首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the impact of past climates on plant diversification by tracking the "footprint" of climate change on a phylogenetic tree. Diversity within the cosmopolitan carnivorous plant genus Drosera (Droseraceae) is focused within Mediterranean climate regions. We explore whether this diversity is temporally linked to Mediterranean-type climatic shifts of the mid-Miocene and whether climate preferences are conservative over phylogenetic timescales. Phyloclimatic modeling combines environmental niche (bioclimatic) modeling with phylogenetics in order to study evolutionary patterns in relation to climate change. We present the largest and most complete such example to date using Drosera. The bioclimatic models of extant species demonstrate clear phylogenetic patterns; this is particularly evident for the tuberous sundews from southwestern Australia (subgenus Ergaleium). We employ a method for establishing confidence intervals of node ages on a phylogeny using replicates from a Bayesian phylogenetic analysis. This chronogram shows that many clades, including subgenus Ergaleium and section Bryastrum, diversified during the establishment of the Mediterranean-type climate. Ancestral reconstructions of bioclimatic models demonstrate a pattern of preference for this climate type within these groups. Ancestral bioclimatic models are projected into palaeo-climate reconstructions for the time periods indicated by the chronogram. We present two such examples that each generate plausible estimates of ancestral lineage distribution, which are similar to their current distributions. This is the first study to attempt bioclimatic projections on evolutionary time scales. The sundews appear to have diversified in response to local climate development. Some groups are specialized for Mediterranean climates, others show wide-ranging generalism. This demonstrates that Phyloclimatic modeling could be repeated for other plant groups and is fundamental to the understanding of evolutionary responses to climate change.  相似文献   

2.
According to recent reviews, the question of how trophic interactions may affect evolutionary responses to climate change remains unanswered. In this modelling study, we explore the evolutionary dynamics of thermal and plant–herbivore interaction traits in a warming environment. We find the herbivore usually reduces adaptation speed and persistence time of the plant by reducing biomass. However, if the plant interaction trait and thermal trait are correlated, herbivores can create different coevolutionary attractors. One attractor has a warmer plant thermal optimum, and the other a colder one compared with the environment. A warmer plant thermal strategy is given a head start under warming, the only case where herbivores can increase plant persistence under warming. Persistence time of the plant under warming is maximal at small or large thermal niche width. This study shows that considering trophic interactions is necessary and feasible for understanding how ecosystems respond to climate change.  相似文献   

3.
Much attention has been paid to the effects of climate change on species' range reductions and extinctions. There is however surprisingly little information on how climate change driven threat may impact the tree of life and result in loss of phylogenetic diversity (PD). Some plant families and mammalian orders reveal nonrandom extinction patterns, but many other plant families do not. Do these discrepancies reflect different speciation histories and does climate induced extinction result in the same discrepancies among different groups? Answers to these questions require representative taxon sampling. Here, we combine phylogenetic analyses, species distribution modeling, and climate change projections on two of the largest plant families in the Cape Floristic Region (Proteaceae and Restionaceae), as well as the second most diverse mammalian order in Southern Africa (Chiroptera), and an herbivorous insect genus (Platypleura) in the family Cicadidae to answer this question. We model current and future species distributions to assess species threat levels over the next 70 years, and then compare projected with random PD survival. Results for these animal and plant clades reveal congruence. PD losses are not significantly higher under predicted extinction than under random extinction simulations. So far the evidence suggests that focusing resources on climate threatened species alone may not result in disproportionate benefits for the preservation of evolutionary history.  相似文献   

4.
Projected impacts of climate change on vector-borne disease dynamics must consider many variables relevant to hosts, vectors and pathogens, including how altered environmental characteristics might affect the spatial distributions of vector species. However, many predictive models for vector distributions consider their habitat requirements to be fixed over relevant time-scales, when they may actually be capable of rapid evolutionary change and even adaptation. We examine the genetic signature of a spatial expansion by an invasive vector into locations with novel temperature conditions compared to its native range as a proxy for how existing vector populations may respond to temporally changing habitat. Specifically, we compare invasions into different climate ranges and characterize the importance of selection from the invaded habitat. We demonstrate that vector species can exhibit evolutionary responses (altered allelic frequencies) to a temperature gradient in as little as 7–10 years even in the presence of high gene flow, and further, that this response varies depending on the strength of selection. We interpret these findings in the context of climate change predictions for vector populations and emphasize the importance of incorporating vector evolution into models of future vector-borne disease dynamics.  相似文献   

5.
CONTENTS: Summary 752 I. Introduction 752 II. Will migration be enough? 753 III. Can adaptation proceed fast enough? 754 IV. Fitness links demographic and evolutionary processes 755 V. Experimental studies: what do they tell us and how can we improve them? 756 VI. Predicting evolutionary change based on genetic variation and natural selection 757 VII. The chronosequence approach 758 VIII. Resurrection of ancestral propagules 759 IX. The mean and variance in fitness, a link between genetics and demography 760 X. Conclusions 762 Acknowledgements 762 References 762 SUMMARY: Evolution proceeds unceasingly in all biological populations. It is clear that climate-driven evolution has molded plants in deep time and within extant populations. However, it is less certain whether adaptive evolution can proceed sufficiently rapidly to maintain the fitness and demographic stability of populations subjected to exceptionally rapid contemporary climate change. Here, we consider this question, drawing on current evidence on the rate of plant range shifts and the potential for an adaptive evolutionary response. We emphasize advances in understanding based on theoretical studies that model interacting evolutionary processes, and we provide an overview of quantitative genetic approaches that can parameterize these models to provide more meaningful predictions of the dynamic interplay between genetics, demography and evolution. We outline further research that can clarify both the adaptive potential of plant populations as climate continues to change and the role played by ongoing adaptation in their persistence.  相似文献   

6.

Background

Increasing rates of change in climate have been observed across the planet and have contributed to the ongoing range shifts observed for many species. Although ecologists are now using a variety of approaches to study how much and through what mechanisms increasing temperature and nutrient pollution may influence the invasions inherent in range shifts, accurate predictions are still lacking.

Methods and Results

In this study, we conducted a factorial experiment, simultaneously manipulating warming, nitrogen addition and introduction of Pityopsis aspera, to determine how range-shifting species affect a plant community. We quantified the resident community using ordination scores, then used structural equation modeling to examine hypotheses related to how plants respond to a network of experimental treatments and environmental variables. Variation in soil pH explained plant community response to nitrogen addition in the absence of invasion. However, in the presence of invasion, the direct effect of nitrogen on the community was negligible and soil moisture was important for explaining nitrogen effects. We did not find effects of warming on the native plant community in the absence of invasion. In the presence of invasion, however, warming had negative effects on functional richness directly and invasion and herbivory explained the overall positive effect of warming on the plant community.

Conclusions and Significance

This work highlights the variation in the biotic and abiotic factors responsible for explaining independent and collective climate change effects over a short time scale. Future work should consider the complex and non-additive relationships among factors of climate change and invasion in order to capture more ecologically relevant features of our changing environment.  相似文献   

7.
Two assumptions underlie current models of the geographical ranges of perennial plant species: 1. current ranges are in equilibrium with the prevailing climate, and 2. changes are attributable to changes in macroclimatic factors, including tolerance of winter cold, the duration of the growing season, and water stress during the growing season, rather than to biotic interactions. These assumptions allow model parameters to be estimated from current species ranges. Deterioration of growing conditions due to climate change, e.g. more severe drought, will cause local extinction. However, for many plant species, the predicted climate change of higher minimum temperatures and longer growing seasons means, improved growing conditions. Biogeographical models may under some circumstances predict that a species will become locally extinct, despite improved growing conditions, because they are based on an assumption of equilibrium and this forces the species range to match the species-specific macroclimatic thresholds. We argue that such model predictions should be rejected unless there is evidence either that competition influences the position of the range margins or that a certain physiological mechanism associated with the apparent improvement in growing conditions negatively affects the species performance. We illustrate how a process-based vegetation model can be used to ascertain whether such a physiological cause exists. To avoid potential modelling errors of this type, we propose a method that constrains the scenario predictions of the envelope models by changing the geographical distribution of the dominant plant functional type. Consistent modelling results are very important for evaluating how changes in species areas affect local functional trait diversity and hence ecosystem functioning and resilience, and for inferring the implications for conservation management in the face of climate change.  相似文献   

8.
Increasing CO2 concentration ([CO2]) is likely to affect future species distributions, in interaction with other climate change drivers. However, current modeling approaches still seldom consider interactions between climatic factors and the importance of these interactions therefore remains mostly unexplored. Here, we combined dendrochronological and modeling approaches to study the interactive effects of increasing [CO2] and temperature on the distribution of one of the main European liana species, Hedera helix. We combined a classical continent‐wide species distribution modeling approach with a case study using H. helix and Quercus cerris tree rings, where we explored the long‐term influence of a variety of climate drivers, including increasing [CO2], and their interactions, on secondary growth. Finally, we explored how our findings could influence the model predictions. Climate‐only model predictions showed a small decrease in habitat suitability for H. helix in Europe; however, this was accompanied by a strong shift in the distribution toward the north and east. Our growth ring data suggested that H. helix can benefit from high [CO2] under warm conditions, more than its tree hosts, which showed a weaker response to [CO2] coupled with higher cavitation risk under high temperature. Increasing [CO2] might therefore offset the negative effects of high temperatures on H. helix, and we illustrate how this might translate into maintenance of H. helix in warmer areas. Our results highlight the need to consider carbon fertilization and interactions between climate variables in ecological modeling. Combining dendrochronological analyses with spatial distribution modeling may provide opportunities to refine predictions of how climate change will affect species distributions.  相似文献   

9.
Changing environmental conditions will inevitably alter selection pressures. Over the long term, populations have to adapt to these altered conditions by evolutionary change to avoid extinction. Quantifying the ‘evolutionary potential’ of populations to predict whether they will be able to adapt fast enough to forecasted changes is crucial to fully assess the threat for biodiversity posed by climate change. Technological advances in sequencing and high‐throughput genotyping have now made genomic studies possible in a wide range of species. Such studies, in theory, allow an unprecedented understanding of the genomics of ecologically relevant traits and thereby a detailed assessment of the population's evolutionary potential. Aimed at a wider audience than only evolutionary geneticists, this paper gives an overview of how gene‐mapping studies have contributed to our understanding and prediction of evolutionary adaptations to climate change, identifies potential reasons why their contribution to understanding adaptation to climate change may remain limited, and highlights approaches to study and predict climate change adaptation that may be more promising, at least in the medium term.  相似文献   

10.
We urgently need to predict species responses to climate change to minimize future biodiversity loss and ensure we do not waste limited resources on ineffective conservation strategies. Currently, most predictions of species responses to climate change ignore the potential for evolution. However, evolution can alter species ecological responses, and different aspects of evolution and ecology can interact to produce complex eco‐evolutionary dynamics under climate change. Here we review how evolution could alter ecological responses to climate change on species warm and cool range margins, where evolution could be especially important. We discuss different aspects of evolution in isolation, and then synthesize results to consider how multiple evolutionary processes might interact and affect conservation strategies. On species cool range margins, the evolution of dispersal could increase range expansion rates and allow species to adapt to novel conditions in their new range. However, low genetic variation and genetic drift in small range‐front populations could also slow or halt range expansions. Together, these eco‐evolutionary effects could cause a three‐step, stop‐and‐go expansion pattern for many species. On warm range margins, isolation among populations could maintain high genetic variation that facilitates evolution to novel climates and allows species to persist longer than expected without evolution. This ‘evolutionary extinction debt’ could then prevent other species from shifting their ranges. However, as climate change increases isolation among populations, increasing dispersal mortality could select for decreased dispersal and cause rapid range contractions. Some of these eco‐evolutionary dynamics could explain why many species are not responding to climate change as predicted. We conclude by suggesting that resurveying historical studies that measured trait frequencies, the strength of selection, or heritabilities could be an efficient way to increase our eco‐evolutionary knowledge in climate change biology.  相似文献   

11.
Jingjing Yin  Taryn L. Bauerle 《Oikos》2017,126(10):1377-1388
Plant post‐drought recovery performance is essential to predict shifts in ecosystem dynamics and production during frequent climate change‐driven drought events. Yet, it is not clear how post‐drought recovery is related to evolutionary and geographic variations in plants. In this study, we generated a global data set of post‐drought recovery performance in 140 plant species from published studies. We quantified the plant post‐drought recovery performance by calculating a recovery index for multiple plant physiological and hydraulic parameters, including leaf water potential, net photosynthetic rate, leaf hydraulic conductance and shoot biomass. The magnitude of recovery among four plant functional types (deciduous angiosperms, evergreen angiosperms, gymnosperms, and crops), two plant growth forms (shrubs and trees), two water management strategies (isohydric and anisohydric), four xylem porosity types (diffuse, ring, semi‐ring and tracheid), and four major biomes (dry sclerophyll forest, boreal forest, temperate forest and tropical/subtropical forest) were compared. We found the inability to completely recover immediately after severe water stress is ubiquitous across all plant functional types and growth forms, while the rate and magnitude of post‐drought recovery varied greatly across different plant taxonomic categories and geographic ranges. In general, plant hydraulic architecture, leaf anatomy and physiology affect plants’ propensity towards recovery, and reflect evolutionary consequences of plant adaptation to their habitat. Due to the essential role of plant functional traits in regulating carbon storage in each biome, a better understanding plant post‐drought recovery performance could improve our predictions on ecosystem productivity in a rapidly changing climate.  相似文献   

12.
Climate change may impact the distribution of species by shifting their ranges to higher elevations or higher latitudes. The impacts on alpine plant species may be particularly profound due to a potential lack of availability of future suitable habitat. To identify how alpine species have responded to climate change during the past century as well as to predict how they may react to possible global climate change scenarios in the future, we investigate the climatic responses of seven species of Meconopsis, a representative genus endemic in the alpine meadow and subnival region of the Himalaya–Hengduan Mountains. We analyzed past elevational shifts, as well as projected shifts in longitude, latitude, elevation, and range size using historical specimen records and species distribution modeling under optimistic (RCP 4.5) and pessimistic (RCP 8.5) scenarios across three general circulation models for 2070. Our results indicate that across all seven species, there has been an upward shift in mean elevation of 302.3 m between the pre‐1970s (1922–1969) and the post‐1970s (1970–2016). The model predictions suggest that the future suitable climate space will continue to shift upwards in elevation (as well as northwards and westwards) by 2070. While for most of the analyzed species, the area of suitable climate space is predicted to expand under the optimistic emission scenario, the area contracts, or, at best, shows little change under the pessimistic scenario. Species such as M. punicea, which already occupy high latitudes, are consistently predicted to experience a contraction of suitable climate space across all the models by 2070 and may consequently deserve particular attention by conservation strategies. Collectively, our results suggest that the alpine high‐latitude species analyzed here have already been significantly impacted by climate change and that these trends may continue over the coming decades.  相似文献   

13.
Genetic diversity may play an important role in allowing individual species to resist climate change, by permitting evolutionary responses. Our understanding of the potential for such responses to climate change remains limited, and very few experimental tests have been carried out within intact ecosystems. Here, we use amplified fragment length polymorphism (AFLP) data to assess genetic divergence and test for signatures of evolutionary change driven by long‐term simulated climate change applied to natural grassland at Buxton Climate Change Impacts Laboratory (BCCIL). Experimental climate treatments were applied to grassland plots for 15 years using a replicated and spatially blocked design and included warming, drought and precipitation treatments. We detected significant genetic differentiation between climate change treatments and control plots in two coexisting perennial plant study species (Festuca ovina and Plantago lanceolata). Outlier analyses revealed a consistent signature of selection associated with experimental climate treatments at individual AFLP loci in P. lanceolata, but not in F. ovina. Average background differentiation at putatively neutral AFLP loci was close to zero, and genomewide genetic structure was associated neither with species abundance changes (demography) nor with plant community‐level responses to long‐term climate treatments. Our results demonstrate genetic divergence in response to a suite of climatic environments in reproductively mature populations of two perennial plant species and are consistent with an evolutionary response to climatic selection in P. lanceolata. These genetic changes have occurred in parallel with impacts on plant community structure and may have contributed to the persistence of individual species through 15 years of simulated climate change at BCCIL.  相似文献   

14.
Predicting phenology by integrating ecology,evolution and climate science   总被引:4,自引:0,他引:4  
Forecasting how species and ecosystems will respond to climate change has been a major aim of ecology in recent years. Much of this research has focused on phenology – the timing of life‐history events. Phenology has well‐demonstrated links to climate, from genetic to landscape scales; yet our ability to explain and predict variation in phenology across species, habitats and time remains poor. Here, we outline how merging approaches from ecology, climate science and evolutionary biology can advance research on phenological responses to climate variability. Using insight into seasonal and interannual climate variability combined with niche theory and community phylogenetics, we develop a predictive approach for species’ reponses to changing climate. Our approach predicts that species occupying higher latitudes or the early growing season should be most sensitive to climate and have the most phylogenetically conserved phenologies. We further predict that temperate species will respond to climate change by shifting in time, while tropical species will respond by shifting space, or by evolving. Although we focus here on plant phenology, our approach is broadly applicable to ecological research of plant responses to climate variability.  相似文献   

15.
Climate change is profoundly affecting the evolutionary trajectory of individual species and ecological communities, in part through the creation of novel species assemblages. How climate change will influence competitive interactions has been an active area of research. Far less attention, however, has been given to altered reproductive interactions. Yet, reproductive interactions between formerly isolated species are inevitable as populations shift geographically and temporally as a result of climate change, potentially resulting in introgression, speciation, or even extinction. The susceptibility of hybridization rates to anthropogenic disturbance was first recognized in the 1930s. To date, work on anthropogenically mediated hybridization has focused primarily on either physical habitat disturbance or species invasion. Here, I review recent literature on hybridization to identify how ecological responses to climate change will increase the likelihood of hybridization via the dissolution of species barriers maintained by habitat, time, or behavior. Using this literature, I identify several cases where novel hybrid zones have recently formed, likely as a result of changing climate. Future research should focus on identifying areas and taxonomic groups where reproductive species interactions are most likely to be influenced by climate change. Furthermore, a better understanding of the evolutionary consequences of climate‐mediated secondary contact is urgently needed. Paradoxically, hybridization is both a major conservation concern and an important source of novel genetic and phenotypic variation. Hybridization may therefore both contribute to increasing rates of extinction and stimulate the creation of novel phenotypes that will speed adaptation to novel climates. Predicting which result will occur following secondary contact will be an important contribution to conservation for many species.  相似文献   

16.
Multiple stressors are an increasing concern in the management and conservation of ecosystems, and have been identified as a key gap in research. Coral reefs are one example of an ecosystem where management of local stressors may be a way of mitigating or delaying the effects of climate change. Predicting how multiple stressors interact, particularly in a spatially explicit fashion, is a difficult challenge. Here we use a combination of an expert-elicited Bayesian network (BN) and spatial environmental data to examine how hypothetical scenarios of climate change and local management would result in different outcomes for coral reefs on the Great Barrier Reef (GBR), Australia. Parameterizing our BN using the mean responses from our experts resulted in predictions of limited efficacy of local management in combating the effects of climate change. However, there was considerable variability in expert responses and uncertainty was high. Many reefs within the central GBR appear to be at risk of further decline based on the pessimistic opinions of our expert pool. Further parameterization of the model as more data and knowledge become available could improve predictive power. Our approach serves as a starting point for subsequent work that can fine-tune parameters and explore uncertainties in predictions of responses to management.  相似文献   

17.
Adaptive responses are probably the most effective long‐term responses of populations to climate change, but they require sufficient evolutionary potential upon which selection can act. This requires high genetic variance for the traits under selection and low antagonizing genetic covariances between the different traits. Evolutionary potential estimates are still scarce for long‐lived, clonal plants, although these species are predicted to dominate the landscape with climate change. We studied the evolutionary potential of a perennial grass, Festuca rubra, in western Norway, in two controlled environments corresponding to extreme environments in natural populations: cold–dry and warm–wet, the latter being consistent with the climatic predictions for the country. We estimated genetic variances, covariances, selection gradients and response to selection for a wide range of growth, resource acquisition and physiological traits, and compared their estimates between the environments. We showed that the evolutionary potential of F. rubra is high in both environments, and genetic covariances define one main direction along which selection can act with relatively few constraints to selection. The observed response to selection at present is not sufficient to produce genotypes adapted to the predicted climate change under a simple, space for time substitution model. However, the current populations contain genotypes which are pre‐adapted to the new climate, especially for growth and resource acquisition traits. Overall, these results suggest that the present populations of the long‐lived clonal plant may have sufficient evolutionary potential to withstand long‐term climate changes through adaptive responses.  相似文献   

18.
A number of modeling approaches have been developed to predict the impacts of climate change on species distributions, performance, and abundance. The stronger the agreement from models that represent different processes and are based on distinct and independent sources of information, the greater the confidence we can have in their predictions. Evaluating the level of confidence is particularly important when predictions are used to guide conservation or restoration decisions. We used a multi‐model approach to predict climate change impacts on big sagebrush (Artemisia tridentata), the dominant plant species on roughly 43 million hectares in the western United States and a key resource for many endemic wildlife species. To evaluate the climate sensitivity of A. tridentata, we developed four predictive models, two based on empirically derived spatial and temporal relationships, and two that applied mechanistic approaches to simulate sagebrush recruitment and growth. This approach enabled us to produce an aggregate index of climate change vulnerability and uncertainty based on the level of agreement between models. Despite large differences in model structure, predictions of sagebrush response to climate change were largely consistent. Performance, as measured by change in cover, growth, or recruitment, was predicted to decrease at the warmest sites, but increase throughout the cooler portions of sagebrush's range. A sensitivity analysis indicated that sagebrush performance responds more strongly to changes in temperature than precipitation. Most of the uncertainty in model predictions reflected variation among the ecological models, raising questions about the reliability of forecasts based on a single modeling approach. Our results highlight the value of a multi‐model approach in forecasting climate change impacts and uncertainties and should help land managers to maximize the value of conservation investments.  相似文献   

19.
Coastal dunes worldwide harbor threatened habitats characterized by high diversity in terms of plant communities. In Italy, recent assessments have highlighted the insufficient state of conservation of these habitats as defined by the EU Habitats Directive. The effects of predicted climate change could have dramatic consequences for coastal environments in the near future. An assessment of the efficacy of protection measures under climate change is thus a priority. Here, we have developed environmental envelope models for the most widespread dune habitats in Italy, following two complementary approaches: an “indirect” plant-species-based one and a simple “direct” one. We analyzed how habitats distribution will be altered under the effects of two climate change scenarios and evaluated if the current Italian network of protected areas will be effective in the future after distribution shifts. While modeling dune habitats with the “direct” approach was unsatisfactory, “indirect” models had a good predictive performance, highlighting the importance of using species’ responses to climate change for modeling these habitats. The results showed that habitats closer to the sea may even increase their geographical distribution in the near future. The transition dune habitat is projected to remain stable, although mobile and fixed dune habitats are projected to lose most of their actual geographical distribution, the latter being more sensitive to climate change effects. Gap analysis highlighted that the habitats’ distribution is currently adequately covered by protected areas, achieving the conservation target. However, according to predictions, protection level for mobile and fixed dune habitats is predicted to drop drastically under the climate change scenarios which we examined. Our results provide useful insights for setting management priorities and better addressing conservation efforts to preserve these threatened habitats in future.  相似文献   

20.
Changes to forest growth models used widely in global change research and sustainable forest management are needed to account for expected climate change impacts. We provide a new approach that dynamically merges height–age functions prevalent in forest growth models with transfer functions prevalent in population adaptation research to better represent changes to forest productivity as climates gradually change. Our simulations with data from an extensive provenance test of lodgepole pine (Pinus contorta) in British Columbia, Canada, suggest that climate change will reduce production in lodgepole pine forests established today by at least 7–13% at the end of this century – considerably less than most predictions based solely on transfer or response functions, which do not integrate impacts as climate gradually changes. This work illustrates the need for forest productivity models to consider the changing climate in which a population is growing relative to the static climate of its origin. It also demonstrates the value of long‐term provenance trials in assessing the dynamic impact of climate change on forest productivity, and serves as an example of how provenance trials may be exploited in other forest productivity models or other research fields to assess plant responses to climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号