, altitude, and slope were used. MaxEnt map output gave the habitat suitability for this species and predicted its distribution in the North-Western Himalayas of India for approximately 616 km2. Jackknifing indicated that maximum temperature of warmest month, annual mean temperature, mean temperature of the driest quarter, and mean temperature of the wettest quarter were the governing factors for its distribution and hence, presented a higher gain with respect to other variables. According to permutation importance, precipitation seasonality and mean temperature of wettest quarter shows the prominent impact on the habitat distribution. Results of AUC (area under curve) were statistically significant (0.940) and the line of predicted omission falls very close to an omission on training samples, validating a better run of the model. Response curves revealed a probable increase in the occurrence of D. hatagirea with an increase in mean temperature of the wettest quarter and maximum temperature of the warmest month contributed more than 50% to predicted habitat suitability. Direct field observations concurrent with predicted habitat suitability and google-earth images represent greater model thresholds for successful inception of the species. Together, the study proposes that the species can be conserved in or near its present-day natural habitats and is equally effective in determining the possible habitats for its cultivation and reintroduction. 相似文献
6.
《Bioorganic & medicinal chemistry》2020,28(13):115510
Nanoscale design and construction of affinity-based drug delivery systems (ADDS) is an active research area with enormous potential for the improvement of cancer treatment. For the therapeutic load of these ADDS, a promising strategy is the design of pH-sensitive prodrugs based on the construction of conjugates between adamantane and doxorubicin (Ad-Dox), which stands out as an excellent model system to obtain novel supramolecular materials. Construction of these prodrugs involves a modification of three zones of doxorubicin which in principle does not affect the action mechanism: the carbonyl group C13 (hydrazone linker), the primary alcohol neighboring the carbonyl (ester linker) and the 3′ amino group of daunosamine sugar (amide linker). These modifications are aimed to improve the efficacy and reduce the systemic toxicity of the drug chemotherapy by controlling its release in cancer cells. In this work, we performed 2D NMR experiments and molecular dynamics simulations to characterize the conformational changes of three constructed prodrugs. Our results demonstrated that ring A and the daunsamine sugar of the hydrazone and amide linkers conserve the half-chair state 9H8, while the ester linker disrupts this conformation. Our study also showed that the hydrazone-linked compound (Ad-h-Dox) does not modify the conformation of the original drug and maintains cytotoxic activity. Moreover, the inclusion complex (IC) of Ad-h-Dox with β-cyclodextrin (βCD) generated a highly soluble platform in water, whereas the ester-linked compound (Ad-e-Dox) causes the loss of biological activity. This study proves that Ad-h-Dox prodrug can be an optimum prodrug and act as a building block for a more complex drug transport system. 相似文献
7.
Background and purposeThe aim was to evaluate dosimetric uncertainties of a mixed beam approach for patients with high-risk prostate cancer (PCa). The treatment consists of a carbon ion radiotherapy (CIRT) boost followed by whole-pelvis intensity-modulated RT (IMRT).Materials and methodsPatients were treated with a CIRT boost of 16.6 Gy/4 fractions followed by whole-pelvis IMRT of 50 Gy/25 fractions, with consequent long term androgen deprivation therapy. Deformable computed tomography image registration (DIR) was performed and corresponding doses were used for plan sum. A comparative IMRT photon plan was obtained as whole-pelvis IMRT of 50 Gy/25 fractions followed by a boost of 28 Gy/14 fractions. DIR performances were evaluated through structure-related and image characteristics parameters.ResultsUntil now, five patients out of ten total enrolled ended the treatment. Dosimetric parameters were lower in CIRT + IMRT than IMRT-only plans for all organs at risk (OARs) except femoral heads.Regarding DIR evaluation, femoral heads were the less deformed OAR. Penile bulb, bladder and anal canal showed intermediate deformation. Rectum was the most deformed. DIR algorithms were patient (P)-dependent, as performances were the highest for P3 and P4, intermediate for P2 and P5, and the lowest for P1.ConclusionsCIRT allows better OARs sparing while increasing the efficacy due to the higher radio-biological effect of carbon ions. However, a mixed beam approach could introduce DIR problems in multi-centric treatments with different operative protocols. The development of this prospective trial will lead to more mature data concerning the clinical impact of implementing DIR procedures in dose accumulation applications for high-risk PCa treatments. 相似文献
8.
《Journal of structural biology》2023,215(1):107925
Staphylococcal protein A (SpA) domain B (the basis of affibody) has been widely used in affinity chromatography and found therapeutic applications against inflammatory diseases through targeting the Fc part of immunoglobulin G (IgG). We have performed extensive molecular dynamics simulation of 41 SpA mutants and compared their dynamics and conformations to wild type. The simulations revealed the molecular details of structural and dynamics changes that occurred due to introducing point mutations and helped to explain the SPR results. It was observed in some variants a point mutation caused extensive structural changes far from the mutation site, while an effect of some other mutations was limited to the site of the mutated residue. Also, the pattern of hydrogen bond networks and hydrophobic core arrangements were investigated. We figured out mutations that occurred at positions 128, 136, 150 and 153, affected two hydrophobic cores at the interface as well as mutations introduced at positions 129 and 154 interrupted two hydrogen bond networks of the interface, SPR data showed all of these mutations reduced binding affinity significantly. Overall, by scanning the SpA-Fc interface through the large numbers of introduced mutations, the new insights have been gained which would help to design high- affinity ligands of IgG. 相似文献
9.
We studied the technogenic impact of a diamond mining company on the content of metabolites in the needles of Larix gmelinii (Rupr.) Kuzen. The samples of larch needles were collected in the Arctic zone in the restricted area where the diamond mining company works. The studied sites are located in Anabarsky district of Yakutia (Russia). An activity of the diamond mining company did not have a significant impact on the characteristics of the forest stand. But at the same time, near the sorting and enriching plants of the diamond mining company, the concentrations of Si, Ca, Fe, Mn, Al, Na, Sr, Ba, Zn, Pb, Ni, V were higher in the needles of L. gmelinii than those in the control zone. The activity of the diamond mining industry resulted in: intensification of the lipid peroxidation process, growth of a content of resin acids and amino acids, activation of cellular respiration processes, thickening of the cell wall, and a decline in the concentration of unsaturated fatty acids and antioxidants. We have concluded that some observable biochemical changes occur in the trees as a resulting effect of adaptive processes to the technogenic load despite the absence of significant changes in the forest stand. 相似文献
10.
《Bioorganic & medicinal chemistry》2020,28(2):115227
Aberrant hedgehog (Hh) pathway signaling is implicated in multiple cancer types and targeting the Smoothened (SMO) receptor, a key protein of the Hh pathway, has proven effective in treating metastasized basal cell carcinoma. Our lead optimization effort focused on a series of heteroarylamides. We observed that a methyl substitution ortho to the heteroaryl groups on an aniline core significantly improved the potency of this series of compounds. These findings predated the availability of SMO crystal structure in 2013. Here we retrospectively applied quantum mechanics calculations to demonstrate the o-Me substitution favors the bioactive conformation by inducing a dihedral twist between the heteroaryl rings and the core aniline. The o-Me also makes favorable hydrophobic interactions with key residue side chains in the binding pocket. From this effort, two compounds (AZD8542 and AZD7254) showed excellent pharmacokinetics across multiple preclinical species and demonstrated in vivo activity in abrogating the Hh paracrine pathway as well as anti- tumor effects. 相似文献
11.
《Saudi Journal of Biological Sciences》2022,29(2):1191-1196
Xanthones C-glycosides are plants secondary metabolites with diverse biological activities. Among the C-glycoside xanthones, the mangiferin (MF) is of widespread occurrence in plants while isomangiferin (IsoMF) is not very common. For the present study mangiferin (MF) and isomangiferin (IsoMF) were isolated from Dryopteris ramosa. The antibacterial potential of MF and IsoMF was evaluated by using agar well diffusion method while cytotoxic properties of MF and IsoMF were assessed by brine shrimp lethality test (BSLT). The antibacterial potential of MF and IsoMF increases in dose dependent manner. The minimum inhibitory concentration (MIC) indicated strong antibacterial potential of MF against Salmonella setubal (125 µg/mL) and Bacillus subtilis (125 µg/mL) while MF showed weak antibacterial potential against Escherichia coli (500 µg/mL). On the other hand the IsoMF showed better antibacterial potential against all the tested strain including Escherichia coli (MIC = 250 µg/mL). The MF and IsoMF showed poor cytotoxicity towards Brine shrimp nauplii as indicated by their LD50 (969.77 ± 0.67 and 768.92 ± 0.81 µg/mL respectively). The present study has highlighted the antibacterial potential of MF and IsoMF. Further evaluation of these two isomeric compounds may prove to be the future remedies for various bacterial infections and other human ailments. 相似文献
12.
《Journal of structural biology》2022,214(2):107842
In bifidobacteria, phosphoketolase (PKT) plays a key role in the central hexose fermentation pathway called “bifid shunt.” The three-dimensional structure of PKT from Bifidobacterium longum with co-enzyme thiamine diphosphate (ThDpp) was determined at 2.1 Å resolution by cryo-EM single-particle analysis using 196,147 particles to build up the structural model of a PKT octamer related by D4 symmetry. Although the cryo-EM structure of PKT was almost identical to the X-ray crystal structure previously determined at 2.2 Å resolution, several interesting structural features were observed in the cryo-EM structure. Because this structure was solved at relatively high resolution, it was observed that several amino acid residues adopt multiple conformations. Among them, Q546–D547–H548–N549 (the QN-loop) demonstrate the largest structural change, which seems to be related to the enzymatic function of PKT. The QN-loop is at the entrance to the substrate binding pocket. The minor conformer of the QN-loop is similar to the conformation of the QN-loop in the crystal structure. The major conformer is located further from ThDpp than the minor conformer. Interestingly, the major conformer in the cryo-EM structure of PKT resembles the corresponding loop structure of substrate-bound Escherichia coli transketolase. That is, the minor and major conformers may correspond to “closed” and “open” states for substrate access, respectively. Moreover, because of the high-resolution analysis, many water molecules were observed in the cryo-EM structure of PKT. Structural features of the water molecules in the cryo-EM structure are discussed and compared with water molecules observed in the crystal structure. 相似文献
13.
《Journal of Asia》2023,26(1):102023
Endosymbionts have gained prominence as a potential tool for biological control strategies in reducing vector-borne diseases. This study aimed to evaluate the presence of Arsenophonus, Spiroplasma, and Rickettsia endosymbionts in wild specimens of phlebotomine sand flies, as well as in culicids collected in different regions of Colombia. Analyses were conducted through conventional PCR, Sanger sequencing of the 16S rRNA gene, and phylogenetic analyses. Individuals from among 946 phlebotomine sand flies and 143 mosquitoes were selected for taxonomic identification confirmed through the analysis of the cytochrome oxidase subunit I gene sequences. Results showed the presence of Arsenophonus bacteria in samples of Lutzomyia longipalpis, Psychodopygus panamensis, and Pintomyia evansi. Arsenophonus sequences associated with Lu. longipalpis and Ps. panamensis are phylogenetically located near to sequences of louse flies, with K2P genetic distances of 0.006. In contrast, sequences obtained from Pi. evansi are phylogenetically located near Arsenophonus nasoniae (K2P 0.001–0.014). Other sequences of endosymbionts similar to Arsenophonus with high K2P genetic distances (0.056–0.097), when compared to different reference strains of this endosymbiont, were also found in other samples of Lu. longipalpis and Ae. aegypti. To the best of our knowledge, this is the first successful attempt to detect and elucidate the phylogenetic relationship of Arsenophonus in phlebotomine sand flies, yet its role within these insect vectors remains to be fully determined; therefore, the importance of entomological surveys that help better understand its behavior and potential use as a control agent is required to enable the proactive reduction of sand fly populations. 相似文献
14.
《Bioorganic & medicinal chemistry》2020,28(1):115174
The recent renewed interest in phenotypic drug discovery has concomitantly put a focus on target deconvolution in order to achieve drug-target identification. Even though there are prescribed therapies whose mode of action is not fully understood, knowledge of the primary target will inevitably facilitate the discovery and translation of efficacy from bench to bedside. Elucidating targets and subsequent pathways engaged will also facilitate safety studies and overall development of novel drug candidates. Today, there are several techniques available for identifying the primary target, many of which rely on mass spectrometry (MS) to identify compound – target protein interactions. The Cellular Thermal Shift Assay (CETSA®) is well suited for identifying target engagement between ligands and their protein targets. Several studies have shown that CETSA combined with MS is a powerful technique that allows unlabeled target deconvolution in complex samples such as intact cells and tissues in addition to cell lysates and other protein suspensions. The applicability of CETSA MS for target deconvolution purposes will be discussed and exemplified in this mini review. 相似文献
15.
《Bioorganic & medicinal chemistry》2020,28(4):115279
Natural compounds (NC) are an important source of anticancer drugs. The genomic DNA of tumor cells is a major target of conventional anticancer therapeutics (cAT). DNA damage elicits a complex stress response programme termed DNA damage response (DDR), with the PI3-like kinase ATM and ATR being the key regulators. Since the DDR coordinates mechanisms of DNA repair and apoptosis, hence regulating the balance between death and survival, it is an attractive target of novel anticancer strategies. The aim of the study was to identify natural compounds derived from endophytic fungi, lichens, marine sponges or plants that interfere with mechanisms of the DDR. To this end, the cytotoxic and DDR modulating potency of 296 natural compounds, used alone or in combination with the cAT cisplatin (Cis) and doxorubicin (Doxo) was investigated by fluorescence-based analysis of the ATM/ATR-catalyzed S139 phosphorylation of histone 2AX (γH2AX), a surrogate marker of DNA damage-triggered DDR. After initial screening, a total of ten natural compounds were identified that were toxic in pancreatic carcinoma cells and activated the DDR on their own and/or promoted the DDR if used in combination with cAT. Their mode of action was shown to be independent of drug transport mechanisms. Based on their chemical structures, DDR modulatory activity and published data we suggest the marine NC 5-epi-nakijiquinone Q and 5-epi-ilimaquinone as well as the fungal compound secalonic acid F as most promising NC-based drug candidates for future synthesis of DDR-modulating chemical derivatives and their preclinical in vitro and in vivo testing. 相似文献
16.
《Genomics》2022,114(4):110400
Endive (Cichorium endivia L.) is a leafy vegetable in the Asteraceae family. Sesquiterpene lactones (STLs) in endive leaves bring a bitter taste that varies between varieties. Despite their importance in breeding varieties with unique flavours, sesquiterpenoid biosynthesis pathways in endive are poorly understood. We assembled a chromosome-scale endive genome of 641 Mb with a contig N50 of 5.16 Mb and annotated 46,711 protein-coding genes. Several gene families, especially terpene synthases (TPS) genes, expanded significantly in the C. endivia genome. STLs biosynthesis-related genes and TPS genes in more bitter varieties have shown a higher level of expression, which could be attributed to genomic variations. Our results penetrate the origin and diversity of bitter taste and facilitate the molecular breeding of endive varieties with unique bitter tastes. The high-quality endive assembly would provide a reference genome for studying the evolution and diversity of Asteraceae. 相似文献
17.
《Saudi Journal of Biological Sciences》2023,30(2):103560
Sterubin, a flavanone is an active chemical compound that possesses neuroprotective activity. The current investigation was intended to assess the sterubin effect in scopolamine-activated Alzheimer's disease. The rats were induced with scopolamine (1.5 mg/kg) followed by treatment with sterubin (10 mg/kg) for 14 days. Behavioural analysis was predictable by the Y-maze test and Morris water test. Biochemical variables like nitric oxide acetylcholinesterase, Choline acetyltransferase, antioxidant markers like superoxide dismutase, glutathione transferase, malondialdehyde, catalase, and myeloperoxidase activity, neuroinflammatory markers such as tumor necrosis factor-alpha, nuclear factor kappa B, interferon-gamma, interleukin (IL-1β), and IL-6 were measured. The result stated that sterubin reversed the oxidative stress parameters, increased motor performance, and lowered the inflammatory markers in scopolamine-induced rats. The study demonstrated that sterubin possesses neuroprotective, anti-inflammatory, and antioxidant properties which can be used as a beneficial medication in AD. 相似文献
18.
Nasira Munawar Lone Syed Hasnain Sajjad Shah Mariya Farooq Mizna Arif Sidra Younis Saba Riaz 《Saudi Journal of Biological Sciences》2021,28(1):748-753
BackgroundIron deficiency anemia (IDA) is the highest nutritional deficiency worldwide. It is a multifactorial disease, with a higher morbidity rate. TMPRSS6 polymorphisms importantly rs855791 is found to play an essential role in iron homeostasis in the human body. The rs855791 (T > C) polymorphism is highly associated with iron levels, and multiple blood parameters, leading to IDA. The role of TMPRSS6 rs855791 polymorphism and the significance of complete blood count (CBC) parameters in the pathogenesis of IDA is not yet studied in the Pakistani population.MethodsWe enrolled 113 cases and 136 controls to conduct a case control study. Complete blood count (CBC) and iron parameters were analyzed for association studies. PCR-RFLP based genotyping was performed.ResultsThe TMPRSS6 rs855791 (T > C) polymorphism is significantly associated with IDA pathogenesis as observed in the codominant model and recessive models (P < 0.05, OR: 1.5 and 95% CI: 0.9, 2.6, P < 0.05, OR: 0.5 and 95% CI: 0.2, 0.9 respectively). Elderly women among cases (30–49 years) were found to be more susceptible to IDA (P < 0.05, AOR: 2.1 and 95% CI: 1.0, 4.2). The most significant parameters associated with IDA were red blood cell count (RBC) and hematocrit (Hct%) (P < 0.05, AOR: 16.5, 95% CI: 7.6, 35.9 and P < 0.05, AOR: 10.1, 95% CI: 2.5, 41.6, respectively).ConclusionTMPRSS6 polymorphism at rs855791 (T > C) is significantly associated with IDA susceptibility in reproductive age women in Pakistan. Age, RBC count and Hct% are found to play an important role in IDA pathogenesis in our study population. 相似文献
19.
Chun-Feng Huang Ann Chen Siao-Yun Lin Mei-Ling Cheng Ming-Shi Shiao Tso-Yen Mao 《Saudi Journal of Biological Sciences》2021,28(8):4762-4769
BackgroundDiabetes mellitus (DM) is a leading cause of preventable cardiovascular disease, but the metabolic changes from prediabetes to diabetes have not been fully clarified. This study implemented a metabolomics profiling platform to investigate the variations of metabolites and to elucidate their global profiling from metabolic syndrome to DM. Methods: Male Sprague-Dawley rats (n = 44) were divided into four groups. Three groups were separately fed with a normal diet, a high-fructose diet (HF), or a high-fat (HL) diet while one group was treated with streptozotocin. The HF and HL diet were meant to induce insulin resistance, obesity, and dyslipidemia, which known to induce DM. Results: The most significant metabolic variations in the DM group’s urine samples were the reduced release of citric acid cycle intermediates, the increase in acylcarnitines, and the decrease in urea excretion, all of which indicated energy metabolism abnormalities and mitochondrial dysfunction. Overall, the metabolic analysis revealed tryptophan metabolic pathway variations in the prediabetic phase, even though the mitochondrial function remains unaffected. Conclusion: This study show that widespread methylations and impaired tryptophan metabolism occur in metabolic syndrome and are then followed by a decline in citric acid cycle intermediates, indicating mitochondrial dysfunction in diabetes. 相似文献
20.
Mexico hosts the highest species richness of pines (Pinus, Pinaceae) worldwide; however, the priority areas for their conservation in the country are unknown. In this study, the ecological niche of the 50 native pine species was modeled. Then, through a multi-criteria analysis, the priority areas for the conservation of the genus Pinus were identified according to the spatial patterns of richness, geographic rareness, irreplaceability, the level of vulnerability of their habitat and the status of legal protection. The results revealed that the regions with high species richness differed from those with high endemism. Also, most pine species have undergone processes of habitat degradation, having been the endemic species the most affected. The priority areas covered regions with high species richness, high endemism, and highly degraded forests, located at mountainous portions of the Baja California Peninsula, the Sierra Madre Occidental, the Sierra Madre Oriental, the Trans-Mexican Volcanic Belt, and the Sierra Madre del Sur. A low proportion of priority areas overlapped with protected areas or terrestrial regions considered priorities for biological conservation. These results suggest that conservation efforts for this genus should be focused beyond regions with high species richness and current protected areas. Besides, the priority areas identified in this study can be the basis to create biological corridors and new protected areas, which could contribute significantly to the conservation of this genus in Mexico. 相似文献