首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Alack of inhibition control has been found in subjects with conduct disorder (CD), but the underlying neuropathophysiology remains poorly understood. The current study investigated the different mechanism of inhibition control in adolescent-onset CD males (n = 29) and well-matched healthy controls (HCs) (n = 40) when performing a GoStop task by functional magnetic resonance images. Effective connectivity (EC) within the inhibition control network was analyzed using a stochastic dynamic causality model. We found that EC within the inhibition control network was significantly different in the CD group when compared to the HCs. Exploratory relationship analysis revealed significant negative associations between EC between the IFG and striatum and behavioral scale scores in the CD group. These results suggest for the first time that the failure of inhibition control in subjects with CD might be associated with aberrant connectivity of the frontal–basal ganglia pathways, especially between the IFG and striatum.  相似文献   

2.
The study of functional brain connectivity alterations induced by neurological disorders and their analysis from resting state functional Magnetic Resonance Imaging (rfMRI) is generally considered to be a challenging task. The main challenge lies in determining and interpreting the large-scale connectivity of brain regions when studying neurological disorders such as epilepsy. We tackle this challenging task by studying the cortical region connectivity using a novel approach for clustering the rfMRI time series signals and by identifying discriminant functional connections using a novel difference statistic measure. The proposed approach is then used in conjunction with the difference statistic to conduct automatic classification experiments for epileptic and healthy subjects using the rfMRI data. Our results show that the proposed difference statistic measure has the potential to extract promising discriminant neuroimaging markers. The extracted neuroimaging markers yield 93.08% classification accuracy on unseen data as compared to 80.20% accuracy on the same dataset by a recent state-of-the-art algorithm. The results demonstrate that for epilepsy the proposed approach confirms known functional connectivity alterations between cortical regions, reveals some new connectivity alterations, suggests potential neuroimaging markers, and predicts epilepsy with high accuracy from rfMRI scans.  相似文献   

3.

Purposes

Recent neuroimaging studies have shown that people with Internet gaming disorder (IGD) have structural and functional abnormalities in specific brain areas and connections. However, little is known about the alterations of the interhemispheric resting-state functional connectivity (rsFC) in participants with IGD. In the present study, we used a newly developed voxel-mirrored homotopic connectivity (VMHC) method to investigate the interhemispheric rsFC of the whole brain in participants with IGD.

Methods

We compared interhemispheric rsFC between 17 participants with IGD and 24 healthy controls, group-matched on age, gender, and education status. All participants were provided written informed consent. Resting-state functional and structural magnetic resonance images were acquired for all participants. The rsFC between bilateral homotopic voxels was calculated. Regions showing abnormal VMHC in IGD participants were adopted as regions of interest for correlation analyses.

Results

Compared to healthy controls, IGD participants showed decreased VMHC between the left and right superior frontal gyrus (orbital part), inferior frontal gyrus (orbital part), middle frontal gyrus and superior frontal gyrus. Further analyses showed Chen Internet Addiction Scale (CIAS)-related VMHC in superior frontal gyrus (orbital part) and CIAS (r = −0.55, p = 0.02, uncorrected).

Conclusions

Our findings implicate the important role of altered interhemispheric rsFC in the bilateral prefrontal lobe in the neuropathological mechanism of IGD, and provide further supportive evidence for the reclassification of IGD as a behavioral addiction.  相似文献   

4.
BackgroundHIV-associated neurocognitive disorder (HAND) can occur in patients without prior AIDS defining illness and can be debilitating. This study aimed to evaluate the difference in the patterns of intrinsic brain activity between patients with or without HAND for deepening our understanding of HAND.MethodsWe evaluated 24 HIV-infected individuals, 12 with previously diagnosed HAND and 12 previously diagnosed without HAND, and 11 seronegative individuals. These individuals then underwent repeat NP testing and a functional brain MRI scan. For functional MRI analysis, seed-based analysis with bilateral precuneus cortex seed was applied.ResultsAmong the 12 individuals with previously diagnosed HAND, 3 showed improvement of their neurocognitive function and 1 was excluded for worsening liver disease. Among the 12 patients who previously had normal neurocognitive function, 2 showed neurocognitive impairment. Overall, the HAND group, who had impaired cognitive function at the time of MRI scan, showed significant decrease of resting status functional connectivity between bilateral precuneus and prefrontal cortex (PFC) compared with nonHAND group, those who had normal neurocognitive function (Corrected P<0.05). The functional connectivity with the right inferior frontal operculum and right superior frontal gyrus was positively correlated with memory and learning ability.ConclusionsThis cross-sectional study found a significant difference in fMRI patterns between patients with and without HAND. Decreased functional connectivity between precuneus and PFC could be possible functional substrate for cognitive dysfunction in HIV patients, which should be characterized in a longitudinal study.  相似文献   

5.

Background

Youth with conduct disorder (CD) not only inflict serious physical and psychological harm on others, but are also at greatly increased risk of sustaining injuries, developing depression or substance abuse, and engaging in criminal behaviors. The underlying neurobiological basis of CD remains unclear.

Objective

The present study investigated whether participants with CD have altered hemodynamic activity under resting-state conditions.

Methods

Eighteen medication-naïve boys with CD and 18 age- and sex- matched typically developing (TD) controls underwent functional magnetic resonance imaging (MRI) scans in the resting state. The amplitude of low-frequency fluctuations (ALFF) was measured and compared between the CD and TD groups.

Results

Compared with the TD participants, the CD participants showed lower ALFF in the bilateral amygdala/parahippocampus, right lingual gyrus, left cuneus and right insula. Higher ALFF was observed in the right fusiform gyrus and right thalamus in the CD participants compared to the TD group.

Conclusions

Youth with CD displayed widespread functional abnormalities in emotion-related and visual cortical regions in the resting state. These results suggest that deficits in the intrinsic activity of resting state networks may contribute to the etiology of CD.  相似文献   

6.

Purpose

Excessive use of the Internet has been linked to a variety of negative psychosocial consequences. This study used resting-state functional magnetic resonance imaging (fMRI) to investigate whether functional connectivity is altered in adolescents with Internet gaming addiction (IGA).

Methods

Seventeen adolescents with IGA and 24 normal control adolescents underwent a 7.3 minute resting-state fMRI scan. Posterior cingulate cortex (PCC) connectivity was determined in all subjects by investigating synchronized low-frequency fMRI signal fluctuations using a temporal correlation method. To assess the relationship between IGA symptom severity and PCC connectivity, contrast images representing areas correlated with PCC connectivity were correlated with the scores of the 17 subjects with IGA on the Chen Internet Addiction Scale (CIAS) and Barratt Impulsiveness Scale-11 (BIS-11) and their hours of Internet use per week.

Results

There were no significant differences in the distributions of the age, gender, and years of education between the two groups. The subjects with IGA showed longer Internet use per week (hours) (p<0.0001) and higher CIAS (p<0.0001) and BIS-11 (p = 0.01) scores than the controls. Compared with the control group, subjects with IGA exhibited increased functional connectivity in the bilateral cerebellum posterior lobe and middle temporal gyrus. The bilateral inferior parietal lobule and right inferior temporal gyrus exhibited decreased connectivity. Connectivity with the PCC was positively correlated with CIAS scores in the right precuneus, posterior cingulate gyrus, thalamus, caudate, nucleus accumbens, supplementary motor area, and lingual gyrus. It was negatively correlated with the right cerebellum anterior lobe and left superior parietal lobule.

Conclusion

Our results suggest that adolescents with IGA exhibit different resting-state patterns of brain activity. As these alterations are partially consistent with those in patients with substance addiction, they support the hypothesis that IGA as a behavioral addiction that may share similar neurobiological abnormalities with other addictive disorders.  相似文献   

7.
《IRBM》2021,42(6):457-465
Background and objectiveBased on magnetic resonance imaging (MRI), macroscopic structural and functional connectivity of human brain has been widely explored in the last decade. However, little work has been done on effective connectivity between individual brain parcels. In this preliminary study, we aim to investigate whole-brain effective connectivity networks from resting-state functional MRI (rs-fMRI) images.Material and methodsAfter the functional connectivity networks of 26 healthy subjects (aged from 25 to 35 years old) from Human Connectome Project database were derived from rs-fMRI images with dynamic time warping, proportional thresholding (PT) was performed on the functional connectivity matrices by retaining the PT% strongest functional connections. PT% ranges from 40% to 10% in steps of 5%. Then, effective connections corresponding to the PT% strongest functional connections, both bi-directional and unidirectional, were estimated with Renyi's 2-order transfer entropy (TE) method. Topological metrics of the built functional and effective connectivity networks were further characterized, including clustering coefficient, transitivity, and modularity.ResultsIt is found that the effective connectivity networks exhibit small world attributes, and that the networks contain a subset of highly interactive regions, including right frontal pole (in-degree 6), left middle frontal gyrus (in-degree 8, out-degree 1), right precentral gyrus (out-degree 9), left precentral gyrus (out-degree 7), right posterior division of supramarginal gyrus (in-degree 2, out-degree 3), left angular gyrus (out-degree 6), left inferior division of lateral occipital cortex (out-degree 6), right occipital pole (in-degree 5), right cerebellum 7b parcel (in-degree 15), and right cerebellum 8 parcel (in-degree 7, out-degree 1).ConclusionsThe observations in this study provide information about the casual interactions among brain parcels in resting state, helping reveal how different subregions of large-scale distributed neural networks are coupled together in performing cognitive functions.  相似文献   

8.
Resting-state functional magnetic resonance imaging (rs-fMRI) is widely used to investigate the functional architecture of the healthy human brain and how it is affected by learning, lifelong development, brain disorders or pharmacological intervention. Non-sensory experiences are prevalent during rest and must arise from ongoing brain activity, yet little is known about this relationship. Here, we used two runs of rs-fMRI both immediately followed by the Amsterdam Resting-State Questionnaire (ARSQ) to investigate the relationship between functional connectivity within ten large-scale functional brain networks and ten dimensions of thoughts and feelings experienced during the scan in 106 healthy participants. We identified 11 positive associations between brain-network functional connectivity and ARSQ dimensions. ‘Sleepiness’ exhibited significant associations with functional connectivity within Visual, Sensorimotor and Default Mode networks. Similar associations were observed for ‘Visual Thought’ and ‘Discontinuity of Mind’, which may relate to variation in imagery and thought control mediated by arousal fluctuations. Our findings show that self-reports of thoughts and feelings experienced during a rs-fMRI scan help understand the functional significance of variations in functional connectivity, which should be of special relevance to clinical studies.  相似文献   

9.
We investigated differences in the intrinsic functional brain organization (functional connectivity) of the human reward system between healthy control participants and patients with social anxiety disorder. Functional connectivity was measured in the resting-state via functional magnetic resonance imaging (fMRI). 53 patients with social anxiety disorder and 33 healthy control participants underwent a 6-minute resting-state fMRI scan. Functional connectivity of the reward system was analyzed by calculating whole-brain temporal correlations with a bilateral nucleus accumbens seed and a ventromedial prefrontal cortex seed. Patients with social anxiety disorder, relative to the control group, had (1) decreased functional connectivity between the nucleus accumbens seed and other regions associated with reward, including ventromedial prefrontal cortex; (2) decreased functional connectivity between the ventromedial prefrontal cortex seed and lateral prefrontal regions, including the anterior and dorsolateral prefrontal cortices; and (3) increased functional connectivity between both the nucleus accumbens seed and the ventromedial prefrontal cortex seed with more posterior brain regions, including anterior cingulate cortex. Social anxiety disorder appears to be associated with widespread differences in the functional connectivity of the reward system, including markedly decreased functional connectivity between reward regions and between reward regions and lateral prefrontal cortices, and markedly increased functional connectivity between reward regions and posterior brain regions.  相似文献   

10.

Background

Monogenic dementias represent a great opportunity to trace disease progression from preclinical to symptomatic stages. Frontotemporal Dementia related to Granulin (GRN) mutations presents a specific framework of brain damage, involving fronto-temporal regions and long inter-hemispheric white matter bundles. Multimodal resting-state functional MRI (rs-fMRI) is a promising tool to carefully describe disease signature from the earliest disease phase.

Objective

To define local connectivity alterations in GRN related pathology moving from the presymptomatic (asymptomatic GRN mutation carriers) to the clinical phase of the disease (GRN- related Frontotemporal Dementia).

Methods

Thirty-one GRN Thr272fs mutation carriers (14 patients with Frontotemporal Dementia and 17 asymptomatic carriers) and 38 healthy controls were recruited. Local connectivity measures (Regional Homogeneity (ReHo), Fractional Amplitude of Low Frequency Fluctuation (fALFF) and Degree Centrality (DC)) were computed, considering age and gender as nuisance variables as well as the influence of voxel-level gray matter atrophy.

Results

Asymptomatic GRN carriers had selective reduced ReHo in the left parietal region and increased ReHo in frontal regions compared to healthy controls. Considering Frontotemporal Dementia patients, all measures (ReHo, fALFF and DC) were reduced in inferior parietal, frontal lobes and posterior cingulate cortex. Considering GRN mutation carriers, an inverse correlation with age in the posterior cingulate cortex, inferior parietal lobule and orbitofrontal cortex was found.

Conclusions

GRN pathology is characterized by functional brain network alterations even decades before the clinical onset; they involve the parietal region primarily and then spread to the anterior regions of the brain, supporting the concept of molecular nexopathies.  相似文献   

11.
Antisocial personality disorder (ASPD) is closely connected to criminal behavior. A better understanding of functional connectivity in the brains of ASPD patients will help to explain abnormal behavioral syndromes and to perform objective diagnoses of ASPD. In this study we designed an exploratory data-driven classifier based on machine learning to investigate changes in functional connectivity in the brains of patients with ASPD using resting state functional magnetic resonance imaging (fMRI) data in 32 subjects with ASPD and 35 controls. The results showed that the classifier achieved satisfactory performance (86.57% accuracy, 77.14% sensitivity and 96.88% specificity) and could extract stabile information regarding functional connectivity that could be used to discriminate ASPD individuals from normal controls. More importantly, we found that the greatest change in the ASPD subjects was uncoupling between the default mode network and the attention network. Moreover, the precuneus, superior parietal gyrus and cerebellum exhibited high discriminative power in classification. A voxel-based morphometry analysis was performed and showed that the gray matter volumes in the parietal lobule and white matter volumes in the precuneus were abnormal in ASPD compared to controls. To our knowledge, this study was the first to use resting-state fMRI to identify abnormal functional connectivity in ASPD patients. These results not only demonstrated good performance of the proposed classifier, which can be used to improve the diagnosis of ASPD, but also elucidate the pathological mechanism of ASPD from a resting-state functional integration viewpoint.  相似文献   

12.
Functional magnetic resonance imaging (fMRI) studies have demonstrated alterations during task-induced brain activation in spinal cord injury (SCI) patients. The interruption to structural integrity of the spinal cord and the resultant disrupted flow of bidirectional communication between the brain and the spinal cord might contribute to the observed dynamic reorganization (neural plasticity). However, the effect of SCI on brain resting-state connectivity patterns remains unclear. We undertook a prospective resting-state fMRI (rs-fMRI) study to explore changes to cortical activation patterns following SCI. With institutional review board approval, rs-fMRI data was obtained in eleven patients with complete cervical SCI (>2 years post injury) and nine age-matched controls. The data was processed using the Analysis of Functional Neuroimages software. Region of interest (ROI) based analysis was performed to study changes in the sensorimotor network using pre- and post-central gyri as seed regions. Two-sampled t-test was carried out to check for significant differences between the two groups. SCI patients showed decreased functional connectivity in motor and sensory cortical regions when compared to controls. The decrease was noted in ipsilateral, contralateral, and interhemispheric regions for left and right precentral ROIs. Additionally, the left postcentral ROI demonstrated increased connectivity with the thalamus bilaterally in SCI patients. Our results suggest that cortical activation patterns in the sensorimotor network undergo dynamic reorganization following SCI. The presence of these changes in chronic spinal cord injury patients is suggestive of the inherent neural plasticity within the central nervous system.  相似文献   

13.

Introduction

Functional connectivity (FC) studies have gained immense popularity in the evaluation of several neurological disorders, such as Alzheimer’s disease (AD). AD is a complex disorder, characterised by several pathological features. The problem with FC studies in patients is that it is not straightforward to focus on a specific aspect of pathology. In the current study, resting state functional magnetic resonance imaging (rsfMRI) is applied in a mouse model of amyloidosis to assess the effects of amyloid pathology on FC in the mouse brain.

Methods

Nine APP/PS1 transgenic and nine wild-type mice (average age 18.9 months) were imaged on a 7T MRI system. The mice were anesthetized with medetomidine and rsfMRI data were acquired using a gradient echo EPI sequence. The data were analysed using a whole brain seed correlation analysis and interhemispheric FC was evaluated using a pairwise seed analysis. Qualitative histological analyses were performed to assess amyloid pathology, inflammation and synaptic deficits.

Results

The whole brain seed analysis revealed an overall decrease in FC in the brains of transgenic mice compared to wild-type mice. The results showed that interhemispheric FC was relatively preserved in the motor cortex of the transgenic mice, but decreased in the somatosensory cortex and the hippocampus when compared to the wild-type mice. The pairwise seed analysis confirmed these results. Histological analyses confirmed the presence of amyloid pathology, inflammation and synaptic deficits in the transgenic mice.

Conclusions

In the current study, rsfMRI demonstrated decreased FC in APP/PS1 transgenic mice compared to wild-type mice in several brain regions. The APP/PS1 transgenic mice had advanced amyloid pathology across the brain, as well as inflammation and synaptic deficits surrounding the amyloid plaques. Future studies should longitudinally evaluate APP/PS1 transgenic mice and correlate the rsfMRI findings to specific stages of amyloid pathology.  相似文献   

14.

Objectives

Premenstrual syndrome (PMS) refers to a series of cycling and relapsing physical, emotion and behavior syndromes that occur in the luteal phase and resolve soon after the onset of menses. Although PMS is widely recognized, its neural mechanism is still unclear.

Design

To address this question, we measured brain activity for women with PMS and women without PMS (control group) using resting-state functional magnetic resonance imaging (rs-fMRI). In addition, the participants should complete the emotion scales (Beck Anxiety Inventory, BAI; Beck Depression Inventory, BDI, before the scanning) as well as the stress perception scale (Visual analog scale for stress, VAS, before and after the scanning).

Results

The results showed that compared with the control group, the PMS group had decreased connectivity in the middle frontal gyrus (MFG) and theparahippocampalgyrus (PHG), as well as increased connectivity in the left medial/superior temporal gyri (MTG/STG) and precentralgyrus within the default mode network (DMN); in addition, the PMS group had higher anxiety and depression scale scores, together with lower stress perception scores. Finally, there were significantly positive correlations between the stress perception scores and functional connectivity in the MFG and cuneus. The BDI scores in the PMS group were correlated negatively with the functional connectivity in the MFG and precuneus and correlated positively with the functional connectivity in the MTG.

Conclusion

These findings suggest that compared with normal women, women with PMS displayed abnormal stress sensitivity, which was reflected in the decreased and increased functional connectivity within the DMN, blunted stress perception and higher depression.  相似文献   

15.
Functional Magnetic Resonance Imaging (fMRI) based brain connectivity analysis maps the functional networks of the brain by estimating the degree of synchronous neuronal activity between brain regions. Recent studies have demonstrated that “resting-state” fMRI-based brain connectivity conclusions may be erroneous when motion artifacts have a differential effect on fMRI BOLD signals for between group comparisons. A potential explanation could be that in-scanner displacement, due to rotational components, is not spatially constant in the whole brain. However, this localized nature of motion artifacts is poorly understood and is rarely considered in brain connectivity studies. In this study, we initially demonstrate the local correspondence between head displacement and the changes in the resting-state fMRI BOLD signal. Than, we investigate how connectivity strength is affected by the population-level variation in the spatial pattern of regional displacement. We introduce Regional Displacement Interaction (RDI), a new covariate parameter set for second-level connectivity analysis and demonstrate its effectiveness in reducing motion related confounds in comparisons of groups with different voxel-vise displacement pattern and preprocessed using various nuisance regression methods. The effect of using RDI as second-level covariate is than demonstrated in autism-related group comparisons. The relationship between the proposed method and some of the prevailing subject-level nuisance regression techniques is evaluated. Our results show that, depending on experimental design, treating in-scanner head motion as a global confound may not be appropriate. The degree of displacement is highly variable among various brain regions, both within and between subjects. These regional differences bias correlation-based measures of brain connectivity. The inclusion of the proposed second-level covariate into the analysis successfully reduces artifactual motion-related group differences and preserves real neuronal differences, as demonstrated by the autism-related comparisons.  相似文献   

16.
17.
Previous researches have explored the changes of functional connectivity caused by smoking with the aid of fMRI. This study considers not only functional connectivity but also effective connectivity regarding both brain networks and brain regions by using a novel analysis framework that combines independent component analysis (ICA) and Granger causality analysis (GCA). We conducted a resting-state fMRI experiment in which twenty-one heavy smokers were scanned in two sessions of different conditions: smoking abstinence followed by smoking satiety. In our framework, group ICA was firstly adopted to obtain the spatial patterns of the default-mode network (DMN), executive-control network (ECN), and salience network (SN). Their associated time courses were analyzed using GCA, showing that the effective connectivity from SN to DMN was reduced and that from ECN/DMN to SN was enhanced after smoking replenishment. A paired t-test on ICA spatial patterns revealed functional connectivity variation in regions such as the insula, parahippocampus, precuneus, anterior cingulate cortex, supplementary motor area, and ventromedial/dorsolateral prefrontal cortex. These regions were later selected as the regions of interest (ROIs), and their effective connectivity was investigated subsequently using GCA. In smoking abstinence, the insula showed the increased effective connectivity with the other ROIs; while in smoking satiety, the parahippocampus had the enhanced inter-area effective connectivity. These results demonstrate our hypothesis that for deprived heavy smokers, smoking replenishment takes effect on both functional and effective connectivity. Moreover, our analysis framework could be applied in a range of neuroscience studies.  相似文献   

18.
The goal of this study was to investigate the relationship between resting-state functional connectivity and the severity of post-traumatic stress disorder (PTSD) symptoms in 15 people who developed PTSD following recent trauma. Fifteen participants who experienced acute traumatic events underwent a 7.3-min resting functional magnetic resonance imaging scan within 2 days post-event. All the patients were diagnosed with PTSD within 1 to 6 months after trauma. Brain areas in which activity was correlated with that of the posterior cingulate cortex (PCC) were assessed. To assess the relationship between the severity of PTSD symptoms and PCC connectivity, contrast images representing areas positively correlated with the PCC were correlated with the subject’s Clinician-Administered PTSD Scale scores (CAPS) when they were diagnosed. Furthermore, the PCC, medial prefrontal cortex and bilateral amygdala were selected to assess the correlation of the strength of functional connectivity with the CAPS. Resting state connectivity with the PCC was negatively correlated with CAPS scores in the left superior temporal gyrus and right hippocampus/amygdala. Furthermore, the strength of connectivity between the PCC and bilateral amygdala, and even between the bilateral amygdala could predict the severity of PTSD symptoms later. These results suggest that early altered resting-state functional connectivity of the PCC with the left superior temporal gyrus, right hippocampus and amygdala could predict the severity of the disease and may be a major risk factor that predisposes patients to develop PTSD.  相似文献   

19.
Resting-state functional MRI (rs-fMRI) has emerged as a powerful tool for investigating brain functional connectivity (FC). Research in recent years has focused on assessing the reliability of FC across younger subjects within and between scan-sessions. Test-retest reliability in resting-state functional connectivity (RSFC) has not yet been examined in older adults. In this study, we investigated age-related differences in reliability and stability of RSFC across scans. In addition, we examined how global signal regression (GSR) affects RSFC reliability and stability. Three separate resting-state scans from 29 younger adults (18–35 yrs) and 26 older adults (55–85 yrs) were obtained from the International Consortium for Brain Mapping (ICBM) dataset made publically available as part of the 1000 Functional Connectomes project www.nitrc.org/projects/fcon_1000. 92 regions of interest (ROIs) with 5 cubic mm radius, derived from the default, cingulo-opercular, fronto-parietal and sensorimotor networks, were previously defined based on a recent study. Mean time series were extracted from each of the 92 ROIs from each scan and three matrices of z-transformed correlation coefficients were created for each subject, which were then used for evaluation of multi-scan reliability and stability. The young group showed higher reliability of RSFC than the old group with GSR (p-value = 0.028) and without GSR (p-value <0.001). Both groups showed a high degree of multi-scan stability of RSFC and no significant differences were found between groups. By comparing the test-retest reliability of RSFC with and without GSR across scans, we found significantly higher proportion of reliable connections in both groups without GSR, but decreased stability. Our results suggest that aging is associated with reduced reliability of RSFC which itself is highly stable within-subject across scans for both groups, and that GSR reduces the overall reliability but increases the stability in both age groups and could potentially alter group differences of RSFC.  相似文献   

20.
This paper aims to better understand the physiological meaning of negative correlations in resting state functional connectivity MRI (r-fcMRI). The correlations between anatomy-based brain regions of 18 healthy humans were calculated and analyzed with and without a correction for global signal and with and without spatial smoothing. In addition, correlations between anatomy-based brain regions of 18 naïve anesthetized rats were calculated and compared to the human data. T-statistics were used to differentiate between positive and negative connections. The application of spatial smoothing and global signal correction increased the number of significant positive connections but their effect on negative connections was complex. Positive connections were mainly observed between cortical structures while most negative connections were observed between cortical and non-cortical structures with almost no negative connections between non-cortical structures. In both human and rats, negative connections were never observed between bilateral homologous regions. The main difference between positive and negative connections in both the human and rat data was that positive connections became less significant with time-lags, while negative connections became more significant with time-lag. This effect was evident in all four types of analyses (with and without global signal correction and spatial smoothing) but was most significant in the analysis with no correction for the global signal. We hypothesize that the valence of r-fcMRI connectivity reflects the relative contributions of cerebral blood volume (CBV) and flow (CBF) to the BOLD signal and that these relative contributions are location-specific. If cerebral circulation is primarily regulated by CBF in one region and by CBV in another, a functional connection between these regions can manifest as an r-fcMRI negative and time-delayed correlation. Similarly, negative correlations could result from spatially inhomogeneous responses of rCBV or rCBF alone. Consequently, neuronal regulation of brain circulation may be deduced from the valence of r-fcMRI connectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号