首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a novel adaptation of the Radial Monolayer Cell Migration assay, first reported to measure the radial migration of adherent tumor cells on extracellular matrix proteins, for measuring the motility of fluorescently-labeled, non-adherent human or murine effector immune cells. This technique employs a stainless steel manifold and 10-well Teflon slide to focally deposit non-adherent T cells into wells prepared with either confluent tumor cell monolayers or extracellular matrix proteins. Light and/or multi-channel fluorescence microscopy is used to track the movement and behavior of the effector cells over time. Fluorescent dyes and/or viral vectors that code for fluorescent transgenes are used to differentially label the cell types for imaging. This method is distinct from similar-type in vitro assays that track horizontal or vertical migration/invasion utilizing slide chambers, agar or transwell plates. The assay allows detailed imaging data to be collected with different cell types distinguished by specific fluorescent markers; even specific subpopulations of cells (i.e., transduced/nontransduced) can be monitored. Surface intensity fluorescence plots are generated using specific fluorescence channels that correspond to the migrating cell type. This allows for better visualization of the non-adherent immune cell mobility at specific times. It is possible to gather evidence of other effector cell functions, such as cytotoxicity or transfer of viral vectors from effector to target cells, as well. Thus, the method allows researchers to microscopically document cell-to-cell interactions of differentially-labeled, non-adherent with adherent cells of various types. Such information may be especially relevant in the assessment of biologically-manipulated or activated immune cell types, where visual proof of functionality is desired with tumor target cells before their use for cancer therapy.  相似文献   

2.
Collective cell migration is regulated by a complex set of mechanical interactions and cellular mechanisms. Collective migration emerges from mechanisms occurring at single cell level, involving processes like contraction, polymerization and depolymerization, of cell–cell interactions and of cell–substrate adhesion. Here, we present a computational framework which simulates the dynamics of this emergent behavior conditioned by substrates with stiffness gradients. The computational model reproduces the cell’s ability to move toward the stiffer part of the substrate, process known as durotaxis. It combines the continuous formulation of truss elements and a particle-based approach to simulate the dynamics of cell–matrix adhesions and cell–cell interactions. Using this hybrid approach, researchers can quickly create a quantitative model to understand the regulatory role of different mechanical conditions on the dynamics of collective cell migration. Our model shows that durotaxis occurs due to the ability of cells to deform the substrate more in the part of lower stiffness than in the stiffer part. This effect explains why cell collective movement is more effective than single cell movement in stiffness gradient conditions. In addition, we numerically evaluate how gradient stiffness properties, cell monolayer size and force transmission between cells and extracellular matrix are crucial in regulating durotaxis.  相似文献   

3.
《Biophysical journal》2022,121(18):3474-3485
Rigidity of the extracellular matrix markedly regulates many cellular processes. However, how cells detect and respond to matrix rigidity remains incompletely understood. Here, we propose a unified two-dimensional multiscale framework accounting for the chemomechanical feedback to explore the interrelated cellular mechanosensing, polarization, and migration, which constitute the dynamic cascade in cellular response to matrix stiffness but are often modeled separately in previous theories. By combining integrin dynamics and intracellular force transduction, we show that substrate stiffness can act as a switch to activate or deactivate cell polarization. Our theory quantitatively reproduces rich stiffness-dependent cellular dynamics, including spreading, polarity selection, migration pattern, durotaxis, and even negative durotaxis, reported in a wide spectrum of cell types, and reconciles some inconsistent experimental observations. We find that a specific bipolarized mode can determine the optimal substrate stiffness, which enables the fastest cell migration rather than the largest traction forces that cells apply on the substrate. We identify that such a mechanical adaptation stems from the force balance across the whole cell. These findings could yield universal insights into various stiffness-mediated cellular processes within the context of tissue morphogenesis, wound healing, and cancer invasion.  相似文献   

4.

Background

The ability to understand and locally control the morphogenesis of mammalian cells is a fundamental objective of cell and developmental biology as well as tissue engineering research. We present parylene-C (ParC) deposited on polydimethylsiloxane (PDMS) as a new substratum for in vitro advanced cell culture in the case of Human Hepatocarcinoma (HepG2) cells.

Principal Findings

Our findings establish that the intrinsic properties of ParC-coated PDMS (ParC/PDMS) influence and modulate initial extracellular matrix (ECM; here, type-I collagen) surface architecture, as compared to non-coated PDMS substratum. Morphological changes induced by the presence of ParC on PDMS were shown to directly affect liver cell metabolic activity and the expression of transmembrane receptors implicated in cell adhesion and cell-cell interaction. These changes were characterized by atomic force microscopy (AFM), which elucidated differences in HepG2 cell adhesion, spreading, and reorganization into two- or three-dimensional structures by neosynthesis of ECM components. Local modulation of cell aggregation was successfully performed using ParC/PDMS micropatterns constructed by simple microfabrication.

Conclusion/Significance

We demonstrated for the first time the modulation of HepG2 cells'' behavior in relation to the intrinsic physical properties of PDMS and ParC, enabling the local modulation of cell spreading in a 2D or 3D manner by simple microfabrication techniques. This work will provide promising insights into the development of cell-based platforms that have many applications in the field of in vitro liver tissue engineering, pharmacology and therapeutics.  相似文献   

5.
6.
The extracellular matrix of epithelial tumors undergoes structural remodeling during periods of uncontrolled growth, creating regional heterogeneity and torsional stress. How matrix integrity is maintained in the face of dynamic biophysical forces is largely undefined. Here we investigated the role of fibulin-2, a matrix glycoprotein that functions biomechanically as an inter-molecular clasp and thereby facilitates supra-molecular assembly. Fibulin-2 was abundant in the extracellular matrix of human lung adenocarcinomas and was highly expressed in tumor cell lines derived from mice that develop metastatic lung adenocarcinoma from co-expression of mutant K-ras and p53. Loss-of-function experiments in tumor cells revealed that fibulin-2 was required for tumor cells to grow and metastasize in syngeneic mice, a surprising finding given that other intra-tumoral cell types are known to secrete fibulin-2. However, tumor cells grew and metastasized equally well in Fbln2-null and -wild-type littermates, implying that malignant progression was dependent specifically upon tumor cell-derived fibulin-2, which could not be offset by other cellular sources of fibulin-2. Fibulin-2 deficiency impaired the ability of tumor cells to migrate and invade in Boyden chambers, to create a stiff extracellular matrix in mice, to cross-link secreted collagen, and to adhere to collagen. We conclude that fibulin-2 is a driver of malignant progression in lung adenocarcinoma and plays an unexpected role in collagen cross-linking and tumor cell adherence to collagen.  相似文献   

7.

Cell migration plays a vital role in numerous processes such as development, wound healing, or cancer. It is well known that numerous complex mechanisms are involved in cell migration. However, so far it remains poorly understood what are the key mechanisms required to produce the main characteristics of this behavior. The reason is a methodological one. In experimental studies, specific factors and mechanisms can be promoted or inhibited. However, while doing so, there can always be others in the background which play key roles but which have simply remained unattended so far. This makes it very difficult to validate any hypothesis about a minimal set of factors and mechanisms required to produce cell migration. To overcome this natural limitation of experimental studies, we developed a computational model where cells and extracellular matrix fibers are represented by discrete mechanical objects on the micrometer scale. In this model, we had exact control of the mechanisms by which cells and matrix fibers interacted with each other. This enabled us to identify the key mechanisms required to produce physiologically realistic cell migration (including advanced phenomena such as durotaxis and a biphasic relation between migration efficiency and matrix stiffness). We found that two main mechanisms are required to this end: a catch-slip bond of individual integrins and cytoskeletal actin-myosin contraction. Notably, more advanced phenomena such as cell polarization or details of mechanosensing were not necessary to qualitatively reproduce the main characteristics of cell migration observed in experiments.

  相似文献   

8.
Durotaxis is a type of directed cell migration in which cells respond to a gradient of extracellular stiffness. Using automated tracking of positional data for large sample sizes of single migrating cells, we investigated 1) whether cancer cells can undergo durotaxis; 2) whether cell durotactic efficiency varies depending on the regional compliance of stiffness gradients; 3) whether a specific cell migration parameter such as speed or time of migration correlates with durotaxis; and 4) whether Arp2/3, previously implicated in leading edge dynamics and migration, contributes to cancer cell durotaxis. Although durotaxis has been characterized primarily in nonmalignant mesenchymal cells, little is known about its role in cancer cell migration. Diffusible factors are known to affect cancer cell migration and metastasis. However, because many tumor microenvironments gradually stiffen, we hypothesized that durotaxis might also govern migration of cancer cells. We evaluated the durotactic potential of multiple cancer cell lines by employing substrate stiffness gradients mirroring the physiological stiffness encountered by cells in a variety of tissues. Automated cell tracking permitted rapid acquisition of positional data and robust statistical analyses for migrating cells. These durotaxis assays demonstrated that all cancer cell lines tested (two glioblastoma, metastatic breast cancer, and fibrosarcoma) migrated directionally in response to changes in extracellular stiffness. Unexpectedly, all cancer cell lines tested, as well as noninvasive human fibroblasts, displayed the strongest durotactic migratory response when migrating on the softest regions of stiffness gradients (2–7 kPa), with decreased responsiveness on stiff regions of gradients. Focusing on glioblastoma cells, durotactic forward migration index and displacement rates were relatively stable over time. Correlation analyses showed the expected correlation with displacement along the gradient but much less with persistence and none with cell speed. Finally, we found that inhibition of Arp2/3, an actin-nucleating protein necessary for lamellipodial protrusion, impaired durotactic migration.  相似文献   

9.
The so-called “matricellular” proteins have recently emerged as important regulators of cell–extracellular matrix (ECM) interactions. These proteins modulate a variety of cell functions through a range of interactions with cell-surface receptors, hormones, proteases and structural components of the ECM. As such, matricellular proteins are crucial regulators of cell phenotype, and consequently tissue function. The distinct cell types and microenvironments that together form the IVD provide an excellent paradigm to study how matricellular proteins mediate communication within and between adjacent tissue types. In recent years, the role of several matricellular proteins in the intervertebral disc has been explored in vivo using mutant mouse models in which the expression of target matricellular proteins was deleted from either one or all compartments of the intervertebral disc. The current review outlines what is presently known about the roles of the matricellular proteins belonging to the CCN family, SPARC (Secreted Protein, Acidic, and Rich in Cysteine), and thrombospondin (TSP) 2 in regulating intervertebral disc cell–ECM interactions, ECM synthesis and disc tissue homeostasis using genetically modified mouse models. Furthermore, we provide a brief overview of recent preliminary studies of other matricellular proteins including, periostin (POSTN) and tenascin (TN). Each specific tissue type of the IVD contains a different matricellular protein signature, which varies based on the specific stage of development, maturity or disease. A growing body of direct genetic evidence links IVD development, maintenance and repair to the coordinate interaction of matricellular proteins within their respective niches and suggests that several of these signaling modulators hold promise in the development of diagnostics and/or therapeutics targeting intervertebral disc aging and/or degeneration.  相似文献   

10.
《Developmental biology》1985,112(2):414-426
Prior to the formation of multiple chambers, the embryonic heart consists of two epithelial tubes, one within the other. As development proceeds, portions of the inner epithelium, i.e., the endothelium, undergo a morphological transformation into a migrating mesenchymal cell population. Our results show that this transformation is affected by proteins secreted by the outer epithelium, i.e., the myocardium, into the extracellular matrix between these two tissues. This conclusion is based on tissue autoradiographic studies of whole embryo cultures with 3H-amino acids. Continuous labeling conditions generated an apparent gradient of proteins extending away from the myocardium and contacting the endothelium just prior to the formation of mesenchyme, i.e., activation of the transformation sequence. Pulse/chase studies confirmed this directional movement of matrix protein. By performing sequential extractions of preactivation staged embryonic hearts with EDTA and testicular hyaluronidase followed by ammonium sulfate precipitation we obtained an enriched preparation of cardiac extracellular matrix. This fraction was capable of eliciting several of the events characteristic of endothelial activation in vitro. These events included: (i) cell-cell separation, (ii) lateral cell mobility, and (iii) hypertrophy and polarization of intracellular PAS staining (Golgi apparati). The biological activity of the extract was sensitive to heat denaturation: a homogenate of the remaining extracted tissue would not substitute for the matrix extract. Morphologically the extracted hearts appeared intact, however, the extracellular matrix space was significantly diminished. No more than 6% of the total lactic dehydrogenase activity, a cytosolic enzyme, was found in the extract. Preliminary electrophoretic characterization of the extract (metabolically labeled with 14C-amino acids) indicated that it may contain as many as 35 proteins or subunits. The relationship of ECM to endothelial differentiation in cardiac morphogenesis is discussed as a model for other developmental systems.  相似文献   

11.
When tissue cells are plated on a flexible substrate, durotaxis, the directed migration of cells toward mechanically stiff regions, has been observed. Environmental mechanical signals are not only important in cell migration but also seem to influence all aspects of cell differentiation and development, including the metastatic process in cancer cells. Based on a theoretical model suggesting that this mechanosensation has a mechanical basis, we introduce a simple model of a cell by considering the contraction of F-actin bundles containing myosin motors (stress fibers) mediated by the movement of adhesions. We show that, when presented with a linear stiffness gradient, this simple model exhibits durotaxis. Interestingly, since stress fibers do not form on soft surfaces and since adhesion sliding occurs very slowly on hard surfaces, the model predicts that the expected cell velocity reaches a maximum at an intermediate stiffness. This prediction can be experimentally tested. We therefore argue that stiffness-dependent cellular adaptations (mechanosensation) and durotaxis are intimately related and may share a mechanical basis. We therefore identify the essential physical ingredients, which combined with additional biochemical mechanisms can explain durotaxis and mechanosensation in cells.  相似文献   

12.
Mechanical compliance is emerging as an important environmental cue that can influence certain cell behaviors, such as morphology and motility. Recent in vitro studies have shown that cells preferentially migrate from less stiff to more stiff substrates; however, much of this phenomenon, termed durotaxis, remains ill-defined. To address this problem, we studied the morphology and motility of vascular smooth muscle cells on well-defined stiffness gradients. Baselines for cell spreading, polarization, and random motility on uniform gels with moduli ranging from 5 to 80 kPa were found to increase with increasing stiffness. Subsequent analysis of the behavior of vascular smooth muscle cells on gradient substrata (0-4 kPa/100 μm, with absolute moduli of 1-80 kPa) demonstrated that the morphology on gradient gels correlated with the absolute modulus. In contrast, durotaxis (evaluated quantitatively as the tactic index for a biased persistent random walk) and cell orientation with respect to the gradient both increased with increasing magnitude of gradient, but were independent of the absolute modulus. These observations provide a foundation for establishing quantitative relationships between gradients in substrate stiffness and cell response. Moreover, these results reveal common features of phenomenological cell response to chemotactic and durotactic gradients, motivating further mechanistic studies of how cells integrate and respond to multiple complex signals.  相似文献   

13.
14.
In plant cell culture, the delivery of nutrition and gas (mainly oxygen) to the cells is the most important factor for viability. In this paper, we propose a polydimethylsiloxane (PDMS)-based microculture system that is designed to have good aeration. PDMS is known to have excellent air permeability, and through the experimental method, we investigated the relation between the degree of air delivery and the thickness of the PDMS sheet covering the culture chamber. We determined the proper thickness of the cover sheet, and cultured protoplasts of Nicotiana tabacum in a culture chamber covered with a PDMS sheet having thickness of 400 μm. The cells were successfully divided, and lived well inside the culture chamber for 10 days. In addition, protoplasts were cultured inside the culture chambers covered with the cover glass and the PDMS sheet, respectively, and the microcolonies were formed well inside the PDMS covered chamber after 10 days.  相似文献   

15.
In cancer metastasis and other physiological processes, cells migrate through the three-dimensional (3D) extracellular matrix of connective tissue and must overcome the steric hindrance posed by pores that are smaller than the cells. It is currently assumed that low cell stiffness promotes cell migration through confined spaces, but other factors such as adhesion and traction forces may be equally important. To study 3D migration under confinement in a stiff (1.77 MPa) environment, we use soft lithography to fabricate polydimethylsiloxane (PDMS) devices consisting of linear channel segments with 20 μm length, 3.7 μm height, and a decreasing width from 11.2 to 1.7 μm. To study 3D migration in a soft (550 Pa) environment, we use self-assembled collagen networks with an average pore size of 3 μm. We then measure the ability of four different cancer cell lines to migrate through these 3D matrices, and correlate the results with cell physical properties including contractility, adhesiveness, cell stiffness, and nuclear volume. Furthermore, we alter cell adhesion by coating the channel walls with different amounts of adhesion proteins, and we increase cell stiffness by overexpression of the nuclear envelope protein lamin A. Although all cell lines are able to migrate through the smallest 1.7 μm channels, we find significant differences in the migration velocity. Cell migration is impeded in cell lines with larger nuclei, lower adhesiveness, and to a lesser degree also in cells with lower contractility and higher stiffness. Our data show that the ability to overcome the steric hindrance of the matrix cannot be attributed to a single cell property but instead arises from a combination of adhesiveness, nuclear volume, contractility, and cell stiffness.  相似文献   

16.
Migrating cells generate traction forces to counteract the movement-resisting forces arising from cell-internal stresses and matrix adhesions. In the case of collective migration in a cell colony, or in the case of 3-dimensional migration through connective tissue, movement-resisting forces arise also from external stresses. Although the deformation of a stiffer cell or matrix causes larger movement-resisting forces, at the same time a larger stiffness can also promote cell migration due to a feedback between forces, deformations, and deformation speed that is mediated by the acto-myosin contractile machinery of cells. This mechanical feedback is also important for stiffness sensing, durotaxis, plithotaxis, and collective migration in cell colonies.  相似文献   

17.
18.
Schwann cells are one of the commonly used cells in repair strategies following spinal cord injuries. Schwann cells are capable of supporting axonal regeneration and sprouting by secreting growth factors 1,2 and providing growth promoting adhesion molecules 3 and extracellular matrix molecules 4. In addition they myelinate the demyelinated axons at the site of injury 5.However following transplantation, Schwann cells do not migrate from the site of implant and do not intermingle with the host astrocytes 6,7. This results in formation of a sharp boundary between the Schwann cells and astrocytes, creating an obstacle for growing axons trying to exit the graft back into the host tissue proximally and distally. Astrocytes in contact with Schwann cells also undergo hypertrophy and up-regulate the inhibitory molecules 8-13. In vitro assays have been used to model Schwann cell-astrocyte interactions and have been important in understanding the mechanism underlying the cellular behaviour.These in vitro assays include boundary assay, where a co-culture is made using two different cells with each cell type occupying different territories with only a small gap separating the two cell fronts. As the cells divide and migrate, the two cellular fronts get closer to each other and finally collide. This allows the behaviour of the two cellular populations to be analyzed at the boundary. Another variation of the same technique is to mix the two cellular populations in culture and over time the two cell types segregate with Schwann cells clumped together as islands in between astrocytes together creating multiple Schwann-astrocyte boundaries.The second assay used in studying the interaction of two cell types is the migration assay where cellular movement can be tracked on the surface of the other cell type monolayer 14,15. This assay is commonly known as inverted coverslip assay. Schwann cells are cultured on small glass fragments and they are inverted face down onto the surface of astrocyte monolayers and migration is assessed from the edge of coverslip.Both assays have been instrumental in studying the underlying mechanisms involved in the cellular exclusion and boundary formation. Some of the molecules identified using these techniques include N-Cadherins 15, Chondroitin Sulphate proteoglycans(CSPGs) 16,17, FGF/Heparin 18, Eph/Ephrins19.This article intends to describe boundary assay and migration assay in stepwise fashion and elucidate the possible technical problems that might occur.Download video file.(64M, mov)  相似文献   

19.
《Biophysical journal》2023,122(1):114-129
Increasing experimental evidence validates that both the elastic stiffness and viscosity of the extracellular matrix regulate mesenchymal cell behavior, such as the rational switch between durotaxis (cell migration to stiffer regions), anti-durotaxis (migration to softer regions), and adurotaxis (stiffness-insensitive migration). To reveal the mechanisms underlying the crossover between these motility regimes, we have developed a multiscale chemomechanical whole-cell theory for mesenchymal migration. Our framework couples the subcellular focal adhesion dynamics at the cell-substrate interface with the cellular cytoskeletal mechanics and the chemical signaling pathways involving Rho GTPase proteins. Upon polarization by the Rho GTPase gradients, our simulated cell migrates by concerted peripheral protrusions and contractions, a hallmark of the mesenchymal mode. The resulting cell dynamics quantitatively reproduces the experimental migration speed as a function of the uniform substrate stiffness and explains the influence of viscosity on the migration efficiency. In the presence of stiffness gradients and absence of chemical polarization, our simulated cell can exhibit durotaxis, anti-durotaxis, and adurotaxis respectively with increasing substrate stiffness or viscosity. The cell moves toward an optimally stiff region from softer regions during durotaxis and from stiffer regions during anti-durotaxis. We show that cell polarization through steep Rho GTPase gradients can reverse the migration direction dictated by the mechanical cues. Overall, our theory demonstrates that opposing durotactic behaviors emerge via the interplay between intracellular signaling and cell-medium mechanical interactions in agreement with experiments, thereby elucidating complex mechanosensing at the single-cell level.  相似文献   

20.
Current understandings on cell motility and directionality rely heavily on accumulated investigations of the adhesion–actin cytoskeleton–actomyosin contractility cycles, while microtubules have been understudied in this context. Durotaxis, the ability of cells to migrate up gradients of substrate stiffness, plays a critical part in development and disease. Here, we identify the pivotal role of Golgi microtubules in durotactic migration of single cells. Using high‐throughput analysis of microtubule plus ends/focal adhesion interactions, we uncover that these non‐centrosomal microtubules actively impart leading edge focal adhesion (FA) dynamics. Furthermore, we designed a new system where islands of higher stiffness were patterned within RGD peptide coated polyacrylamide gels. We revealed that the positioning of the Golgi apparatus is responsive to external mechanical cues and that the Golgi–nucleus axis aligns with the stiffness gradient in durotaxis. Together, our work unveils the cytoskeletal underpinning for single cell durotaxis. We propose a model in which the Golgi–nucleus axis serves both as a compass and as a steering wheel for durotactic migration, dictating cell directionality through the interaction between non‐centrosomal microtubules and the FA dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号