首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Colicin D is known to kill target cells by cleaving tRNA(Arg). A colicin D-resistant mutant was selected that was altered in the inner membrane leader peptidase, LepB. The substituted residue (Asn274Lys) is located close to the catalytic site. The mutation abolishes colicin D cleavage but not the processing of exported proteins. LepB is required for colicin D cleavage, releasing a small C-terminal fragment that retains full tRNase activity. The immunity protein was found to prevent colicin D processing and furthermore masks tRNase activity, thus protecting colicin D against LepB-mediated cleavage during export. Catalytic colicins share a consensus sequence at their putative processing site. Mutations affecting normal processing of colicin D abolish cytotoxicity without affecting the in vitro tRNase activity.  相似文献   

2.
It has long been suggested that the import of nuclease colicins requires protein processing; however it had never been formally demonstrated. Here we show that two RNase colicins, E3 and D, which appropriate two different translocation machineries to cross the outer membrane (BtuB/Tol and FepA/TonB, respectively), undergo a processing step inside the cell that is essential to their killing action. We have detected the presence of the C-terminal catalytic domains of these colicins in the cytoplasm of target bacteria. The same processed forms were identified in both colicin-sensitive cells and in cells immune to colicin because of the expression of the cognate immunity protein. We demonstrate that the inner membrane protease FtsH is necessary for the processing of colicins D and E3 during their import. We also show that the signal peptidase LepB interacts directly with the central domain of colicin D in vitro and that it is a specific but not a catalytic requirement for in vivo processing of colicin D. The interaction of colicin D with LepB may ensure a stable association with the inner membrane that in turn allows the colicin recognition by FtsH. We have also shown that the outer membrane protease OmpT is responsible for alternative and distinct endoproteolytic cleavages of colicins D and E3 in vitro, presumably reflecting its known role in the bacterial defense against antimicrobial peptides. Even though the OmpT-catalyzed in vitro cleavage also liberates the catalytic domain from colicins D and E3, it is not involved in the processing of nuclease colicins during their import into the cytoplasm.  相似文献   

3.
A major group of colicins comprises molecules that possess nuclease activity and kill sensitive cells by cleaving RNA or DNA. Recent data open the possibility that the tRNase colicin D, the rRNase colicin E3 and the DNase colicin E7 undergo proteolytic processing, such that only the C-terminal domain of the molecule, carrying the nuclease activity, enters the cytoplasm. The proteases responsible for the proteolytic processing remain unidentified. In the case of colicin D, the characterization of a colicin D-resistant mutant shows that the inner membrane protease LepB is involved in colicin D toxicity, but is not solely responsible for the cleavage of colicin D. The lepB mutant resistant to colicin D remains sensitive to other colicins tested (B, E1, E3 and E2), and the mutant protease retains activity towards its normal substrates. The cleavage of colicin D observed in vitro releases a C-terminal fragment retaining tRNase activity, and occurs in a region of the amino acid sequence that is conserved in other nuclease colicins, suggesting that they may also require a processing step for their cytotoxicity. The immunity proteins of both colicins D and E3 appear to have a dual role, protecting the colicin molecule against proteolytic cleavage and inhibiting the nuclease activity of the colicin. The possibility that processing is an essential step common to cell killing by all nuclease colicins, and that the immunity protein must be removed from the colicin prior to processing, is discussed.  相似文献   

4.
Colicin D import into Escherichia coli requires an interaction via its TonB box with the energy transducer TonB. Colicin D cytotoxicity is inhibited by specific tonB mutations, but it is restored by suppressor mutations in the TonB box. Here we report that there is a second site of interaction between TonB and colicin D, which is dependent upon a 45-amino acid region, within the uncharacterized central domain of colicin D. In addition, the 8th amino acids of colicin D (a glycine) and colicin B (a valine), adjacent to their TonB boxes, are also required for TonB recognition, suggesting that high affinity complex formation involves multiple interactions between these colicins and TonB. The central domain also contributes to the formation of the immunity complex, as well as being essential for uptake and thus killing. Colicin D is normally secreted in association with the immunity protein, and this complex involves the following two interactions: a major interaction with the C-terminal tRNase domain and a second interaction involving the central domain of colicin D and, most probably, the alpha4 helix of ImmD, which is on the opposite side of ImmD compared with the major interface. In contrast, formation of the immunity complex with the processed cytotoxic domain, the form expected to be found in the cytoplasm after colicin D uptake, requires only the major interaction. Klebicin D has, like colicin D, a ribonuclease activity toward tRNAArg and a central domain, which can form a complex with ImmD but which does not function in TonB-mediated transport.  相似文献   

5.
Intracellularly expressed antibodies have been designed to bind and inactivate target molecules inside eukaryotic cells. Here we report that an antibody fragment can be used to probe the periplasmic localization of the colicin A N-terminal domain. Colicins form voltage-gated ion channels in the inner membrane of Escherichia coli. To reach their target, they bind to a receptor located on the outer membrane and then are translocated through the envelope. The N-terminal domain of colicins is involved in the translocation step and therefore is thought to interact with proteins of the translocation system. To compete with this system, a single-chain variable fragment (scFv) directed against the N-terminal domain of the colicin A was synthesized and exported into the periplasmic space of E. coli. The periplasmic scFv inhibited the lethal activity of colicin A and had no effect on the lethal activity of other colicins. Moreover, the scFv was able to specifically inactivate hybrid colicins possessing the colicin A N-terminal domain without affecting their receptor binding. Hence, the periplasmic scFv prevents the translocation of colicin A and probably its interaction with import machinery. This indicates that the N-terminal domain of the toxin is accessible in the periplasm. Moreover, we show that production of antibody fragments to interfere with a biological function can be applied to prokaryotic systems.  相似文献   

6.
Rab GTPases are emerging targets of diverse bacterial pathogens. Here, we perform biochemical and structural analyses of LepB, a Rab GTPase-activating protein (GAP) effector from Legionella pneumophila. We map LepB GAP domain to residues 313-618 and show that the GAP domain is Rab1 specific with a catalytic activity higher than the canonical eukaryotic TBC GAP and the newly identified VirA/EspG family of bacterial RabGAP effectors. Exhaustive mutation analyses identify Arg444 as the arginine finger, but no catalytically essential glutamine residues. Crystal structures of LepB313-618 alone and the GAP domain of Legionella drancourtii LepB in complex with Rab1-GDP-AlF3 support the catalytic role of Arg444, and also further reveal a 3D architecture and a GTPase-binding mode distinct from all known GAPs. Glu449, structurally equivalent to TBC RabGAP glutamine finger in apo-LepB, undergoes a drastic movement upon Rab1 binding, which induces Rab1 Gln70 side-chain flipping towards GDP-AlF3 through a strong ionic interaction. This conformationally rearranged Gln70 acts as the catalytic cis-glutamine, therefore uncovering an unexpected RasGAP-like catalytic mechanism for LepB. Our studies highlight an extraordinary structural and catalytic diversity of RabGAPs, particularly those from bacterial pathogens.  相似文献   

7.
Duché D 《Biochimie》2002,84(5-6):455-464
Pore-forming colicins are plasmid-encoded bacteriocins that kill Escherichia coli and closely related bacteria. They bind to receptors in the outer membrane and are translocated across the cell envelope to the inner membrane where they form voltage-dependent ion-channels. Colicins are composed of three domains, with the C-terminal domain responsible for pore-formation. Isolated C-terminal pore-forming domains produced in the cytoplasm of E. coli are inactive due to the polarity of the transmembrane electrochemical potential, which is the opposite of that required. However, the pore-forming domain of colicin A (pfColA) fused to a prokaryotic signal peptide (sp-pfColA) is transported across and inserts into the inner membrane of E. coli from the periplasmic side, forming a functional channel. Sp-pfColA is specifically inhibited by the colicin A immunity protein (Cai). This construct has been used to investigate colicin A channel formation in vivo and to characterise the interaction of pfColA with Cai within the inner membrane. These points will be developed further in this review.  相似文献   

8.
Colicins are toxins secreted by Escherichia coli in order to kill their competitors. Colicin D is a 75 kDa protein that consists of a translocation domain, a receptor-binding domain and a cytotoxic domain, which specifically cleaves the anticodon loop of all four tRNA(Arg) isoacceptors, thereby inactivating protein synthesis and leading to cell death. Here we report the 2.0 A resolution crystal structure of the complex between the toxic domain and its immunity protein ImmD. Neither component shows structural homology to known RNases or their inhibitors. In contrast to other characterized colicin nuclease-Imm complexes, the colicin D active site pocket is completely blocked by ImmD, which, by bringing a negatively charged cluster in opposition to a positively charged cluster on the surface of colicin D, appears to mimic the tRNA substrate backbone. Site-directed mutations affecting either the catalytic domain or the ImmD protein have led to the identification of the residues vital for catalytic activity and for the tight colicin D/ImmD interaction that inhibits colicin D toxicity and tRNase catalytic activity.  相似文献   

9.
In Gram-negative bacteria, periplasmic domains in inner membrane proteins are cotranslationally translocated across the inner membrane through the SecYEG translocon. To what degree such domains also start to fold cotranslationally is generally difficult to determine using currently available methods. Here, we apply Force Profile Analysis (FPA) – a method where a translational arrest peptide is used to detect folding-induced forces acting on the nascent polypeptide – to follow the cotranslational translocation and folding of the large periplasmic domain of the E. coli inner membrane protease LepB in vivo. Membrane insertion of LepB’s two N-terminal transmembrane helices is initiated when their respective N-terminal ends reach 45–50 residues away from the peptidyl transferase center (PTC) in the ribosome. The main folding transition in the periplasmic domain involves all but the ~15 most C-terminal residues of the protein and happens when the C-terminal end of the folded part is ~70 residues away from the PTC; a smaller putative folding intermediate is also detected. This implies that wildtype LepB folds post-translationally in vivo, and shows that FPA can be used to study both co- and post-translational protein folding in the periplasm.  相似文献   

10.
In this issue, de Zamaroczy et al. show that cleavage of the bacterial toxin colicin D is required for its ability to kill cells. Surprisingly, the cleavage requires the inner membrane peptidase LepB that normally functions in protein secretion.  相似文献   

11.
tRNase Z is an enzyme responsible for removing a 3′ trailer from pre-tRNA. Although most tRNase Zs cleave pre-tRNAs immediately after the discriminator nucleotide with the exception of Thermotoga maritima tRNase Z, which cleaves after the 74CCA76 sequence, our knowledge was limited about how the cleavage site in pre-tRNA is selected. Bacterial tRNase Zs contain a unique domain termed flexible arm, which extends from the core domain. Using various tRNase Z variants, here we examined how the flexible arm affects the cleavage site selection. T. maritima tRNase Z variants with modified flexible arms shifted the cleavage site and a Bacillus subtilis tRNase Z variant with no flexible arm showed an anomalous cleavage activity. Some of the T. maritima/B. subtilis chimeric enzymes had both properties: they recognized 74CCA76-containing pre-tRNA and cleaved it after the discriminator. Taken together, the present data indicate that the flexible arm is not essential for pre-tRNA binding but affects the cleavage site selection probably by pushing the distal region of the T arm in such a way that the discriminator nucleotide becomes closer to the catalytic site.  相似文献   

12.
Quantification of group A colicin import sites.   总被引:7,自引:4,他引:3       下载免费PDF全文
Pore-forming colicins are soluble bacteriocins which form voltage-gated ion channels in the inner membrane of Escherichia coli. To reach their target, these colicins first bind to a receptor located on the outer membrane and then are translocated through the envelope. Colicins are subdivided into two groups according to the envelope proteins involved in their translocation: group A colicins use the Tol proteins; group B colicins use the proteins TonB, ExbB, and ExbD. We have previously shown that a double-cysteine colicin A mutant which possesses a disulfide bond in its pore-forming domain is translocated through the envelope but is unable to form a channel in the inner membrane (D. Duché, D. Baty, M. Chartier, and L. Letellier, J. Biol. Chem. 269:24820-24825, 1994). Measurements of colicin-induced K+ efflux reveal that preincubation of the cells with the double-cysteine mutant prevents binding of colicins of group A but not of group B. Moreover, we show that the mutant is still in contact with its receptor and import machinery when it interacts with the inner membrane. From these competition experiments, we conclude that each Escherichia coli cell contains approximately 400 and 1,000 colicin A receptors and translocation sites, respectively.  相似文献   

13.
The Gram-negative bacterium Pseudomonas aeruginosa secretes the majority of its extracellular proteins by the type II secretion mechanism, a two-step process initiated by translocation of signal peptide-bearing exoproteins across the inner membrane. The periplasmic forms are transferred across the outer membrane by a machinery consisting of 12 xcp gene products. Although the type II secretion machinery is conserved among Gram-negative bacteria, interactions between the secreted proteins and the machinery are specific. The lack of a selectable phenotype has hampered the development of genetic strategies for studying type II secretion. We report a novel strategy to identify rare events, such as those that allow heterologous secretion or identification of extragenic suppressors correcting xcp defects. This is based on creating a host-vector system where the non-secretory phenotype is lethal. The original tool we designed is a hybrid protein containing elastase and the pore-forming domain of colicin A.  相似文献   

14.
Several proteins of the Tol/Pal system are required for group A colicin import into Escherichia coli. Colicin A interacts with TolA and TolB via distinct regions of its N-terminal domain. Both interactions are required for colicin translocation. Using in vivo and in vitro approaches, we show in this study that colicin A also interacts with a third component of the Tol/Pal system required for colicin import, TolR. This interaction is specific to colicins dependent on TolR for their translocation, strongly suggesting a direct involvement of the interaction in the colicin translocation step. TolR is anchored to the inner membrane by a single transmembrane segment and protrudes into the periplasm. The interaction involves part of the periplasmic domain of TolR and a small region of the colicin A N-terminal domain. This region and the other regions responsible for the interaction with TolA and TolB have been mapped precisely within the colicin A N-terminal domain and appear to be arranged linearly in the colicin sequence. Multiple contacts with periplasmic-exposed Tol proteins are therefore a general principle required for group A colicin translocation.  相似文献   

15.
Staphylococcin 1580 increased the relative amount of diphosphatidylglycerol and decreased the amount of phosphatidylglycerol in cells of Staphlococcus aureus, while the amounts of lysylphosphatidylglycerol, phosphatidic acid and total phospholipid remained constant.Treatment of cells of Escherichia coli and S. aureus with colicin A and staphylococcin 1580, respectively, did not affect proton impermeability but subsequent addition of carbonylcyanide-m-chlorophenylhydrazone resulted in a rapid influx of protons into the cells.Bacteriocin-resistant and -tolerant mutants of E. coli and S. aureus were isolated. The bacteriocins caused leakage of amino acids preaccumulated into membrane vesicles of resistant mutants and had no significant effect on membrane vesicles of tolerant mutants.The uptake of amino acids into membrane vesicles was inhibited by both bacteriocins, irrespective of the electron donors applied. The bacteriocin inhibition was noncompetitive. The bacteriocins did not affect oxygen consumption and dehydrogenases in membrane vesicles.Both bacteriocins suppressed the decrease in the fluorescence of 1-anilino-8-naphthalene sulfonate caused by d-lactate or α-glycerol phosphate when added to membrane vesicles.It is concluded that the bacteriocins uncouple the transport function from the electron transport system.  相似文献   

16.
Import of nucleus-encoded tRNAs into the mitochondria of the kinetoplastid protozoon Leishmania involves recognition of specific import signals by the membrane-bound import machinery. Multiple signals on different tRNA domains may be present, and further, importable RNAs interact positively (Type I) or negatively (Type II) with one another at the inner membrane in vitro. By co-transfection assays, it is shown here that tRNATyr (Type I) transiently stimulates the rate of entry of tRNAIle (Type II) into Leishmania mitochondria in transfected cells, and conversely, is inhibited by tRNAIle. Truncation and mutagenesis experiments led to the co-localization of the effector and import activities of tRNATyr to the D domain, and those of tRNAIle to the variable region–T domain (V-T region), indicating that both activities originate from a single RNA–receptor interaction. A third tRNA, human tRNALys, is imported into Leishmania mitochondria in vitro as well as in vivo. This tRNA has Type I and Type II motifs in the D domain and the V-T region, respectively, and shows both Type I and Type II effector activities. Such dual-type tRNAs may interact simultaneously with the Type I and Type II binding sites of the inner membrane import machinery.  相似文献   

17.
Lipopolysaccharide is a major glycolipid component in the outer leaflet of the outer membrane (OM), a peculiar permeability barrier of Gram-negative bacteria that prevents many toxic compounds from entering the cell. Lipopolysaccharide transport (Lpt) across the periplasmic space and its assembly at the Escherichia coli cell surface are carried out by a transenvelope complex of seven essential Lpt proteins spanning the inner membrane (LptBCFG), the periplasm (LptA), and the OM (LptDE), which appears to operate as a unique machinery. LptC is an essential inner membrane-anchored protein with a large periplasm-protruding domain. LptC binds the inner membrane LptBFG ABC transporter and interacts with the periplasmic protein LptA. However, its role in lipopolysaccharide transport is unclear. Here we show that LptC lacking the transmembrane region is viable and can bind the LptBFG inner membrane complex; thus, the essential LptC functions are located in the periplasmic domain. In addition, we characterize two previously described inactive single mutations at two conserved glycines (G56V and G153R, respectively) of the LptC periplasmic domain, showing that neither mutant is able to assemble the transenvelope machinery. However, while LptCG56V failed to copurify any Lpt component, LptCG153R was able to interact with the inner membrane protein complex LptBFG. Overall, our data further support the model whereby the bridge connecting the inner and outer membranes would be based on the conserved structurally homologous jellyroll domain shared by five out of the seven Lpt components.  相似文献   

18.
Colicin N is a pore-forming bacteriocin that enters target Escherichia coli cells with the assistance of TolA, a protein in the periplasm of the target cell. The N-terminal domain of the colicin that carries the TolA-binding epitope, the translocation domain (T-domain), is intrinsically disordered. From 1H-13C-15N NMR studies of isotopically labeled T-domain interacting with unlabeled TolAIII (the C-terminal domain of TolA), we have identified the TolA-binding epitope and have shown that the extent of its disorder is reduced on binding TolA, although it does not fold into a globular structure with defined secondary structure elements. Residues upstream and downstream of the 27-residue TolA-binding epitope remain disordered in the TolA-bound T-domain as they are in the free T-domain. Filamentous phage also exploits TolAIII to enter target cells, with TolAIII retaining its main secondary structure elements and global fold. In contrast to this, binding of the disordered T-domain of colicin A causes dramatic conformational changes in TolAIII marked by increased flexibility and lack of a rigid tertiary structure consistent with at least partial unfolding of TolAIII, suggesting that bacteriocins and bacteriophages parasitize E. coli using different modes of interaction with TolAIII. We have found that the colicin N T-domain-TolAIII interaction is strikingly similar to the previously described g3p-TolAIII interaction. The fact that both colicin N and filamentous phage exploit TolAIII in a similar manner, with one being a bacterial intrinsically disordered protein and the other being a viral structurally well-ordered protein, suggests that these represent a good example of convergent evolution at the molecular level.  相似文献   

19.
Transfer RNA (tRNA) 3′ processing endoribonuclease (tRNase Z) is an enzyme responsible for the removal of a 3′ trailer from pre-tRNA. There exists two types of tRNase Z: one is a short form (tRNase ZS) that consists of 300–400 amino acids, and the other is a long form (tRNase ZL) that contains 800–900 amino acids. Here we investigated whether the short and long forms have different preferences for various RNA substrates. We examined three recombinant tRNase ZSs from human, Escherichia coli and Thermotoga maritima, two recombinant tRNase ZLs from human and Saccharomyces cerevisiae, one tRNase ZL from pig liver, and the N- and C-terminal half regions of human tRNase ZL for cleavage of human micro-pre-tRNAArg and the RNase 65 activity. All tRNase ZLs cleaved the micro-pre-tRNA and showed the RNase 65 activity, while all tRNase ZSs and both half regions of human tRNase ZL failed to do so with the exception of the C-terminal half, which barely cleaved the micro-pre-tRNA. We also show that only the long forms of tRNase Z can specifically cleave a target RNA under the direction of a new type of small guide RNA, hook RNA. These results indicate that indeed tRNase ZL and tRNase ZS have different substrate specificities and that the differences are attributed to the N-terminal half-domain of tRNase ZL. Furthermore, the optimal concentrations of NaCl, MgCl2 and MnCl2 differed between tRNase ZSs and tRNase ZLs, and the Km values implied that tRNase ZLs interact with pre-tRNA substrates more strongly than tRNase ZSs.  相似文献   

20.
The Tol/Pal system of Escherichia coli is composed of the YbgC, TolQ, TolA, TolR, TolB, Pal and YbgF proteins. It is involved in maintaining the integrity of the outer membrane, and is required for the uptake of group A colicins and DNA of filamentous bacteriophages. To identify new interactions between the components of the Tol/Pal system and gain insight into the mechanism of colicin import, we performed a yeast two-hybrid screen using the different components of the Tol/Pal system and colicin A. Using this system, we confirmed the already known interactions and identified several new interactions. TolB dimerizes and the periplasmic domain of TolA interacts with YbgF and TolB. Our results indicate that the central domain of TolA (TolAII) is sufficient to interact with YbgF, that the C-terminal domain of TolA (TolAIII) is sufficient to interact with TolB, and that the amino terminal domain of TolB (D1) is sufficient to bind TolAIII. The TolA/TolB interaction was confirmed by cross-linking experiments on purified proteins. Moreover, we show that the interaction between TolA and TolB is required for the uptake of colicin A and for the membrane integrity. These results demonstrate that the TolA/TolB interaction allows the formation of a trans-envelope complex that brings the inner and outer membranes in close proximity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号