共查询到20条相似文献,搜索用时 62 毫秒
1.
Hana Popelka 《Autophagy》2018,14(11):1847-1849
The Atg8/LC3/GABARAP family of proteins binds its physiological binding partners, which function in macroautophagy (hereafter autophagy), via recognition of their short linear motif, also known as the LC3-interactiong region (LIR) or Atg8-interacting motif (AIM). The AIM/LIR motif, with the consensus sequence [W/F/Y]xx[L/I/V], utilizes the aromatic and hydrophobic residues that bind on the surface of Atg8/LC3/GABARAP. Despite modest binding affinity, this interaction is essential for efficient autophagy. Here we highlight the recent paper by Li and collaborators who discovered the structural basis for a much stronger interaction between the LIR motif-containing peptides and LC3/GABARAP. Moreover, they showed that these peptides are potent and selective inhibitors of autophagy in cultured cells and in C. elegans. 相似文献
2.
Hae Sook Noh Young-Sool Hah Sahib Zada Ji Hye Ha Gyujin Sim Jin Seok Hwang 《Autophagy》2016,12(11):2183-2196
Autophagy plays a critical role in maintaining cell homeostasis in response to various stressors through protein conjugation and activation of lysosome-dependent degradation. MAP1LC3B/LC3B (microtubule- associated protein 1 light chain 3 β) is conjugated with phosphatidylethanolamine (PE) in the membranes and regulates initiation of autophagy through interaction with many autophagy-related proteins possessing an LC3-interacting region (LIR) motif, which is composed of 2 hydrophobic amino acids (tryptophan and leucine) separated by 2 non-conserved amino acids (WXXL). In this study, we identified a new putative LIR motif in PEBP1/RKIP (phosphatidylethanolamine binding protein 1) that was originally isolated as a PE-binding protein and also a cellular inhibitor of MAPK/ERK signaling. PEBP1 was specifically bound to PE-unconjugated LC3 in cells, and mutation (WXXL mutated to AXXA) of this LIR motif disrupted its interaction with LC3 proteins. Interestingly, overexpression of PEBP1 significantly inhibited starvation-induced autophagy by activating the AKT and MTORC1 (mechanistic target of rapamycin [serine/threonine kinase] complex 1) signaling pathway and consequently suppressing the ULK1 (unc-51 like autophagy activating kinase 1) activity. In contrast, ablation of PEBP1 expression dramatically promoted the autophagic process under starvation conditions. Furthermore, PEBP1 lacking the LIR motif highly stimulated starvation-induced autophagy through the AKT-MTORC1-dependent pathway. PEBP1 phosphorylation at Ser153 caused dissociation of LC3 from the PEBP1-LC3 complex for autophagy induction. PEBP1-dependent suppression of autophagy was not associated with the MAPK pathway. These findings suggest that PEBP1 can act as a negative mediator in autophagy through stimulation of the AKT-MTORC1 pathway and direct interaction with LC3. 相似文献
3.
《Autophagy》2013,9(12):1724-1740
Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved catabolic process necessary for normal recycling of cellular constituents and for appropriate response to cellular stress. Although several genes belonging to the core molecular machinery involved in autophagosome formation have been discovered, relatively little is known about the nature of signaling networks controlling autophagy upon intracellular or extracellular stimuli. We discovered ATG8-like proteins (MAP1LC3B, GABARAP and GABARAPL1) as novel interactors of MAPK15/ERK8, a MAP kinase involved in cell proliferation and transformation. Based on the role of these proteins in the autophagic process, we demonstrated that MAPK15 is indeed localized to autophagic compartments and increased, in a kinase-dependent fashion, ATG8-like proteins lipidation, autophagosome formation and SQSTM1 degradation, while decreasing LC3B inhibitory phosphorylation. Interestingly, we also identified a conserved LC3-interacting region (LIR) in MAPK15 responsible for its interaction with ATG8-like proteins, for its localization to autophagic structures and, consequently, for stimulation of the formation of these compartments. Furthermore, we reveal that MAPK15 activity was induced in response to serum and amino-acid starvation and that this stimulus, in turn, required endogenous MAPK15 expression to induce the autophagic process. Altogether, these results suggested a new function for MAPK15 as a regulator of autophagy, acting through interaction with ATG8 family proteins. Also, based on the key role of this process in several human diseases, these results supported the use of this MAP kinase as a potential novel therapeutic target. 相似文献
4.
David Colecchia Angela Strambi Sveva Sanzone Carlo Iavarone Matteo Rossi Claudia Dall’Armi Federica Piccioni Arturo Verrotti di Pianella Mario Chiariello 《Autophagy》2012,8(12):1724-1740
Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved catabolic process necessary for normal recycling of cellular constituents and for appropriate response to cellular stress. Although several genes belonging to the core molecular machinery involved in autophagosome formation have been discovered, relatively little is known about the nature of signaling networks controlling autophagy upon intracellular or extracellular stimuli. We discovered ATG8-like proteins (MAP1LC3B, GABARAP and GABARAPL1) as novel interactors of MAPK15/ERK8, a MAP kinase involved in cell proliferation and transformation. Based on the role of these proteins in the autophagic process, we demonstrated that MAPK15 is indeed localized to autophagic compartments and increased, in a kinase-dependent fashion, ATG8-like proteins lipidation, autophagosome formation and SQSTM1 degradation, while decreasing LC3B inhibitory phosphorylation. Interestingly, we also identified a conserved LC3-interacting region (LIR) in MAPK15 responsible for its interaction with ATG8-like proteins, for its localization to autophagic structures and, consequently, for stimulation of the formation of these compartments. Furthermore, we reveal that MAPK15 activity was induced in response to serum and amino-acid starvation and that this stimulus, in turn, required endogenous MAPK15 expression to induce the autophagic process. Altogether, these results suggested a new function for MAPK15 as a regulator of autophagy, acting through interaction with ATG8 family proteins. Also, based on the key role of this process in several human diseases, these results supported the use of this MAP kinase as a potential novel therapeutic target. 相似文献
5.
Shichen Hu Yingli Wang Yukang Gong Jianping Liu Ying Li Lifeng Pan 《Journal of molecular biology》2018,430(18):3283-3296
TAX1BP1, a ubiquitin-binding adaptor, plays critical roles in the innate immunity and selective autophagy. During autophagy, TAX1BP1 may not only function as an autophagy receptor to recruit ubiquitylated substrates for autophagic degradation, but also serve as a Myosin VI cargo adaptor protein for mediating the maturation of autophagosome. However, the mechanistic basis underlying the specific interactions of TAX1BP1 with ubiquitin and Myosin VI remains elusive. Here, using biochemical, NMR and structural analyses, we elucidate the detailed binding mechanism and uncover the key determinants for the interaction between TAX1BP1 and ubiquitin. In addition, we reveal that both tandem zinc-fingers of TAX1BP1 and the conformational rigidity between them are required for the Myosin VI binding of TAX1BP1, and ubiquitin and Myosin VI are mutually exclusive in binding to TAX1BP1. Collectively, our findings provide mechanistic insights into the dual functions of TAX1BP1 in selective autophagy. 相似文献
6.
Shunshun Han Can Cui Haorong He Xiaoxu Shen Yuqi Chen Yan Wang Diyan Li Qing Zhu Huadong Yin 《Journal of cellular physiology》2020,235(5):4667-4678
Four and a half LIM domain protein 1 (FHL1) belongs to the FHL protein family and is predominantly expressed in skeletal and cardiac muscle. FHL1 acts as a scaffold during sarcomere assembly and plays a vital role in muscle growth and development. Autophagy is key to skeletal muscle development and regeneration, with its dysfunction associated with a range of muscular pathologies and disorders. In this study, we constructed FHL1-silenced or FHL1-overexpressed myoblasts to investigate its role in autophagy during the differentiation of chicken myoblasts into myotubules. Our data showed that FHL1 contributes to myoblast differentiation as measured through MyoG, MyoD, Myh3, and Mb mRNA expression, MyoG and MyHC protein expression and the morphological characteristics of myoblasts. The results showed that FHL1 silencing inhibited the expression of ATG5 and ATG7, meanwhile, immunofluorescence and immunoprecipitation showed that FHL1 and LC3 interacted to regulate the correct formation of autophagosomes. FHL1 inhibition increased cleaved caspase-3 and PARP abundance and promoted myoblast apoptosis. Furthermore, FHL1 rescued skeletal muscle atrophy through regulating the expression of Atrogin-1 and MuRF1. Taken together, these data suggested that FHL1 regulates chicken myoblast differentiation through its interaction with LC3. 相似文献
7.
Alice Goode Kevin Butler Jed Long James Cavey Daniel Scott Barry Shaw 《Autophagy》2016,12(7):1094-1104
Growing evidence implicates impairment of autophagy as a candidate pathogenic mechanism in the spectrum of neurodegenerative disorders which includes amyotrophic lateral sclerosis and frontotemporal lobar degeneration (ALS-FTLD). SQSTM1, which encodes the autophagy receptor SQSTM1/p62, is genetically associated with ALS-FTLD, although to date autophagy-relevant functional defects in disease-associated variants have not been described. A key protein-protein interaction in autophagy is the recognition of a lipid-anchored form of LC3 (LC3-II) within the phagophore membrane by SQSTM1, mediated through its LC3-interacting region (LIR), and notably some ALS-FTLD mutations map to this region. Here we show that although representing a conservative substitution and predicted to be benign, the ALS-associated L341V mutation of SQSTM1 is defective in recognition of LC3B. We place our observations on a firm quantitative footing by showing the L341V-mutant LIR is associated with a ~3-fold reduction in LC3B binding affinity and using protein NMR we rationalize the structural basis for the effect. This functional deficit is realized in motor neuron-like cells, with the L341V mutant EGFP-mCherry-SQSTM1 less readily incorporated into acidic autophagic vesicles than the wild type. Our data supports a model in which the L341V mutation limits the critical step of SQSTM1 recruitment to the phagophore. The oligomeric nature of SQSTM1, which presents multiple LIRs to template growth of the phagophore, potentially gives rise to avidity effects which amplify the relatively modest impact of any single mutation on LC3B binding. Over the lifetime of a neuron, impaired autophagy could expose a vulnerability, which ultimately tips the balance from cell survival toward cell death. 相似文献
8.
9.
Laura K. Herzog va Kevei Ricardo Marchante Claudia Bttcher Christian Bindesbll Alf Hkon Lystad Annika Pfeiffer Maria E. Gierisch Florian A. Salomons Anne Simonsen Thorsten Hoppe Nico P. Dantuma 《Aging cell》2020,19(1)
The pathology of spinocerebellar ataxia type 3, also known as Machado‐Joseph disease, is triggered by aggregation of toxic ataxin‐3 (ATXN3) variants containing expanded polyglutamine repeats. The physiological role of this deubiquitylase, however, remains largely unclear. Our recent work showed that ATX‐3, the nematode orthologue of ATXN3, together with the ubiquitin‐directed segregase CDC‐48, regulates longevity in Caenorhabditis elegans. Here, we demonstrate that the long‐lived cdc‐48.1; atx‐3 double mutant displays reduced viability under prolonged starvation conditions that can be attributed to the loss of catalytically active ATX‐3. Reducing the levels of the autophagy protein BEC‐1 sensitized worms to the effect of ATX‐3 deficiency, suggesting a role of ATX‐3 in autophagy. In support of this conclusion, the depletion of ATXN3 in human cells caused a reduction in autophagosomal degradation of proteins. Surprisingly, reduced degradation in ATXN3‐depleted cells coincided with an increase in the number of autophagosomes while levels of lipidated LC3 remained unaffected. We identified two conserved LIR domains in the catalytic Josephin domain of ATXN3 that directly interacted with the autophagy adaptors LC3C and GABARAP in vitro. While ATXN3 localized to early autophagosomes, it was not subject to lysosomal degradation, suggesting a transient regulatory interaction early in the autophagic pathway. We propose that the deubiquitylase ATX‐3/ATXN3 stimulates autophagic degradation by preventing superfluous initiation of autophagosomes, thereby promoting an efficient autophagic flux important to survive starvation. 相似文献
10.
Dongdong Zhang Weimin Zhang Dan Li Ming Fu Runsheng Chen Qimin Zhan 《Autophagy》2015,11(12):2247-2258
GADD45A is a TP53-regulated and DNA damage-inducible tumor suppressor protein, which regulates cell cycle arrest, apoptosis, and DNA repair, and inhibits tumor growth and angiogenesis. However, the function of GADD45A in autophagy remains unknown. In this report, we demonstrate that GADD45A plays an important role in regulating the process of autophagy. GADD45A is able to decrease LC3-II expression and numbers of autophagosomes in mouse tissues and different cancer cell lines. Using bafilomycin A1 treatment, we have observed that GADD45A regulates autophagosome initiation. Likely, GADD45A inhibition of autophagy is through its influence on the interaction between BECN1 and PIK3C3. Immunoprecipitation and GST affinity isolation assays exhibit that GADD45A directly interacts with BECN1, and in turn dissociates the BECN1-PIK3C3 complex. Furthermore, we have mapped the 71 to 81 amino acids of the GADD45A protein that are necessary for the GADD45A interaction with BECN1. Knockdown of BECN1 can abolish autophagy alterations induced by GADD45A. Taken together, these findings provide the novel evidence that GADD45A inhibits autophagy via impairing the BECN1-PIK3C3 complex formation. 相似文献
11.
Xiaofang Cheng Yingli Wang Yukang Gong Faxiang Li Yujiao Guo Shichen Hu 《Autophagy》2016,12(8):1330-1339
FYCO1 (FYVE and coiled-coil domain containing 1) functions as an autophagy adaptor in directly linking autophagosomes with the microtubule-based kinesin motor, and plays an essential role in the microtubule plus end-directed transport of autophagic vesicles. The specific association of FYCO1 with autophagosomes is mediated by its interaction with Atg8-family proteins decorated on the outer surface of autophagosome. However, the mechanistic basis governing the interaction between FYCO1 and Atg8-family proteins is largely unknown. Here, using biochemical and structural analyses, we demonstrated that FYCO1 contains a unique LC3-interacting region (LIR), which discriminately binds to mammalian Atg8 orthologs and preferentially binds to the MAP1LC3A and MAP1LC3B. In addition to uncovering the detailed molecular mechanism underlying the FYCO1 LIR and MAP1LC3A interaction, the determined FYCO1-LIR-MAP1LC3A complex structure also reveals a unique LIR binding mode for Atg8-family proteins, and demonstrates, first, the functional relevance of adjacent sequences C-terminal to the LIR core motif for binding to Atg8-family proteins. Taken together, our findings not only provide new mechanistic insight into FYCO1-mediated transport of autophagosomes, but also expand our understanding of the interaction modes between LIR motifs and Atg8-family proteins in general. 相似文献
12.
Deregulation of selective autophagy during aging and pulmonary fibrosis: the role of TGFβ1 下载免费PDF全文
Meredith L. Sosulski Rafael Gongora Svitlana Danchuk Chunmin Dong Fayong Luo Cecilia G. Sanchez 《Aging cell》2015,14(5):774-783
Aging constitutes a significant risk factor for fibrosis, and idiopathic pulmonary fibrosis (IPF) is characteristically associated with advancing age. We propose that age‐dependent defects in the quality of protein and cellular organelle catabolism may be causally related to pulmonary fibrosis. Our research found that autophagy diminished with corresponding elevated levels of oxidized proteins and lipofuscin in response to lung injury in old mice and middle‐aged mice compared to younger animals. More importantly, older mice expose to lung injury are characterized by deficient autophagic response and reduced selective targeting of mitochondria for autophagy (mitophagy). Fibroblast to myofibroblast differentiation (FMD) is an important feature of pulmonary fibrosis in which the profibrotic cytokine TGFβ1 plays a pivotal role. Promotion of autophagy is necessary and sufficient to maintain normal lung fibroblasts’ fate. On the contrary, FMD mediated by TGFβ1 is characterized by reduced autophagy flux, altered mitophagy, and defects in mitochondrial function. In accord with these findings, PINK1 expression appeared to be reduced in fibrotic lung tissue from bleomycin and a TGFβ1‐adenoviral model of lung fibrosis. PINK1 expression is also reduced in the aging murine lung and biopsies from IPF patients compared to controls. Furthermore, deficient PINK1 promotes a profibrotic environment. Collectively, this study indicates that an age‐related decline in autophagy and mitophagy responses to lung injury may contribute to the promotion and/or perpetuation of pulmonary fibrosis. We propose that promotion of autophagy and mitochondrial quality control may offer an intervention against age‐related fibrotic diseases. 相似文献
13.
《Autophagy》2013,9(10):1566-1578
Autophagy resembles a recycling process in which proteins, organelles, or regions of the cytoplasm are enveloped and degraded. We have found that two of the central autophagy proteins, MAP1LC3 (microtubule-associated protein 1 light chain 3, also described as LC3) and UVRAG (UV radiation resistance associated/UV radiation associated gene), complex with PGRMC1/S2R (progesterone receptor membrane component 1, also known as sigma-2 receptor). PGRMC1 is a cytochrome that is induced in cancer and is essential for tumor formation, invasion, and metastasis. Autophagy contributes to the turnover of long-lived and/or ubiquitinated proteins and the clearance of damaged organelles, and we have shown that PGRMC1 promotes both processes. Inhibition of PGRMC1 by RNAi or small molecule inhibitors causes autophagy substrates to increase and aberrant mitochondria to accumulate. We propose that this disruption of autophagy upon PGRMC1 inhibition increases AMPK activation, elevating the levels of TSC1 (tuberous sclerosis complex) and TSC2 and inactivating MTOR and RPS6KB/p70S6K, causing cleaved MAP1LC3B levels to increase. Thus, PGRMC1 binds to key components of the autophagy machinery and is required for the degradative activity of autophagy. 相似文献
14.
15.
Jozsef Gal Anna-Lena Ström David M. Kwinter Renée Kilty Jiayu Zhang Ping Shi† Weisi Fu Marie W. Wooten‡ Haining Zhu† 《Journal of neurochemistry》2009,111(4):1062-1073
The p62/sequestosome 1 protein has been identified as a component of pathological protein inclusions in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). P62 has also been implicated in autophagy, a process of mass degradation of intracellular proteins and organelles. Autophagy is a critical pathway for degrading misfolded and/or damaged proteins, including the copper-zinc superoxide dismutase (SOD1) mutants linked to familial ALS. We previously reported that p62 interacted with ALS mutants of SOD1 and that the ubiquitin-association domain of p62 was dispensable for the interaction. In this study, we identified two distinct regions of p62 that were essential to its binding to mutant SOD1: the N-terminal Phox and Bem1 (PB1) domain (residues 1–104) and a separate internal region (residues 178–224) termed here as SOD1 mutant interaction region (SMIR). The PB1 domain is required for appropriate oligomeric status of p62 and the SMIR is the actual region interacting with mutant SOD1. Within the SMIR, the conserved W184, H190 and positively charged R183, R186, K187, and K189 residues are critical to the p62–mutant SOD1 interaction as substitution of these residues with alanine resulted in significantly abolished binding. In addition, SMIR and the p62 sequence responsible for the interaction with LC3, a protein essential for autophagy activation, are independent of each other. In cells lacking p62, the existence of mutant SOD1 in acidic autolysosomes decreased, suggesting that p62 can function as an adaptor between mutant SOD1 and the autophagy machinery. This study provides a novel molecular mechanism by which mutant SOD1 can be recognized by p62 in an ubiquitin-independent fashion and targeted for the autophagy–lysosome degradation pathway. 相似文献
16.
ABSTRACTThe degradation of specific cargos such as ubiquitinated protein aggregates and dysfunctional mitochondria via macroautophagy/autophagy is facilitated by SQSTM1/p62, the first described selective autophagy receptor in metazoans. While the general process of autophagy plays crucial roles during aging, it remains unclear whether and how selective autophagy mediates effects on longevity and health. Two recent studies in the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster observed gene expression changes of the respective SQSTM1 orthologs in response to environmental stressors or age and showed that overexpression of SQSTM1 is sufficient to extend lifespan and improve proteostasis and mitochondrial function in an autophagy-dependent manner in these model organisms. These findings show that increased expression of the selective autophagy receptor SQSTM1 is sufficient to induce aggrephagy in C. elegans, and mitophagy in Drosophila, and demonstrate an evolutionarily conserved role for SQSTM1 in lifespan determination. 相似文献
17.
《Autophagy》2013,9(3):453-467
Phagophore-derived autophagosomes deliver cytoplasmic material to lysosomes for degradation and reuse. Autophagy mediated by the incompletely characterized actions of Atg proteins is involved in numerous physiological and pathological settings including stress resistance, immunity, aging, cancer, and neurodegenerative diseases. Here we characterized Atg17/FIP200, the Drosophila ortholog of mammalian RB1CC1/FIP200, a proposed functional equivalent of yeast Atg17. Atg17 disruption inhibits basal, starvation-induced and developmental autophagy, and interferes with the programmed elimination of larval salivary glands and midgut during metamorphosis. Upon starvation, Atg17-positive structures appear at aggregates of the selective cargo Ref(2)P/p62 near lysosomes. This location may be similar to the perivacuolar PAS (phagophore assembly site) described in yeast. Drosophila Atg17 is a member of the Atg1 kinase complex as in mammals, and we showed that it binds to the other subunits including Atg1, Atg13, and Atg101 (C12orf44 in humans, 9430023L20Rik in mice and RGD1359310 in rats). Atg17 is required for the kinase activity of endogenous Atg1 in vivo, as loss of Atg17 prevents the Atg1-dependent shift of endogenous Atg13 to hyperphosphorylated forms, and also blocks punctate Atg1 localization during starvation. Finally, we found that Atg1 overexpression induces autophagy and reduces cell size in Atg17-null mutant fat body cells, and that overexpression of Atg17 promotes endogenous Atg13 phosphorylation and enhances autophagy in an Atg1-dependent manner in the fat body. We propose a model according to which the relative activity of Atg1, estimated by the ratio of hyper- to hypophosphorylated Atg13, contributes to setting low (basal) vs. high (starvation-induced) autophagy levels in Drosophila. 相似文献
18.
19.
The monocyte/macrophage is critical for regulating immune and antitumor responses. Recombinant capsid protein VP1 (rVP1) of foot-and-mouth disease virus induces apoptosis and inhibits migration/metastasis of cancer cells. Here, we explored the effects of rVP1 on macrophages. Our results showed that rVP1 increased LC3-related autophagosome formation via WIPI1 and WIPI2 in a BECN1-independent manner. rVP1 treatment increased macrophage migration that was attenuated by knockdown of ATG5, ATG7, WIPI1 or WIPI2 and was abolished when both WIPI1 and WIPI2 were depleted. Treatment of macrophages with rVP1 increased matrix metalloproteinase-9 (MMP9) activity and phosphorylated mitogen-activated protein kinase 1/3 (MAPK1/3), two major mediators of cell migration. Knockdown of WIPI1, WIPI2, ATG5 and ATG7 but not BECN1 attenuated the rVP1-mediated increase in MAPK1/3 phosphorylation and MMP9 activity. These results indicated that rVP1 upregulated autophagy, MAPK1/3 phosphorylation and MMP9 activity to promote macrophage migration, which was dependent on WIPI1, WIPI2, ATG5 and ATG7 but not BECN1. 相似文献
20.
目的: 观察大负荷离心运动对大鼠骨骼肌自噬超微结构及自噬相关蛋白Beclin1和LC3II/I的影响。方法: 48只SD雄性大鼠适应性训练后随机分成对照组(C,n=8)和大负荷离心运动组(E,n=40)。E组于跑台进行90 min下坡跑,运动后0 h、12 h、24 h、48 h和72 h取比目鱼肌,透射电镜观察其自噬体超微结构变化;Western blot检测Beclin1和LC3II/I蛋白表达;免疫荧光观测LC3的定位及含量变化。结果: E组比目鱼肌自噬体数量在运动后0 h、12 h和24 h均有增加,并伴LC3自噬荧光明显增强(P<0.01),同时运动后48 h自噬荧光仍有显著性升高(P<0.05);Beclin1和LC3II/I在大负荷离心干预后表达升高(P<0.05),运动后12 h~24 h达到峰值(P<0.01),直至运动后72 h完全恢复。结论: 大负荷离心运动可诱导骨骼肌自噬超微结构变化,自噬蛋白表达增强,以上可能是运动损伤的骨骼肌功能下降的原因之一。 相似文献