首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although inhaled NO (iNO) therapy is often effective in treating infants with persistent pulmonary hypertension of the newborn (PPHN), up to 40% of patients fail to respond, which may be partly due to abnormal expression and function of soluble guanylate cyclase (sGC). To determine whether altered sGC expression or activity due to oxidized sGC contributes to high pulmonary vascular resistance (PVR) and poor NO responsiveness, we studied the effects of cinaciguat (BAY 58-2667), an sGC activator, on pulmonary artery smooth muscle cells (PASMC) from normal fetal sheep and sheep exposed to chronic intrauterine pulmonary hypertension (i.e., PPHN). We found increased sGC α(1)- and β(1)-subunit protein expression but lower basal cGMP levels in PPHN PASMC compared with normal PASMC. To determine the effects of cinaciguat and NO after sGC oxidation in vitro, we measured cGMP production by normal and PPHN PASMC treated with cinaciguat and the NO donor, sodium nitroprusside (SNP), before and after exposure to 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, an sGC oxidizer), hyperoxia (fraction of inspired oxygen 0.50), or hydrogen peroxide (H(2)O(2)). After treatment with ODQ, SNP-induced cGMP generation was markedly reduced but the effects of cinaciguat were increased by 14- and 64-fold in PPHN fetal PASMC, respectively (P < 0.01 vs. controls). Hyperoxia or H(2)O(2) enhanced cGMP production by cinaciguat but not SNP in PASMC. To determine the hemodynamic effects of cinaciguat in vivo, we compared serial responses to cinaciguat and ACh in fetal lambs after ductus arteriosus ligation. In contrast with the impaired vasodilator response to ACh, cinaciguat-induced pulmonary vasodilation was significantly increased. After birth, cinaciguat caused a significantly greater fall in PVR than either 100% oxygen, iNO, or ACh. We conclude that cinaciguat causes more potent pulmonary vasodilation than iNO in experimental PPHN. We speculate that increased NO-insensitive sGC may contribute to the pathogenesis of PPHN, and cinaciguat may provide a novel treatment of severe pulmonary hypertension.  相似文献   

2.
Heme is a vital molecule for all life forms with heme being capable of assisting in catalysis, binding ligands, and undergoing redox changes. Heme-related dysfunction can lead to cardiovascular diseases with the oxidation of the heme of soluble guanylyl cyclase (sGC) critically implicated in some of these cardiovascular diseases. sGC, the main nitric oxide (NO) receptor, stimulates second messenger cGMP production, whereas reactive oxygen species are known to scavenge NO and oxidize/inactivate the heme leading to sGC degradation. This vulnerability of NO-heme signaling to oxidative stress led to the discovery of an NO-independent activator of sGC, cinaciguat (BAY 58–2667), which is a candidate drug in clinical trials to treat acute decompensated heart failure. Here, we present crystallographic and mutagenesis data that reveal the mode of action of BAY 58–2667. The 2.3-Å resolution structure of BAY 58–2667 bound to a heme NO and oxygen binding domain (H-NOX) from Nostoc homologous to that of sGC reveals that the trifurcated BAY 58–2667 molecule has displaced the heme and acts as a heme mimetic. Carboxylate groups of BAY 58–2667 make interactions similar to the heme-propionate groups, whereas its hydrophobic phenyl ring linker folds up within the heme cavity in a planar-like fashion. BAY 58–2667 binding causes a rotation of the αF helix away from the heme pocket, as this helix is normally held in place via the inhibitory His105–heme covalent bond. The structure provides insights into how BAY 58–2667 binds and activates sGC to rescue heme-NO dysfunction in cardiovascular diseases.  相似文献   

3.
Soluble guanylyl cyclase (sGC) is the major physiological receptor for nitric oxide (NO) throughout the central nervous system. Three different subunits form the α11 and α21 heterodimeric enzymes that catalyze the reaction of GTP to the second messenger cGMP. Both forms contain a prosthetic heme group which binds NO and mediates activation by NO. A number of studies have shown that NO/cGMP signaling plays a major role in neuronal cell differentiation during development of the central nervous system. In the present work, we studied regulation and expression of sGC in brain of rats during postnatal development using biochemical methods. We consistently observed a surprising decrease in cerebral NO sensitive enzyme activity in adult animals in spite of stable expression of sGC subunits. Total hemoprotein heme content was decreased in cerebrum of adult animals, likely because of an increase in heme oxygenase activity. But the loss of sGC activity was not simply because of heme loss in intact heterodimeric enzymes. This was shown by enzyme activity determinations with cinaciguat which can be used to test heme occupancy in intact heterodimers. A reduction in heterodimerization in cerebrum of adult animals was demonstrated by co‐precipitation analysis of sGC subunits. This explained the observed decrease in NO sensitive guanylyl cyclase activity in cerebrum of adult animals. We conclude that differing efficiencies in heterodimer formation may be an important reason for the lack of correlation between sGC protein expression and sGC activity that has been described previously. We suggest that heterodimerization of sGC is a regulated process that changes during cerebral postnatal development because of still unknown signaling mechanisms.  相似文献   

4.
Nitric oxide (NO) by activating soluble guanylyl cyclase (sGC) is involved in vascular homeostasis via induction of smooth muscle relaxation. In cardiovascular diseases (CVDs), endothelial dysfunction with altered vascular reactivity is mostly attributed to decreased NO bioavailability via oxidative stress. However, in several studies, relaxation to NO is only partially restored by exogenous NO donors, suggesting sGC impairment. Conflicting results have been reported regarding the nature of this impairment, ranging from decreased expression of one or both subunits of sGC to heme oxidation. We showed that sGC activity is impaired by thiol S-nitrosation. Recently, angiotensin II (ANG II) chronic treatment, which induces hypertension, was shown to generate nitrosative stress in addition to oxidative stress. We hypothesized that S-nitrosation of sGC occurs in ANG II-induced hypertension, thereby leading to desensitization of sGC to NO hence vascular dysfunction. As expected, ANG II infusion increases blood pressure, aorta remodeling, and protein S-nitrosation. Intravital microscopy indicated that cremaster arterioles are resistant to NO-induced vasodilation in vivo in anesthetized ANG II-treated rats. Concomitantly, NO-induced cGMP production decreases, which correlated with S-nitrosation of sGC in hypertensive rats. This study suggests that S-nitrosation of sGC by ANG II contributes to vascular dysfunction. This was confirmed in vitro by using A7r5 smooth muscle cells infected with adenoviruses expressing sGC or cysteine mutants: ANG II decreases NO-stimulated activity in the wild-type but not in one mutant, C516A. This result indicates that cysteine 516 of sGC mediates ANG II-induced desensitization to NO in cells.  相似文献   

5.
The Western-style diet is characterized by its highly processed and refined foods and high contents of sugars, salt, and fat and protein from red meat. It has been recognized as the major contributor to metabolic disturbances and the development of obesity-related diseases including type 2 diabetes, hypertension, and cardiovascular disease. Also, the Western-style diet has been associated with an increased incidence of chronic kidney disease (CKD). A combination of dietary factors contributes to the impairment of renal vascularization, steatosis and inflammation, hypertension, and impaired renal hormonal regulation. This review addresses recent progress in the understanding of the association of the Western-style diet with the induction of dyslipidemia, oxidative stress, inflammation, and disturbances of corticosteroid regulation in the development of CKD. Future research needs to distinguish between acute and chronic effects of diets with high contents of sugars, salt, and fat and protein from red meat, and to uncover the contribution of each component. Improved therapeutic interventions should consider potentially altered drug metabolism and pharmacokinetics and be combined with lifestyle changes. A clinical assessment of the long-term risks of whole-body disturbances is strongly recommended to reduce metabolic complications and cardiovascular risk in kidney donors and patients with CKD.  相似文献   

6.

Background

A direct pharmacological stimulation of soluble guanylate cyclase (sGC) is an emerging therapeutic approach to the management of various cardiovascular disorders associated with endothelial dysfunction. Novel sGC stimulators, including riociguat (BAY 63-2521), have a dual mode of action: They sensitize sGC to endogenously produced nitric oxide (NO) and also directly stimulate sGC independently of NO. Little is known about their effects on tissue remodeling and degeneration and survival in experimental malignant hypertension.

Methods and Results

Mortality, hemodynamics and biomarkers of tissue remodeling and degeneration were assessed in Dahl salt-sensitive rats maintained on a high salt diet and treated with riociguat (3 or 10 mg/kg/d) for 14 weeks. Riociguat markedly attenuated systemic hypertension, improved systolic heart function and increased survival from 33% to 85%. Histological examination of the heart and kidneys revealed that riociguat significantly ameliorated fibrotic tissue remodeling and degeneration. Correspondingly, mRNA expression of the pro-fibrotic biomarkers osteopontin (OPN), tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and plasminogen activator inhibitor-1 (PAI-1) in the myocardium and the renal cortex was attenuated by riociguat. In addition, riociguat reduced plasma and urinary levels of OPN, TIMP-1, and PAI-1.

Conclusions

Stimulation of sGC by riociguat markedly improves survival and attenuates systemic hypertension and systolic dysfunction, as well as fibrotic tissue remodeling in the myocardium and the renal cortex in a rodent model of pressure and volume overload. These findings suggest a therapeutic potential of sGC stimulators in diseases associated with impaired cardiovascular and renal functions.  相似文献   

7.
Diatomic ligand discrimination by soluble guanylyl cyclase (sGC) is paramount to cardiovascular homeostasis and neuronal signaling. Nitric oxide (NO) stimulates sGC activity 200-fold compared with only four-fold by carbon monoxide (CO). The molecular details of ligand discrimination and differential response to NO and CO are not well understood. These ligands are sensed by the heme domain of sGC, which belongs to the heme nitric oxide oxygen (H-NOX) domain family, also evolutionarily conserved in prokaryotes. Here we report crystal structures of the free, NO-bound, and CO-bound H-NOX domains of a cyanobacterial homolog. These structures and complementary mutational analysis in sGC reveal a molecular ruler mechanism that allows sGC to favor NO over CO while excluding oxygen, concomitant to signaling that exploits differential heme pivoting and heme bending. The heme thereby serves as a flexing wedge, allowing the N-terminal subdomain of H-NOX to shift concurrent with the transition of the six- to five-coordinated NO-bound state upon sGC activation. This transition can be modulated by mutations at sGC residues 74 and 145 and corresponding residues in the cyanobacterial H-NOX homolog.  相似文献   

8.
Several authors have cited renal disease as a risk factor for free flap failure. The authors performed a retrospective analysis of all patients who underwent free tissue transfer with concomitant renal disease, including acute renal failure, end-stage renal disease, chronic renal insufficiency, and functional kidney transplants, to determine what effect renal disease has on flap survival and overall reconstructive outcome. More than 1053 free flaps were examined. Renal disease was identified in 32 patients who underwent 33 free tissue transfers. Average patient age was 57 years (range, 36 to 80 years). Twelve patients (38 percent) were on chronic dialysis (end-stage renal disease), 18 patients (56 percent) had chronic renal insufficiency, and three patients (9 percent) had the diagnosis of acute renal failure at the time of surgery. Three patients in the chronic renal insufficiency group had a functioning renal transplant. Average follow-up was 16 months. Immediate postoperative complications occurred in 14 patients (42 percent of the 33 flaps). Overall perioperative mortality was 3 percent. Within the first 30 days there were two cases (6 percent) of primary flap failure; an additional four legs were lost as the result of complications related to their bypass grafts. There were no primary flap failures after 30 days; however, within the first year after surgery an additional seven limbs were lost as the result of progressive ischemia or infection, and an additional three patients died. This resulted in a 52 percent incidence of major morbidity or mortality during the first year and a 55 percent reconstructive success rate in survivors at 1 year. No significant difference was seen in postoperative morbidity or mortality when comparing the end-stage renal disease group to the chronic renal insufficiency group; however, patients with renal disease and diabetes tended to have poorer outcomes. Renal disease, especially renal disease associated with diabetes and peripheral vascular disease, can be a strong indicator of possible reconstructive failure. The surgeon and patient should be aware of the medical and surgical complications associated with this procedure at the outset.  相似文献   

9.
Hypoxia inducible factor (HIF)-1α-mediated gene activation in the renal medulla in response to high salt intake plays an important role in the control of salt sensitivity of blood pressure. High salt-induced activation of HIF-1α in the renal medulla is blunted in Dahl S rats. The present study determined whether the impairment of the renal medullary HIF-1α pathway was responsible for salt sensitive hypertension in Dahl S rats. Renal medullary HIF-1α levels were induced by either transfection of HIF-1α expression plasmid or chronic infusion of CoCl? into the renal medulla, which was accompanied by increased expressions of anti-hypertensive genes, cyclooxygenase-2 and heme oxygenase-1. Overexpression of HIF-1α transgenes in the renal medulla enhanced the pressure natriuresis, promoted the sodium excretion and reduced sodium retention after salt overload. As a result, hypertension induced by 2-week high salt was significantly attenuated in rats treated with HIF-1α plasmid or CoCl?. These results suggest that an abnormal HIF-1α in the renal medulla may represent a novel mechanism mediating salt-sensitive hypertension in Dahl S rats and that induction of HIF-1α levels in the renal medulla could be a therapeutic approach for the treatment of salt-sensitive hypertension.  相似文献   

10.
《Free radical research》2013,47(5):346-356
Abstract

Oxidative response regulates many physiological response in human health, but if not properly regulated it could also lead to a number of deleterious effects. The importance of oxidative stress injury depends on the molecular target, the severity of the stress, and the mechanism by which the oxidative stress is imposed: it has been implicated in several diseases including cancer, neurodegenerative diseases, malaria, rheumatoid arthritis and cardiovascular and kidney disease. Most of the common diseases, such as hypertension, atherosclerosis, heart failure, and renal dysfunction, are associated with vascular functional and structural alterations including endothelial dysfunction, altered contractility, and vascular remodeling. Common to these processes is increased bioavailability of reactive oxygen species (ROS), decreased nitric oxide (NO) levels, and reduced antioxidant capacity. Oxidative processes are up-regulated also in patients with chronic renal failure (CRF) and seem to be a cause of elevated risk of morbidity and mortality in these patients.

In this review, we highlight the role of oxidative stress in cardiovascular and renal disease.  相似文献   

11.
Chronic renal failure (CRF) has been documented to cause oxidative stress and alter nitric oxide (NO) metabolism. However, the effect of CRF on proteins related to NO bioactivity has not been investigated. The present study was designed to test the hypothesis that CRF would induce changes in caveolin-1 (Cav-1), soluble guanylate cyclase (sGC) and Akt, three proteins important in regulating NO synthase (NOS) functionality. Male Sprague-Dawley rats were randomized to CRF via 5/6 nephrectomy or sham-operated control groups. After 6 weeks, body weight, blood pressure, creatinine clearance, plasma creatinine, urinary cyclic guanosine monophosphate (cGMP) and immunodetectable levels of Cav-1, sGC and Akt were determined in the renal, aorta, heart and liver tissues from both groups. CRF resulted in marked decreases in body weight and creatinine clearance, and elevation of blood pressure and plasma creatinine. An apparent upregulation of sGC protein abundance in renal tissue was noted, with no change in aorta, heart and liver. This was accompanied by a reduction in urinary cGMP levels, indicative of sGC dysfunction. Cav-1 protein abundance was increased in aortic, liver and renal tissues. In contrast, CRF depressed Akt abundance in aorta, heart and liver tissues. These data document that CRF is characterized by alteration in the abundance of proteins regulating NO function in hepatic, vascular, cardiac and renal tissues, and a decrease in cGMP, which contributes to hypertension and changes in NO bioactivity previously noted in this model.  相似文献   

12.
Loss of functional nephrons associated with chronic kidney disease induces glomerular hyperfiltration and compensatory renal hypertrophy. We hypothesized that the endothelial nitric oxide synthase (eNOS) [soluble guanylate cyclase (sGC)] protein kinase G (PKG) pathway plays an important role in compensatory renal hypertrophy after unilateral nephrectomy. Analysis of mice subjected to unilateral nephrectomy showed increases in kidney weight-to-body weight and total protein-to-DNA ratios in wild-type but not eNOS knockout (eNOSKO) mice. Serum creatinine and blood urea nitrogen increased after nephrectomy in eNOSKO but not in wild-type mice. Furthermore, Bay 41-2272, an sGC stimulator, induced compensatory renal hypertrophy in eNOSKO mice and rescued renal function. The NO donor S-nitrosoglutathione (GSNO) and Bay 41-2272 stimulated PKG activity and induced phosphorylation of Akt protein in human proximal tubular cells. GSNO also induced phosphorylation of eukaryotic initiation factor 4E-binding protein and ribosomal protein S6. Our results highlight the importance of the eNOS-NO-PKG pathway in compensatory renal hypertrophy and suggest that reduced eNOS-NO bioavailability due to endothelial dysfunction is the underlying mechanism of failure of compensatory hypertrophy and acceleration of progressive renal dysfunction.  相似文献   

13.
Endothelin-1 in chronic renal failure and hypertension   总被引:17,自引:0,他引:17  
Investigation into the role of endothelin-1 (ET-1) in renal function has revealed two major direct actions leading to the control of extracellular volume and blood pressure. These are the regulation of renal hemodynamics and glomerular filtration rate and the modulation of sodium and water excretion. In the rat remnant kidney model of chronic renal failure, ET-1 production is increased in blood vessels and renal tissues. These changes are related to an increase in preproET-1 expression and correlate with the rise in blood pressure, the development of cardiovascular hypertrophy, and the degree of renal insufficiency and injury. Selective ETA receptor blockade prevents the progression of hypertension and the vascular and renal damage, supporting a role for ET-1 in chronic renal failure progression. The increase in ET-1 production can be associated with other local mediators, including angiotensin II, transforming growth factor-beta1 and nitric oxide, the local production of which is also altered in chronic renal failure. In human patients with essential hypertension, atherosclerosis, and nephrosclerosis, plasma ET-1 levels are increased compared with patients with uncomplicated essential hypertension. Similarly, plasma ET-1 concentrations are markedly increased in patients with end-stage renal disease undergoing dialysis, and this correlates with blood pressure, suggesting that ET-1 may contribute to hypertension in these patients. The treatment of anemia in patients with renal failure with human recombinant erythropoietin increases blood pressure by accentuating the underlying endothelial dysfunction and the elevated vascular ET-1 production. Overall, these results support a role for ET-1 in hypertension and the end-organ damage associated with chronic renal failure. ETA receptor blockade may then represent a potential target for the management of hypertension and cardiovascular and renal protection.  相似文献   

14.
Low ethanol intake prevents salt-induced hypertension in WKY rats   总被引:2,自引:0,他引:2  
Low alcohol intake in humans lowers the risk of coronary heart disease and may lower blood pressure. In hypertension, insulin resistance with altered glucose metabolism leads to increased formation of aldehydes. We have shown that chronic low alcohol intake decreased systolic blood pressure (SBP) and tissue aldehyde conjugates in spontaneously hypertensive rats and demonstrated a strong link between elevated tissue aldehyde conjugates and hypertension in salt-induced hypertensive Wistar-Kyoto (WKY) rats. This study investigated the antihypertensive effect of chronic low alcohol consumption in high salt-treated WKY rats and its effect on tissue aldehyde conjugates, platelet cytosolic free calcium ([Ca2 +] i ),and renal vascular changes. Animals, aged 7 weeks, were divided into three groups of six animals each. The control group was given normal salt diet (0.7% NaCl) and regular drinking water; the high salt group was given a high salt diet (8% NaCl) and regular drinking water; the high salt + ethanol group was given a high salt diet and 0.25% ethanol in drinking water. After 10 weeks, SBP, platelet [Ca2 +] i , and tissue aldehyde conjugates were significantly higher in rats in the high salt group as compared with controls. Animals on high salt diets also showed smooth muscle cell hyperplasia in the small arteries and arterioles of the kidney. Ethanol supplementation prevented the increase in SBP and platelet [Ca2 +] i and aldehyde conjugates in liver and aorta. Kidney aldehyde conjugates and renal vascular changes were attenuated. These results suggest that chronic low ethanol intake prevents salt-induced hypertension and attenuates renal vascular changes in WKY rats by preventing an increase in tissue aldehyde conjugates and cytosolic [Ca2 +] i .  相似文献   

15.
Soluble guanylate cyclase (sGC) is a heterodimeric hemoprotein that catalyzes the conversion of GTP to cGMP. Upon binding NO to its heme cofactor, purified sGC was activated 300-fold. sGC was only activated 67-fold by nitroglycerin (GTN) and Cys; and in the absence of Cys, GTN did not activate sGC. Electronic absorption spectroscopy studies showed that upon NO binding, the Soret of ferrous sGC shifted from 431 to 399 nm. The data also revealed that activation of sGC by GTN/Cys was not via the expected ferrous heme-NO species as indicated by the absence of the 399 nm heme Soret. Furthermore, EPR studies of the reaction of GTN/Cys with sGC confirmed that no ferrous heme-NO species was formed but that there was heme oxidation. Potassium ferricyanide is known to oxidize ferrous sGC to the ferric oxidation state. Spectroscopic and activity data for the reactions of sGC with GTN alone or with K(3)Fe(CN)(6) were indistinguishable. These data suggest the following: 1) GTN/Cys do not activate sGC via GTN biotransformation to NO in vitro, and 2) in the absence of added thiol, GTN oxidizes sGC.  相似文献   

16.
Recent studies have established that erythropoietin (EPO) is a pleiotropic cytokine. In this study we investigated whether pleiotropic effects of EPO may involve regulation of heme oxygenase (HO)-1, an anti-oxidative stress protein. A stimulatory effect of EPO on HO-1 expression was demonstrated in cultured renal endothelial cells, in which EPO decreased intracellular oxidative stress and provided cytoprotection against H(2)O(2). These beneficial effects were partially reversed by a HO-1 inhibitor. We then evaluated whether EPO induces HO-1 and ameliorates renal injury in vivo. Administration of EPO to Dahl salt-sensitive (DS) rats with low salt diet, a model of chronic tubulointerstitial injury, reduced proteinuria, and renal injury including peritubular capillaries rarefaction as compared to vehicle-treated DS rats. This renoprotection was associated with up-regulation of HO-1 in the kidney. In conclusion, EPO-induced HO-1 expression is likely to provide cytoprotection against oxidative stress.  相似文献   

17.
Soluble guanylate cyclase (sGC), a heterodimeric hemeprotein, is the only receptor for the biological messenger nitric oxide (NO) identified to date and is intimately involved in various signal transduction pathways. By using the recently discovered NO- and heme-independent sGC activator BAY 58-2667 and a novel cGMP reporter cell, we could distinguish between heme-containing and heme-free sGC in an intact cellular system. Using these novel tools, we identified the invariant amino acids tyrosine 135 and arginine 139 of the beta(1)-subunit as crucially important for both the binding of the heme moiety and the activation of sGC by BAY 58-2667. The heme is displaced by BAY 58-2667 due to a competition between the carboxylic groups of this compound and the heme propionic acids for the identified residues tyrosine 135 and arginine 139. This displacement results in the release of the axial heme ligand histidine 105 and to the observed activation of sGC. Based on these findings we postulate a signal transmission triad composed of histidine 105, tyrosine 135, and arginine 139 responsible for the enzyme activation by this compound and probably also for transducing changes in heme status and porphyrin geometry upon NO binding into alterations of sGC catalytic activity.  相似文献   

18.
Whole-body and thoracic ionizing radiation exposure are associated with increased cardiovascular disease (CVD) risk. In atomic bomb survivors, radiation dose is also associated with increased hypertension incidence, suggesting that radiation dose may be associated with chronic renal failure (CRF), thus explaining part of the mechanism for increased CVD. Multivariate Poisson regression was used to evaluate the association of radiation dose with various definitions of chronic kidney disease (CKD) mortality in the Life Span Study (LSS) of atomic bomb survivors. A secondary analysis was performed using a subsample for whom self-reported information on hypertension and diabetes, the two biggest risk factors for CRF, had been collected. We found a significant association between radiation dose and only our broadest definition of CRF among the full cohort. A quadratic dose excess relative risk model [ERR/Gy(2) = 0.091 (95% CI: 0.05, 0.198)] fit minimally better than a linear model. Within the subsample, association was also observed only with the broadest CRF definition [ERR/Gy(2) = 0.15 (95% CI: 0.02, 0.32)]. Adjustment for hypertension and diabetes improved model fit but did not substantially change the ERR/Gy(2) estimate, which was 0.17 (95% CI: 0.04, 0.35). We found a significant quadratic dose relationship between radiation dose and possible chronic renal disease mortality that is similar in shape to that observed between radiation and incidence of hypertension in this population. Our results suggest that renal dysfunction could be part of the mechanism causing increased CVD risk after whole-body irradiation, a hypothesis that deserves further study.  相似文献   

19.
Oxidation and loss of heme in soluble guanylyl/guanylate cyclase (sGC), the nitric oxide receptor, is thought to be a major contributor to cardiovascular disease and is the target of compounds BAY 58-2667 and HMR1766. Using spectroelectrochemical titration, we found a truncated sGC to be highly stable in the ferrous state (234 mV) and to bind ferrous heme tightly even in the presence of NO, despite the NO-induced release of the proximal histidine. In contrast, oxidized sGC readily loses ferric heme to myoglobin (0.47 ± 0.02 h(-1)). Peroxynitrite, the presumed cellular oxidant, readily oxidizes sGC in 5 mM glutathione.  相似文献   

20.
Soluble guanylate cyclase (sGC), the main target of nitric oxide (NO), has been proven to have a significant role in coronary artery disease, pulmonary hypertension, erectile dysfunction, and myocardial infarction. One of its agonists, BAY 41‐2272 (Riociguat), has been recently approved for treatment of pulmonary arterial hypertension (PHA), while some others are in clinical phases of development. However, the location of the binding sites for the two known types of agonists, heme‐dependent stimulators and heme‐independent activators, is a matter of debate, particularly for the first group where both a location on the regulatory (H‐NOX) and on the catalytic domain have been suggested by different authors. Here, we address its potential location on the catalytic domain, the unique well characterized at the structural level, by an “in silico” approach. Homology models of the catalytic domain of sGC in “inactive” or “active” conformations were constructed using the structure of previously described crystals of the catalytic domains of “inactive” sGCs (2WZ1, 3ET6) and of “active” adenylate cyclase (1CJU). Each model was submitted to six independent molecular dynamics simulations of about 1 μs. Docking of YC‐1, a classic heme‐dependent stimulator, to all frames of representative trajectories of “inactive” and “active” conformations, followed by calculation of absolute binding free energies with the linear interaction energy (LIE) method, revealed a potential high‐affinity binding site on the “active” structure. The site, located between the pseudo‐symmetric and the catalytic site just over the loop β2–β3, does not overlap with the forskolin binding site on adenylate cyclases. Proteins 2016; 84:1534–1548. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号