首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. The long-term growth dynamics of natural forest stands on the island of Hokkaido were described on the basis of an analysis of data from 38 permanent plots spanning 15–22 yr. Stand structure was characterized by basal area, stem density and tree size variability. To detect trends in stand structure, regression models for recruitment rate (per ha per yr), mortality rate and the rate of change in stem density and tree size variability were developed by a stepwise method using initial basal area, stem density, tree size variability, species composition summarized by LNMDS ordination, altitude, annual mean temperature, annual precipitation, type of understorey vegetation, topography and slope aspect as candidates for predictor variables. The same analyses were conducted for basal area increment (net growth) and its components: survivor growth = basal area gain by growth of surviving individuals and mortality = basal area loss by death of individuals. Stem density remained generally unchanged; recruitment was relatively low even in very sparse stands. Stand basal area generally increased as survivor growth was approximately double the mortality. Recruitment rate was strongly affected by the presence of dwarf bamboo (Sasa spp.) vegetation on the forest floor which inhibited tree regeneration. Mortality rate was density-dependent; dense stands had higher mortality than sparse stands. Density change rate (recruitment rate - mortality rate) was, therefore, determined by both the type of understorey vegetation and stem density. Survivor growth was high in stands with high stem density and basal area. Mortality was dependent on basal area and altitude. Net basal area increment (net growth) was dependent only on stem density with other factors that influenced survivor growth and mortality omitted. Tree size variability decreased in stands with high tree size variability whereas it increased in stands with low size variability. Based on the obtained models for density change rate and net basal area increment, trajectories of stands were illustrated on a log-log diagram of stem density and basal area. The predicted differences in trajectories as affected by the understorey vegetation type indicated the importance of dwarf bamboo vegetation for forest dynamics on Hokkaido.  相似文献   

2.
A mathematical method, based on polar coordinates that allow modelling of primary and secondary growth processes in stems of extant and fossil plants, is summarized and its potential is discussed in comparison with numerical methods using digitizing tablets or electronic image analysing systems. As an example, the modelling of tissue distribution in the internode of an extant sphenopsid (Equisetum hyemale) is presented. In the second half of the paper we present new data of a functional analysis of stem structure and biomechanics of the early lignophyte Tetraxylopteris schmidtii (Middle Devonian) using the polar coordinate method for modelling the tissue distribution in stems of different ontogenetic age. Calculations of the mechanical properties of the stems, based on the modelling of the tissue arrangement, indicate that there is no increase in structural bending modulus throughout the entire development of the plant. The oldest ontogenetic stage has a significantly smaller bending elastic modulus than the intermediate ontogenetic stage, a 'mechanical signal', which is not consistent with a self-supporting growth form. These results, and the ontogenetic variations of the contributions of different stem tissues to the flexural stiffness of the entire stem, are discussed in the evolutionary context of cambial secondary growth.  相似文献   

3.
气候变暖背景下植物可通过关键性状的表型可塑性来适应环境温度的增加。表型可塑性增强进化假说预测定植到新环境中的入侵植物种群具有演化出更强表型可塑性的潜力。此前对可塑性进化的研究涵盖了外来植物性状对水分条件、光照变化、土壤养分、邻体根系以及天敌防御等的响应, 而较少有研究关注增温条件下植物重要性状的可塑性进化。已有的部分研究多集中在温带和热带地区, 而较少关注入侵植物在高寒地区对增温的响应; 且研究多集中在植物生长相关性状, 较少关注功能性状和防御性状。本研究采用同质园实验比较了喜旱莲子草6个引入地(中国)种群和6个原产地(阿根廷)种群, 在西藏拉萨模拟全天增温2℃处理下的适合度性状、功能性状和防御性状的响应差异。结果表明: (1)高寒地区模拟全天增温显著提高了喜旱莲子草总生物量(+36.4%)、地上生物量(+34.5%)、贮藏根生物量(+51.4%)和毛根生物量(+33.6%), 降低了分枝强度(-19.8%)和比茎长(-30.2%); (2)模拟全天增温使引入地种群的比叶面积和黄酮含量增加, 而原产地种群则相反。这些结果表明高寒地区全天增温2℃对喜旱莲子草可能是一种有利条件。引入地种群的适合度性状对模拟全天增温2℃的响应比原产地种群更强, 而其光能利用相关性状和防御性状的响应可能提升了其在高寒地区的适合度。因此, 在未来全球气候变暖的背景下, 高寒地区温度升高可能更有利于喜旱莲子草引入地种群的定植和扩散。  相似文献   

4.
Arctic and alpine habitats occur along complex environmental gradients, and over an extensive geographical range. Despite some selective forces common to these habitats, evolutionary divergence among populations of arctic and alpine plants along this gradient is expected. Of particular significance, both in the context of life-history theory and for implications of climate change, are the few annual species that have adapted to the constraints of an unpredictable, short growing season. In this study, morphological, life-history and phenological characters were found to differ significantly among six widely distributed populations of the arctic-alpine annual Koenigia islandica. On the basis of morphology and life-history traits, populations from high latitudes, with the exception of Svalbard, performed better in simulated arctic conditions, whereas the low latitude alpine plants from Colorado showed enhanced performance under simulated alpine conditions. On the basis of phenology, the six populations can be clearly grouped into arctic, high latitude alpine and alpine populations: arctic plants were found to develop and flower earliest; alpine plants latest. Because these results were obtained using seeds harvested from plants first grown through a complete generation in growth chambers, they indicate strong genetic differentiation. We discuss possible adaptive explanations for observed differences among the six geographically divergent populations.  相似文献   

5.

Background and Aims

Plant defence traits against herbivores incur production costs that are usually difficult to measure. However, estimating these costs is a prerequisite for characterizing the plant defence strategy as a whole. Myrmecophytes are plants that provide symbiotic ants with specialized nesting cavities, called domatia, in exchange for protection against herbivores. In the particular case of stem domatia, production of extra wood seems to be the only associated cost, making this indirect defence trait a particularly suitable model for estimating the cost of defence.

Methods

Measurements were made of growth pattern and cumulative production cost of domatia over secondary growth in the myrmecophyte Leonardoxa africana subsp. africana, whose internodes display both a solid basal segment and a hollow distal part (the domatium), thus allowing paired comparison of investment in wood.

Key Results

Previous studies showed that ‘overconstruction’ of the hollow part of internodes during primary growth is needed for mechanical support. In this study, it is shown that the relationship between the woody cross-sectional area of the solid and hollow parts of internodes is negatively allometric at the beginning of secondary growth and nearly isometric later on. Thus, in hollow stems, the first phase of slow secondary growth compensates for the ‘overconstruction’ of the ring of wood during primary growth. Moreover, the cumulative production cost of a domatium (estimated as the additional volume of wood required for a hollow stem compared with a solid one) is very high at the beginning of secondary growth and then quickly tends to zero.

Conclusions

Making domatia incurs high costs early in ontogeny, costs that are then amortized later in development of stems and of individual plants. Characterizing ontogenetic variation of the net cost of this peculiar defence mechanism will help us build more accurate theoretical models of resource allocation in myrmecophytes.  相似文献   

6.
《Flora》2007,202(5):408-416
To investigate how growth form and habitat origin affect phenotypic plasticity to resource supply in the Tibetan alpine herbs, the phalanx-type species Stipa capillacea and the guerilla-type species Carex montis-everestii were sampled from two different habitats (alpine steppe and alpine scrubland) and grown under three levels of light intensity and two levels of nutrient supply. Interspecific differences in light-induced plasticity were detected only in number of ramets, specific leaf area and leaf sheath length. Plasticity in plant biomass, number of ramets and rhizome length in response to light intensity differed between the two habitats. Stipa plants were more plastic than Carex plants in number of ramets and specific leaf area in response to light intensity. Carex plants from the alpine scrubland expressed greater light-induced plasticity in plant biomass and number of ramets than those from the alpine steppe, and Stipa plants showed less interhabitat differences in plasticity, which may be closely related to their contrasting growth forms. Clonal growth form and habitat origin affected nutrient-induced plasticity in none of the measured traits. It may be the guerilla growth form that makes Carex plants more efficiently adapted to highly heterogeneous light conditions in scrubland, and less habitat-dependent plasticity contributes to success of the phalanx-type Stipa plants in alpine habitats. The results are discussed in the context of foraging for heterogeneously distributed essential resources and adaptation to habitat origin.  相似文献   

7.
The hydraulic architecture of the secondary hemiepiphyte Monstera acuminata was examined in native plants from Los Tuxtlas, Veracruz, Mexico, to determine how it compared to better-known growth forms such as trees, shrubs, lianas and primary hemiepiphytes. Monstera acuminata starts its life cycle as a prostrate herb. As it ascends a tree or other vertical support, the stem becomes thicker, produces larger leaves, and may die back from the base upwards until only aerial feeding roots serve to connect the stem to the soil. Unlike the pattern of vessel-size distribution along the stems of woody dicotyledons, M. acuminata has its wider vessels at the top of the stem, decreasing in diameter towards the base. Also peculiar is the fact that Huber values (axis area/distal leaf area) tend to increase exponentially at higher positions within the plant. Based on the hydraulic conductivity ( k h) and leaf-specific conductivity (LSC, k h/distal leaf area), the base of the stem potentially acts as a severe hydraulic constriction. This constriction is apparently not limiting, as aerial roots are produced further up the stem. The plants have remarkably strong root pressures, up to 225 kPa, which may contribute to the maintenance of functional vessels by refilling them at night or during periods of very high atmospheric humidity, as in foggy weather and rain. In common with dicotyledonous plants, vessel length, vessel diameter, k h, specific conductivity ( k s, k h/axis area) and LSCs were all positively correlated with axis diameter. The features of the hydraulic architecture of M. acuminata may be an evolutionary consequence of an anatomical constraint (lack of vascular cambium and therefore of secondary growth) and the special requirements of the hemiepiphytic growth form.  相似文献   

8.
AIMS: The purpose of this Botanical Briefing is to stimulate reappraisal of root growth, root/shoot partitioning, and analysis of other aspects of plant growth under heterogeneous conditions. SCOPE: Until recently, most knowledge of plant growth was based upon experimental studies carried out under homogeneous conditions. Natural environments are heterogeneous at scales relevant to plants and in forms to which they can respond. Responses to environmental heterogeneity are often localized rather than plant-wide, and not always predictable from traditional optimization arguments or from knowledge of the ontogenetic trends of plants growing under homogeneous conditions. These responses can have substantial impacts, both locally and plant-wide, on patterns of resource allocation, and significant effects on whole-plant growth. Results from recent studies are presented to illustrate responses of plants, plant populations and plant communities to nutritionally heterogeneous conditions. CONCLUSIONS: Environmental heterogeneity is a constant presence in the natural world that significantly influences plant behaviour at a variety of levels of complexity. Failure to understand its effects on plants prevents us from fully exploiting aspects of plant behaviour that are only revealed under patchy conditions. More effort should be invested into analysis of the behaviour of plants under heterogeneous conditions.  相似文献   

9.
A biomechanical method to distinguish self-supporting and non self-supporting growth habits is applied to exceptionally preserved “twigs” ofPitus dayi Gordon. The analysis investigates whether these isolated stem segments are consistent with a self-supporting tree-like habit as suggested by the stumps, trunks and branches of the genusPitus Witham preserved more commonly in the fossil record. Because of difficulties in accurately identifying certain fossil tissues, three centrisymmetrical models were constructed to test a range of possible tissue combinations over five ontogenetic stages. The results suggest a self-supporting habit with trends in mechanical parameters during ontogeny similar to those of extant, self-supporting plants. Less explicitly constrained to the analysis of habit, the investigation also examines the structural significance of specific tissues during ontogeny as observed from contributions of individual tissues to cross-sectional area, axial second moment of area and flexural stiffness.Pitus dayl produced a physiologically “cheap” primary cauline cortex which was rapidly replaced by the development of a rhytidome. A mechanically significant, cauline hypoderm comprising thickwalled sclerenchymatous tissue is absent. This arrangement differs from other tested Palaeozoic pteridosperms interpreted as semi-self-supporting such asLyginopteris oldhamia andCalamopitys sp. in which the primary cortex is mechanically significant and secondary growth of the wood does not reach mechanically significant thresholds within the primary body.  相似文献   

10.
Tolerance to herbivory—the ability of plants to maintain fitness despite herbivore damage—is expected to change during the life cycle of plants because the physiological mechanisms underlying tolerance to herbivory are linked to growth, and resource allocation to growth changes throughout ontogeny. We used the model plant Arabidopsis thaliana to test two hypotheses: that tolerance increases as plants grow, and that tolerance decreases at the onset of reproduction. We chose three accessions previously reported to vary for resistance to herbivory in order to explore whether tolerance and resistance are inversely related. Cabbage looper (Trichoplusia ni) larvae were allowed to feed on plants at either the four-leaf, six-leaf, or 1st-flower developmental stage until 50% of the leaf area was removed. Overall, we found a trend for increased tolerance with ontogenetic stage, but there were important differences among accessions in their response to herbivory at different stages. Tolerance did not decrease with the onset of flowering, nor did we find any correlation between resistance and tolerance levels. Three main plant traits correlated strongly with tolerance: stem mass, an earlier onset of reproduction and a longer fruiting period. This study suggests there may be considerable variation in ontogenetic patterns of tolerance in natural populations of A. thaliana, and warrants further investigations with more accessions or natural populations, and detailed measurements of traits purported to contribute to tolerance in our quest to understand the mechanisms of tolerance to herbivory.  相似文献   

11.
The growth and biomass production by willow (Salix viminalis L.) was studied in lysimeters containing Oxford clay landfill cap soil with different amendments, bulk densities and watering regimes. Three years from planting, stem biomass in well-watered plants was least (0.28 kg plant(-1)) with high bulk density soil (1480 kg m(-3)) and no nutritional amendment but was increased 10-fold (2.53 kg plant(-1)) by reducing soil bulk density (1200 kg m3) and adding amendments. In comparison, on a sandy loam soil it was 6.23 kg plant(-1). There were similar differences in number of stems plant(-1), stem basal area plant(-1) and plant leaf area which can be attributed to low nitrogen and phosphorus levels in Oxford clay. Water stress reduced stem biomass production by 26-37% and caused higher root:stem ratios. These were also higher on Oxford clay than on the sandy loam. Successful biomass production from willow on Oxford clay landfill caps will therefore require nutritional amendment.  相似文献   

12.
Productivity of old‐growth beech forests in the Mediterranean Basin was measured by average stem basal area increment (BAI) of dominant trees at two mountain sites in the Italian Apennines. Both forests could be ascribed to the old‐growth stage, but they differed markedly with regard to elevation (1000 vs. 1725 m a.s.l.), soil parent material (volcanic vs. calcareous), mean tree age (less than 200 years vs. 300 years), and stand structure (secondary old‐growth vs. primary old‐growth forest). Drought at the two sites was quantified by the self‐calibrated Palmer Moisture Anomaly Index (Z‐index), and by the self‐calibrating Palmer Drought Severity Index (PDSI) for summer (June through August) and the growing season (May through September). Dendroclimatological analyses revealed a moisture limitation of beech BAI at interannual (water availability measured by Z‐index) and decadal scales (water availability measured by PDSI). Both BAI and water availability increased from 1950 to 1970, and decreased afterwards. Trees were grouped according to their BAI trends in auxological groups (growth‐type chronologies), which confirmed that growth of most trees at both sites declined in recent decades, in agreement with increased drought. Because BAI is not expected to decrease without an external forcing, the patterns we uncovered suggest that long‐term drought stress has reduced the productivity of beech forests in the central Apennines, in agreement with similar trends identified in other Mediterranean mountains, but opposite to growth trends reported for many forests in central Europe.  相似文献   

13.
Using two ecotypes of Stellaria longipes an alpine form with low plasticity and a prairie form with high plasticity, we investigated whether ethylene was involved in the response to wind stress and might be important in controlling plasticity of stem elongation. Stem growth inhibition was positively correlated with concentration of ethephon application and elevation in ambient ethylene in alpine ecotypes, whereas stem growth in prairie plants was stimulated by low ethephon concentrations. When treated with high AVG, the effects were reversed: alpine plant growth was promoted and prairie plant growth was inhibited. Prairie plants exhibited a daily rhythm in ethylene evolution which increased and peaked at 1500 h, and which was absent in alpine plants. Ethylene evolution did not change significantly during the first 2 weeks of growth in alpine plants, whereas ethylene in prairie plants increased significantly during periods of rapid stem elongation. Wind treatment inhibited growth in both ecotypes, but only alpine plants showed a recovery of growth to control levels when wind stressed plants were pretreated with STS. In addition, only alpine plants showed an increase in ethylene evolution in response to wind simulation, whereas prairie plant ethylene evolution did not deviate from rhythms observed in unstressed plants. We concluded that ethylene dwarfs stems in alpine S. longipes in response to wind stress. However, low levels of ethylene may stimulate growth in prairie ecotypes and act independently of wind stress intensity. The contrasting ability to synthesize and respond to ethylene can account for part of the difference in plasticity documented between the two ecotypes.  相似文献   

14.
The rapidly warming temperatures in high-latitude and alpine regions have the potential to alter the phenology of Arctic and alpine plants, affecting processes ranging from food webs to ecosystem trace gas fluxes. The International Tundra Experiment (ITEX) was initiated in 1990 to evaluate the effects of expected rapid changes in temperature on tundra plant phenology, growth and community changes using experimental warming. Here, we used the ITEX control data to test the phenological responses to background temperature variation across sites spanning latitudinal and moisture gradients. The dataset overall did not show an advance in phenology; instead, temperature variability during the years sampled and an absence of warming at some sites resulted in mixed responses. Phenological transitions of high Arctic plants clearly occurred at lower heat sum thresholds than those of low Arctic and alpine plants. However, sensitivity to temperature change was similar among plants from the different climate zones. Plants of different communities and growth forms differed for some phenological responses. Heat sums associated with flowering and greening appear to have increased over time. These results point to a complex suite of changes in plant communities and ecosystem function in high latitudes and elevations as the climate warms.  相似文献   

15.
高寒矮嵩草草甸地上生物量与气象因子的关系   总被引:4,自引:0,他引:4  
初级生产量是生态系统研究的主要内容之一。初级生产量的高低,决定了整个系统的生产力。初级生产量一方面取决于群落类型、种类组成、结构特征;另一方面它又受到周围环境条件的制约。高寒草甸是青藏高原上主要的植  相似文献   

16.
作为高山生态系统中的奠基种(foundation species), 垫状植物自身种群的繁殖与扩张, 对高山生态系统功能稳定性起着关键作用。但是, 垫状植物如何在极端环境条件下实现资源的有效利用与分配, 达到繁殖最优化, 至今鲜为人知。该研究在滇西北白马雪山沿海拔梯度选择具有不同坡度及坡向的5个团状福禄草(Arenaria polytrichoides)种群, 调查、比较种群内、种群间以及具有不同性系统的植株个体之间的开花面积比、开花方位, 并分析不同生态因子对其开花特性的影响。结果表明: 随着海拔的升高, 团状福禄草个体变小, 其分配到开花的资源比例总体上随海拔上升呈现下降的趋势, 说明团状福禄草的繁殖分配受到由海拔所引起的生态因子的调控。但是, 部分低海拔种群内植物个体的繁殖分配显著低于部分高海拔种群, 说明海拔并非控制植物繁殖分配的唯一因素。此外, 植株开花总面积随植株个体增大而增加, 但开花面积比却随个体增大而变小, 说明植株分配到开花的资源增长速率可能低于植株个体的增长速率。在性别差异方面, 两性植株对开花的资源分配比例要显著高于雌性植株, 但是, 其差异程度受到海拔因素的影响。最后, 在同一种群内, 团状福禄草在冠层表面不同方位上的开花面积比存在显著差异性, 这种差异性在不同种群之间又具有不同的表现形式。  相似文献   

17.
《植物生态学报》2021,44(11):1154
Aims As foundation species in the alpine ecosystems, the reproduction and recruitment of alpine cushion plants are very important for sustaining the alpine ecosystem functions. However, it still remains unclear that how cushion plants effectively allocate resources to optimize reproductive fitness.Methods Here we selected five populations of a gynodioecious herb Arenaria polytrichoides with different exposures and slopes along an altitudinal gradient on the Baima snow mountain in northwest Yunnan, southwest China, to investigate and compare flowering area and positions, within and among populations and between female and hermaphroditic morphs. By doing so, we further discuss how the environmental stresses affect the cushion’s flowering attributes thus the population-level reproduction.Important findings The results showed that, individual plant size and resources allocated to flowering (flowering area %) both decreased with increasing elevation, indicating that the reproductive allocation strategy was significantly affected by elevation. However, a population at lower elevation showed lower reproductive investment than higher populations, suggesting that elevation was not the only factor affecting the cushion’s reproductive allocation. In addition, absolute flowering area increased with increasing individual size, but the flowering area ratio decreased, indicating that the increases in reproductive allocation are fewer than that in vegetative allocation. Hermaphroditic individuals invested more resources to flowering than females did, but again, such effect was affected by elevation. Moreover, within a single population, the flowering areas were significantly different among the four directions (east, south, west and north) within one single individual canopy, but such differences varied in different populations.  相似文献   

18.
The impact of different plant growth rates on biomass allocation and growth distribution in tobacco was studied on the whole plant, total leaf area and single leaf level. On the whole plant level, constant relationships were found between the total leaf area and the biomass allocation to leaves and the nonphotosynthetic organs (roots and stem) independent from the overall growth rate and the nutrient addition rate to the plants. On the level of total leaf area, plants grown at lower nutrient supply reached a distinct distribution of leaf area later than those grown at higher nutrient supply, but the normalized distribution of leaf area along the stem at a certain plant size did not differ between plants growing at different nutrient supply and growth rates. On the leaf blade level, growth rates declined, initially linearly, from the leaf base to the leaf tip. Distinct gradients within the side veins were not observed, but the growth rates of the side veins were closely correlated to the adjacent mid-vein segments. These gradients flattened with increasing size of the leaf. The modular character of growth in tobacco is discussed in the context of basic growth analysis and as a framework for physiological, cytological, biochemical, and molecular studies in growing plants.Key words: Nicotiana tabacum, whole plant, total leaf area, leaf growth, growth rate, biomass.   相似文献   

19.
Summary The phosphorus (P) uptake rate of several white clover populations was determined in two solution culture experiments. Populations and cultivars differed in P uptake per plant and per unit root length in both experiments. Correlation and multiple regression analysis showed that differences between populations for P uptake per plant were largely related (r2>80%) to differences in leaf area and absolute growth rate, when plants had been grown at high-P levels, and by differences in root size and absolute growth rate when plants had been grown at low-P levels. Differences between populations for P uptake per unit root length were related (r2≈50%) to leaf area and relative growth rate in experiment 1 and to transpiration rate and water influx in experiment 2, when plants were pretreated at high-P levels. Differences between populations for P uptake per unit root length were negatively related to root size when plants had been grown at low-P levels. On the basis of these and other results it is suggested that P uptake per plant is determined largely by shoot factors. However, P uptake per unit root length is negatively related to root size, because demand for P is largely determined by shoot factors, and so differences in root size lead to an apparent difference in uptake per unit of root size.  相似文献   

20.
The effect of (2RS, 3RS)-1-(4-Chlorophenyl)-4, 4-dimethyl-2-(1H-1,2,4 triazol-1-yl) pentan-3-ol (PP333) on the growth and transpiration of normal and root pruned colt rootstocks was measured. PP333 reduced plant height, stem diameter increment, leaf number, area and weight and stem weight. Root pruning reduced root, leaf and stem weight, and plant height in control plants. PP333 reduced both total water use and transpiration per unit leaf area and increased stomatal resistance. In control plants root pruning also reduced total water use and increased stomatal resistance. 15 days after the beginning of the experiment half the plants in all treatments were allowed to dry out. The effects of drought, i.e. reduced transpiration, growth and leaf water potentials, were smaller in PP333 treated than in control plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号