首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial dysfunction plays a central role in glutamate-evoked neuronal excitotoxicity, and mitochondrial fission/fusion dynamics are essential for mitochondrial morphology and function. Here, we establish a novel mechanistic linker among glutamate excitotoxicity, mitochondrial dynamics, and mitochondrial dysfunction in spinal cord motor neurons. Ca2+-dependent activation of the cysteine protease calpain in response to glutamate results in the degradation of a key mitochondrial outer membrane fusion regulator, mitofusin 2 (MFN2), and leads to MFN2-mediated mitochondrial fragmentation preceding glutamate-induced neuronal death. MFN2 deficiency impairs mitochondrial function, induces motor neuronal death, and renders motor neurons vulnerable to glutamate excitotoxicity. Conversely, MFN2 overexpression blocks glutamate-induced mitochondrial fragmentation, mitochondrial dysfunction, and/or neuronal death in spinal cord motor neurons both in vitro and in mice. The inhibition of calpain activation also alleviates glutamate-induced excitotoxicity of mitochondria and neurons. Overall, these results suggest that glutamate excitotoxicity causes mitochondrial dysfunction by impairing mitochondrial dynamics via calpain-mediated MFN2 degradation in motor neurons and thus present a molecular mechanism coupling glutamate excitotoxicity and mitochondrial dysfunction.  相似文献   

2.
Arthropod-borne viral diseases caused by dengue virus (DENV) are major re-emerging public health problem worldwide. In spite of intense research, DENV pathogenesis is not fully understood and remains enigmatic; however, current evidence suggests that dengue progression is associated with an inflammatory response, mainly in patients suffering from a second DENV infection. Monocytes are one of the main target cells of DENV infection and play an important role in pathogenesis since they are known to produce several inflammatory cytokines that can lead to endothelial dysfunction and therefore vascular leak. In addition, monocytes play an important role in antibody dependent enhancement, infection with consequences in viral load and immune response. Despite the physiological functions of monocytes in immune response, their life span in the bloodstream is very short, and activation of monocytes by DENV infection can trigger different types of cell death. For example, DENV can induce apoptosis in monocytes related with the production of Tumor necrosis factor alpha (TNF-α). Additionally, recent studies have shown that DENV-infected monocytes also exhibit a cell death process mediated by caspase-1 activation together with IL-1 production, referred to as pyroptosis. Taken together, the aforementioned studies strongly depict that multiple cell death pathways may be occurring in monocytes upon DENV-2 infection. This review provides insight into mechanisms of DENV-induced death of both monocytes and other cell types for a better understanding of this process. Further knowledge in cell death induced by DENV will help in the developing novel strategies to prevent disease progression.  相似文献   

3.
4.
目的:探讨线粒体融合蛋白MFN1(mito-fusion 1)在肝癌转移中的作用及其机制。方法:1).采用免疫组化实验检测15对肝癌转移灶组织与原发灶组织中MFN1的表达,以明确肝癌转移时是否伴有MFN1表达的改变。2).采用si RNA (small interference RNA)下调肝癌细胞中MFN1的表达后,提高Transwell迁移实验和Transwell侵袭实验分别检测其迁移和侵袭能力,通过实时荧光定量PCR (Quantitative Real-time PCR,qRT-PCR)和Western blot实验分别检测基质金属蛋白酶1 (matrix metalloproteinase 1,MMP1)、MMP2、MMP7及MMP9的m RNA和蛋白表达。结果:1)肝癌转移灶组织中MFN1表达显著低于原发灶组织(P0.05)。2).下调MFN1表达后,肝癌细胞的迁移和侵袭能力显著升高,MMP7的表达显著增加,而MMP1、MMP2与MMP9的表达无明显变化。结论:线粒体融合蛋白MFN1在肝癌转移组织中表达显著降低,可能通过激活MMP7表达,促进肝癌细胞侵袭和转移。  相似文献   

5.
6.
Dengue virus (DENV) infection causes organ injuries, and the liver is one of the most important sites of DENV infection, where viral replication generates a high viral load. The molecular mechanism of DENV-induced liver injury is still under investigation. The mitogen activated protein kinases (MAPKs), including p38 MAPK, have roles in the hepatic cell apoptosis induced by DENV. However, the in vivo role of p38 MAPK in DENV-induced liver injury is not fully understood. In this study, we investigated the role of SB203580, a p38 MAPK inhibitor, in a mouse model of DENV infection. Both the hematological parameters, leucopenia and thrombocytopenia, were improved by SB203580 treatment and liver transaminases and histopathology were also improved. We used a real-time PCR microarray to profile the expression of apoptosis-related genes. Tumor necrosis factor α, caspase 9, caspase 8, and caspase 3 proteins were significantly lower in the SB203580-treated DENV-infected mice than that in the infected control mice. Increased expressions of cytokines including TNF-α, IL-6 and IL-10, and chemokines including RANTES and IP-10 in DENV infection were reduced by SB203580 treatment. DENV infection induced the phosphorylation of p38MAPK, and its downstream signals including MAPKAPK2, HSP27 and ATF-2. SB203580 treatment did not decrease the phosphorylation of p38 MAPK, but it significantly reduced the phosphorylation of MAPKAPK2, HSP27, and ATF2. Therefore, SB203580 modulates the downstream signals to p38 MAPK and reduces DENV-induced liver injury.  相似文献   

7.
8.
A change in the metabolic flux of glucose from mitochondrial oxidative phosphorylation (OXPHOS) to aerobic glycolysis is regarded as one hallmark of cancer. However, the mechanisms underlying the metabolic switch between aerobic glycolysis and OXPHOS are unclear. Here we show that the M2 isoform of pyruvate kinase (PKM2), one of the rate-limiting enzymes in glycolysis, interacts with mitofusin 2 (MFN2), a key regulator of mitochondrial fusion, to promote mitochondrial fusion and OXPHOS, and attenuate glycolysis. mTOR increases the PKM2:MFN2 interaction by phosphorylating MFN2 and thereby modulates the effect of PKM2: MFN2 on glycolysis, mitochondrial fusion and OXPHOS. Thus, an mTOR-MFN2-PKM2 signaling axis couples glycolysis and OXPHOS to modulate cancer cell growth.  相似文献   

9.
Mitochondrial dynamics is a morphological balance between fragmented and elongated shapes, reflecting mitochondrial metabolic status, cellular damage, and mitochondrial dysfunction. The anaphylatoxin C5a derived from complement component 5 cleavage, enhances cellular responses involved in pathological stimulation, innate immune responses, and host defense. However, the specific response of C5a and its receptor, C5a receptor (C5aR), in mitochondria is unclear. Here, we tested whether the C5a/C5aR signaling axis affects mitochondrial morphology in human-derived retinal pigment epithelial cell monolayers (ARPE-19). C5aR activation with the C5a polypeptide induced mitochondrial elongation. In contrast, oxidatively stressed cells (H2O2) responded to C5a with an enhancement of mitochondrial fragmentation and an increase in the number of pyknotic nuclei. C5a/C5aR signaling increased the expression of mitochondrial fusion-related protein, mitofusin-1 (MFN1) and − 2 (MFN2), as well as enhanced optic atrophy-1 (Opa1) cleavage, which are required for mitochondrial fusion events, whereas the mitochondrial fission protein, dynamin-related protein-1 (Drp1), and mitogen-activated protein kinase (MAPK)-dependent extracellular signal-regulated protein kinase (Erk1/2) phosphorylation were not affected. Moreover, C5aR activation increased the frequency of endoplasmic reticulum (ER)-mitochondria contacts. Finally, oxidative stress induced in a single cell within an RPE monolayer (488 nm blue laser spot stimulation) induced a bystander effect of mitochondrial fragmentation in adjacent surrounding cells only in C5a-treated monolayers. These results suggest that C5a/C5aR signaling produced an intermediate state, characterized by increased mitochondrial fusion and ER-mitochondrial contacts, that sensitizes cells to oxidative stress, leading to mitochondrial fragmentation and cell death.  相似文献   

10.
11.

Background

Interleukin (IL)-10 levels are increased in dengue virus (DENV)-infected patients with severe disorders. A hypothetical intrinsic pathway has been proposed for the IL-10 response during antibody-dependent enhancement (ADE) of DENV infection; however, the mechanisms of IL-10 regulation remain unclear.

Principle Finding

We found that DENV infection and/or attachment was sufficient to induce increased expression of IL-10 and its downstream regulator suppressor of cytokine signaling 3 in human monocytic THP-1 cells and human peripheral blood monocytes. IL-10 production was controlled by activation of cyclic adenosine monophosphate response element-binding (CREB), primarily through protein kinase A (PKA)- and phosphoinositide 3-kinase (PI3K)/PKB-regulated pathways, with PKA activation acting upstream of PI3K/PKB. DENV infection also caused glycogen synthase kinase (GSK)-3β inactivation in a PKA/PI3K/PKB-regulated manner, and inhibition of GSK-3β significantly increased DENV-induced IL-10 production following CREB activation. Pharmacological inhibition of spleen tyrosine kinase (Syk) activity significantly decreased DENV-induced IL-10 production, whereas silencing Syk-associated C-type lectin domain family 5 member A caused a partial inhibition. ADE of DENV infection greatly increased IL-10 expression by enhancing Syk-regulated PI3K/PKB/GSK-3β/CREB signaling. We also found that viral load, but not serotype, affected the IL-10 response. Finally, modulation of IL-10 expression could affect DENV replication.

Significance

These results demonstrate that, in monocytes, IL-10 production is regulated by ADE through both an extrinsic and an intrinsic pathway, all involving a Syk-regulated PI3K/PKB/GSK-3β/CREB pathway, and both of which impact viral replication.  相似文献   

12.
Dengue virus (DENV) which infects about 390 million people per year in tropical and subtropical areas manifests various disease symptoms, ranging from fever to life-threatening hemorrhage and even shock. To date, there is still no effective treatment for DENV disease, but only supportive care. DENV nonstructural protein 1 (NS1) has been shown to play a key role in disease pathogenesis. Recent studies have shown that anti-DENV NS1 antibody can provide disease protection by blocking the DENV-induced disruption of endothelial integrity. We previously demonstrated that anti-NS1 monoclonal antibody (mAb) protected mice from all four serotypes of DENV challenge. Here, we generated humanized anti-NS1 mAbs and transferred them to mice after DENV infection. The results showed that DENV-induced prolonged bleeding time and skin hemorrhage were reduced, even several days after DENV challenge. Mechanistic studies showed the ability of humanized anti-NS1 mAbs to inhibit NS1-induced vascular hyperpermeability and to elicit Fcγ-dependent complement-mediated cytolysis as well as antibody-dependent cellular cytotoxicity of cells infected with four serotypes of DENV. These results highlight humanized anti-NS1 mAb as a potential therapeutic agent in DENV infection.  相似文献   

13.
In virus-infected cells, RIG-I-like receptor (RLR) recognizes cytoplasmic viral RNA and triggers innate immune responses including production of type I and III interferon (IFN) and the subsequent expression of IFN-inducible genes. Interferon-β promoter stimulator 1 (IPS-1, also known as MAVS, VISA and Cardif) is a downstream molecule of RLR and is expressed on the outer membrane of mitochondria. While it is known that the location of IPS-1 is essential to its function, its underlying mechanism is unknown. Our aim in this study was to delineate the function of mitochondria so as to identify more precisely its role in innate immunity. In doing so we discovered that viral infection as well as transfection with 5′ppp-RNA resulted in the redistribution of IPS-1 to form speckle-like aggregates in cells. We further found that Mitofusin 1 (MFN1), a key regulator of mitochondrial fusion and a protein associated with IPS-1 on the outer membrane of mitochondria, positively regulates RLR-mediated innate antiviral responses. Conversely, specific knockdown of MFN1 abrogates both the virus-induced redistribution of IPS-1 and IFN production. Our study suggests that mitochondria participate in the segregation of IPS-1 through their fusion processes.  相似文献   

14.
Infection with dengue virus (DENV) causes diseases ranging from mild dengue fever to severe hemorrhage or shock syndrome. DENV infection of endothelial cells may cause cell apoptosis or vascular leakage and result in clinical illness of hemorrhage. However, the endothelial cell molecules involved in DENV infection and the mechanisms governing virus-cell interactions are still uncertain. Since protein disulfide isomerase (PDI) reducing function at the cell surface was shown to be required for entry of certain viruses and bacteria, we explored the role of PDI expressed on endothelial cell surface in DENV infection. Using siRNA to knock down PDI, DENV infection was reduced which could be reversed by treating cells with a reducing agent Tris(2-carboxyethyl)phosphine hydrochloride (TCEP). DENV-induced PDI surface expression was mediated through the Lys-Asp-Glu-Leu (KDEL) receptor-Src family kinase signal pathway. Furthermore, cell surface PDI colocalized with β1 and β3 integrins after DENV infection, and the activation of integrins was blocked by PDI inhibition. Finally, blockade of PDI inhibited DENV entry into endothelial cells. Our findings suggest a novel mechanism whereby surface PDI which causes integrin activation is involved in DENV entry, and DENV infection further increases PDI surface expression at later time points. These findings may have implications for anti-DENV drug design.  相似文献   

15.
There is an urgent need for potent inhibitors of dengue virus (DENV) replication for the treatment and/or prophylaxis of infections with this virus. We here report on an aglycon analogue of the antibiotic teicoplanin (code name LCTA-949) that inhibits DENV-induced cytopathic effect (CPE) in a dose-dependent manner. Virus infection was completely inhibited at concentrations that had no adverse effect on the host cells. These findings were corroborated by quantification of viral RNA levels in culture supernatant. Antiviral activity was also observed against other flaviviruses such as the yellow fever virus and the tick-borne encephalitis virus (TBEV). In particular, potent antiviral activity was observed against TBEV. Time-of-drug-addition experiments indicated that LCTA-949 inhibits an early stage in the DENV replication cycle; however, a virucidal effect was excluded. This observation was corroborated by the fact that LCTA-949 lacks activity on DENV subgenomic replicon (that does not encode structural proteins) replication. Using a microsopy-based binding and fusion assay employing DiD-labeled viruses, it was shown that LCTA-949 targets the early stage (binding/entry) of the infection. Moreover, LCTA-949 efficiently inhibits infectivity of DENV particles pre-opsonized with antibodies, thus potentially also inhibiting antibody-dependent enhancement (ADE). In conclusion, LCTA-949 exerts in vitro activity against several flaviviruses and does so (as shown for DENV) by interfering with an early step in the viral replication cycle.  相似文献   

16.
Cells are constantly challenged by genotoxic stresses that can lead to genome instability. The integrity of the nuclear genome is preserved by the DNA damage response (DDR) and repair. Additionally, these stresses can induce mitochondria to transiently hyperfuse; however, it remains unclear whether canonical DDR is linked to these mitochondrial morphological changes. Here, we report that the abolition of mitochondrial fusion causes a substantial defect in the ATM-mediated DDR signaling. This deficiency is overcome by the restoration of mitochondria fusion. In cells with fragmented mitochondria, genotoxic stress-induced activation of JNK and its translocation to DNA lesion are lost. Importantly, the mitochondrial fusion machinery of MFN1/MFN2 associates with Sab (SH3BP5) and JNK, and these interactions are indispensable for the Sab-mediated activation of JNK and the ATM-mediated DDR signaling. Accordingly, the formation of BRCA1 and 53BP1 foci, as well as homology and end-joining repair are impaired in cells with fragmented mitochondria. Together, these data show that mitochondrial fusion-dependent JNK signaling is essential for the DDR, providing vital insight into the integration of nuclear and cytoplasmic stress signals.  相似文献   

17.
We previously reported that mice lacking alpha/beta and gamma interferon receptors (IFN-α/βR and -γR) uniformly exhibit paralysis following infection with the dengue virus (DENV) clinical isolate PL046, while only a subset of mice lacking the IFN-γR alone and virtually no mice lacking the IFN-α/βR alone develop paralysis. Here, using a mouse-passaged variant of PL046, strain S221, we show that in the absence of the IFN-α/βR, signaling through the IFN-γR confers approximately 140-fold greater resistance against systemic vascular leakage-associated dengue disease and virtually complete protection from dengue-induced paralysis. Viral replication in the spleen was assessed by immunohistochemistry and flow cytometry, which revealed a reduction in the number of infected cells due to IFN-γR signaling by 2 days after infection, coincident with elevated levels of IFN-γ in the spleen and serum. By 4 days after infection, IFN-γR signaling was found to restrict DENV replication systemically. Clearance of DENV, on the other hand, occurred in the absence of IFN-γR, except in the central nervous system (CNS) (brain and spinal cord), where clearance relied on IFN-γ from CD8+ T cells. These results demonstrate the roles of IFN-γR signaling in protection from initial systemic and subsequent CNS disease following DENV infection and demonstrate the importance of CD8+ T cells in preventing DENV-induced CNS disease.  相似文献   

18.
In mammals, fusion of the mitochondrial outer membrane is controlled by two DRPs, MFN1 and MFN2, that function in place of a single outer membrane DRP, Fzo1 in yeast. We addressed the significance of two mammalian outer membrane fusion DRPs using an in?vitro mammalian mitochondrial fusion assay. We demonstrate that heterotypic MFN1-MFN2 trans complexes possess greater efficacy in fusion as compared to homotypic MFN1 or MFN2 complexes. In addition, we show that the soluble form of the proapoptotic Bcl2 protein, Bax,?positively regulates mitochondrial fusion exclusively through homotypic MFN2 trans complexes. Together, these data demonstrate functional and regulatory distinctions between MFN1 and MFN2 and provide insight into their unique physiological roles.  相似文献   

19.
MFN1介导的线粒体融合在心肌细胞凋亡中的作用研究   总被引:1,自引:0,他引:1       下载免费PDF全文
目的:探讨线粒体融合关键蛋白MFN1介导的线粒体融合在调控心肌细胞凋亡中的作用。方法:通过si RNA降低体外培养H9C2心肌细胞中MFN1的表达后,采用Western blot检测线粒体细胞色素c(Cyto c)释放及其下游凋亡效应分子Caspase9与Caspase3活性,流式细胞术检测细胞内活性氧(ROS)的产生情况,流式细胞术检测细胞凋亡的情况。结果:干扰MFN1可显著促进H9C2心肌细胞内细胞色素c由线粒体释放至胞浆,促进Caspase9与Caspase3的激活,增加细胞内活性氧ROS产生并提高细胞凋亡率(均P0.05)。结论:MFN1介导的线粒体融合可保护心肌细胞凋亡,其机制可能与抑制ROS产生与细胞色素C释放有关。  相似文献   

20.
Interferons (IFNs) are crucial for host defence against viruses. Many IFN-stimulated genes (ISGs) induced by viral infection exert antiviral effects. Microarray analysis of gene expression induced in liver tissues of mice on dengue virus (DENV) infection has led to identification of the ISG gene ISG12b2. ISG12b2 is also dramatically induced on DENV infection of Hepa 1-6 cells (mouse hepatoma cell line). Here, we performed biochemical and functional analyses of ISG12b2. We demonstrate that ISG12b2 is an inner mitochondrial membrane (IMM) protein containing a cleavable mitochondrial targeting sequence and multiple transmembrane segments. Overexpression of ISG12b2 in Hepa 1-6 induced release of cytochrome c from mitochondria, disruption of the mitochondrial membrane potential, and activation of caspase-9, caspase-3, and caspase-8. Treatment of ISG12b2-overexpressing Hepa 1-6 with inhibitors of pan-caspase, caspase-9, or caspase-3, but not caspase-8, reduced apoptotic cell death, suggesting that ISG12b2 activates the intrinsic apoptotic pathway. Of particular interest, we further demonstrated that ISG12b2 formed oligomers, and that ISG12b2 was able to mediate apoptosis through both Bax/Bak-dependent and Bax/Bak-independent pathways. Our study demonstrates that the ISG12b2 is a novel IMM protein induced by IFNs and regulates mitochondria-mediated apoptosis during viral infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号