首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parallel gene synthesis in a microfluidic device   总被引:1,自引:1,他引:0       下载免费PDF全文
The ability to synthesize custom de novo DNA constructs rapidly, accurately and inexpensively is highly desired by researchers, as synthetic genes and longer DNA constructs are enabling to numerous powerful applications in both traditional molecular biology and the emerging field of synthetic biology. However, the current cost of de novo synthesis—driven largely by reagent and handling costs—is a significant barrier to the widespread availability of such technology. In this work, we demonstrate, to our knowledge, the first gene synthesis in a microfluidic environment. The use of microfluidic technology greatly reduces reaction volumes and the corresponding reagent and handling costs. Additionally, microfluidic technology enables large numbers of complex reactions to be performed in parallel. Here, we report the fabrication of a multi-chamber microfluidic device and its use in carrying out the syntheses of several DNA constructs. Genes up to 1kb in length were synthesized in parallel at minute starting oligonucleotide concentrations (10–25nM) in four 500nl reactors. Such volumes are one to two orders of magnitude lower than those utilized in conventional gene synthesis. The identity of all target genes was verified by sequencing, and the resultant error rate was determined to be 1 per 560 bases.  相似文献   

2.
Within the field of synthetic biology, a rational design of genetic parts should include a causal understanding of their input-output responses—the so-called transfer function—and how to tune them. However, a commonly adopted strategy is to fit data to Hill-shaped curves without considering the underlying molecular mechanisms. Here we provide a novel mathematical formalization that allows prediction of the global behavior of a synthetic device by considering the actual information from the involved biological parts. This is achieved by adopting an enzymology-like framework, where transfer functions are described in terms of their input affinity constant and maximal response. As a proof of concept, we characterize a set of Lux homoserine-lactone-inducible genetic devices with different levels of Lux receptor and signal molecule. Our model fits the experimental results and predicts the impact of the receptor''s ribosome-binding site strength, as a tunable parameter that affects gene expression. The evolutionary implications are outlined.  相似文献   

3.
In the field of bioprocess development miniaturization, parallelization and flexibility play a key role reducing costs and time. To precisely meet these requirements, additive manufacturing (3D-printing) is an ideal technology. 3D-printing enables rapid prototyping and cost-effective fabrication of individually designed devices with complex geometries on demand. For successful bioprocess development, monitoring of process-relevant parameters, such as pH, dissolved oxygen (DO), and biomass, is crucial. Online monitoring is preferred as offline sampling is time-consuming and leads to loss of information. In this study, 3D-printed cultivation vessels with optical prisms are evaluated for the use in upstream processes of different industrially relevant microorganisms and cell lines. It was shown, that the 3D-printed optically modified well (OMW) is of benefit for a wide range of biotechnologically relevant microorganisms and even for mammalian suspension cells. Evaluation tests with Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, and Chinese hamster ovary (CHO) cells were performed, providing highly reproducible results. Growth behavior of OMW cultures was comparable to behavior of shake flask (SF) cultivations and the signal to noise ratio in online biomass measurement was shown to be reduced up to 95.8% by using the OMW. Especially the cultivation phases with low turbidity respective optical densities below 1.0 rel.AU could be monitored accurately for the first time. Furthermore, it was demonstrated that the 3D-printed optics are transferable to different well geometries and sizes, enabling efficient biomass monitoring for individual requirements with tailor-made 3D-printed cultivation vessels in small scale.  相似文献   

4.
DNA ‘assembly’ from ‘building blocks’ remains a cornerstone in synthetic biology, whether it be for gene synthesis (∼1 kb), pathway engineering (∼10 kb) or synthetic genomes (>100 kb). Despite numerous advances in the techniques used for DNA assembly, verification of the assembly is still a necessity, which becomes cost-prohibitive and a logistical challenge with increasing scale. Here we describe for the first time a comprehensive, high-throughput solution for structural DNA assembly verification by restriction digest using exhaustive in silico enzyme screening, rolling circle amplification of plasmid DNA, capillary electrophoresis and automated digest pattern recognition. This low-cost and robust methodology has been successfully used to screen over 31 000 clones of DNA constructs at <$1 per sample.  相似文献   

5.
Assembly of DNA ‘parts’ to create larger constructs is an essential enabling technique for bioengineering and synthetic biology. Here we describe a simple method, PaperClip, which allows flexible assembly of multiple DNA parts from currently existing libraries cloned in any vector. No restriction enzymes, mutagenesis of internal restriction sites, or reamplification to add end homology are required. Order of assembly is directed by double stranded oligonucleotides—‘Clips’. Clips are formed by ligation of pairs of oligonucleotides corresponding to the ends of each part. PaperClip assembly can be performed by polymerase chain reaction or by cell extract-mediated recombination. Once multi-use Clips have been prepared, assembly of at least six DNA parts in any order can be accomplished with high efficiency within several hours.  相似文献   

6.
Rapid quantitative profiling of complex microbial populations   总被引:3,自引:0,他引:3  
Diverse and complex microbial ecosystems are found in virtually every environment on earth, yet we know very little about their composition and ecology. Comprehensive identification and quantification of the constituents of these microbial communities—a ‘census’—is an essential foundation for understanding their biology. To address this problem, we developed, tested and optimized a DNA oligonucleotide microarray composed of 10 462 small subunit (SSU) ribosomal DNA (rDNA) probes (7167 unique sequences) selected to provide quantitative information on the taxonomic composition of diverse microbial populations. Using our optimized experimental approach, this microarray enabled detection and quantification of individual bacterial species present at fractional abundances of <0.1% in complex synthetic mixtures. The estimates of bacterial species abundance obtained using this microarray are similar to those obtained by phylogenetic analysis of SSU rDNA sequences from the same samples—the current ‘gold standard’ method for profiling microbial communities. Furthermore, probes designed to represent higher order taxonomic groups of bacterial species reliably detected microbes for which there were no species-specific probes. This simple, rapid microarray procedure can be used to explore and systematically characterize complex microbial communities, such as those found within the human body.  相似文献   

7.
生物与微细加工技术的结合日益成为一种新趋势,DNA分子具有热力学上的稳定性、线性的分子结构及机械刚性等优点,可以作为制备纳米线的理想模板。通过DNA为模板的金属化,形成导电性好的金属纳米线和金属团簇的纳米结构,使得DNA分子作为纳米导线构筑纳米器件成为可能。在本文中,我们对几种具有代表性的DNA金属化工艺的原理进行了讨论,研究了其新型的制作工艺,通过进一步的自组装和自识别技术,金属化过的DNA就可以被用来构建电路,并作为后续的金属沉积模板,在构筑生物纳米器件的领域将有广阔的应用前景。  相似文献   

8.
A major challenge in undergraduate life science curricula is the continual evaluation and development of courses that reflect the constantly shifting face of contemporary biological research. Synthetic biology offers an excellent framework within which students may participate in cutting-edge interdisciplinary research and is therefore an attractive addition to the undergraduate biology curriculum. This new discipline offers the promise of a deeper understanding of gene function, gene order, and chromosome structure through the de novo synthesis of genetic information, much as synthetic approaches informed organic chemistry. While considerable progress has been achieved in the synthesis of entire viral and prokaryotic genomes, fabrication of eukaryotic genomes requires synthesis on a scale that is orders of magnitude higher. These high-throughput but labor-intensive projects serve as an ideal way to introduce undergraduates to hands-on synthetic biology research. We are pursuing synthesis of Saccharomyces cerevisiae chromosomes in an undergraduate laboratory setting, the Build-a-Genome course, thereby exposing students to the engineering of biology on a genomewide scale while focusing on a limited region of the genome. A synthetic chromosome III sequence was designed, ordered from commercial suppliers in the form of oligonucleotides, and subsequently assembled by students into ~750-bp fragments. Once trained in assembly of such DNA “building blocks” by PCR, the students accomplish high-yield gene synthesis, becoming not only technically proficient but also constructively critical and capable of adapting their protocols as independent researchers. Regular “lab meeting” sessions help prepare them for future roles in laboratory science.  相似文献   

9.
The uptake of microfluidics by the wider scientific community has been limited by the fabrication barrier created by the skills and equipment required for the production of traditional microfluidic devices. Here we present simple 3D printed microfluidic devices using an inexpensive and readily accessible printer with commercially available printer materials. We demonstrate that previously reported limitations of transparency and fidelity have been overcome, whilst devices capable of operating at pressures in excess of 2000 kPa illustrate that leakage issues have also been resolved. The utility of the 3D printed microfluidic devices is illustrated by encapsulating dental pulp stem cells within alginate droplets; cell viability assays show the vast majority of cells remain live, and device transparency is sufficient for single cell imaging. The accessibility of these devices is further enhanced through fabrication of integrated ports and by the introduction of a Lego®-like modular system facilitating rapid prototyping whilst offering the potential for novices to build microfluidic systems from a database of microfluidic components.  相似文献   

10.
During 2007 and 2008 synthetic biology moved from the manifesto stage to research programs. As of 2009, synthetic biology is ramifying; to ramify means to produce differentiated trajectories from previous determinations. From its inception, most of the players in synthetic biology agreed on the need for (a) rationalized design and construction of new biological parts, devices, and systems as well as (b) the re-design of natural biological systems for specified purposes, and that (c) the versatility of designed biological systems makes them suitable to address such challenges as renewable energy, the production of inexpensive drugs, and environmental remediation, as well as providing a catalyst for further growth of biotechnology. What is understood by these goals, however, is diverse. Those assorted understandings are currently contributing to different ramifications of synthetic biology. The Berkeley Human Practices Lab, led by Paul Rabinow, is currently devoting its efforts to documenting and analyzing these ramifications as they emerge.  相似文献   

11.
Biophotovoltaics has emerged as a promising technology for generating renewable energy because it relies on living organisms as inexpensive, self‐repairing, and readily available catalysts to produce electricity from an abundant resource: sunlight. The efficiency of biophotovoltaic cells, however, has remained significantly lower than that achievable through synthetic materials. Here, a platform is devised to harness the large power densities afforded by miniaturized geometries. To this effect, a soft‐lithography approach is developed for the fabrication of microfluidic biophotovoltaic devices that do not require membranes or mediators. Synechocystis sp. PCC 6803 cells are injected and allowed to settle on the anode, permitting the physical proximity between cells and electrode required for mediator‐free operation. Power densities of above 100 mW m‐2 are demonstrated for a chlorophyll concentration of 100 μM under white light, which is a high value for biophotovoltaic devices without extrinsic supply of additional energy.  相似文献   

12.
DNA origami is a robust method for the fabrication of nanoscale 2D and 3D objects with complex features and geometries. The process of DNA origami folding has been recently studied, however quantitative understanding of it is still elusive. Here, we describe a systematic quantification of the assembly process of DNA nanostructures, focusing on the heterotypic DNA junction—in which arms are unequal—as their basic building block. Using bulk fluorescence studies we tracked this process and identified multiple levels of cooperativity from the arms in a single junction to neighboring junctions in a large DNA origami object, demonstrating that cooperativity is a central underlying mechanism in the process of DNA nanostructure assembly. We show that the assembly of junctions in which the arms are consecutively ordered is more efficient than junctions with randomly-ordered components, with the latter showing assembly through several alternative trajectories as a potential mechanism explaining the lower efficiency. This highlights consecutiveness as a new design consideration that could be implemented in DNA nanotechnology CAD tools to produce more efficient and high-yield designs. Altogether, our experimental findings allowed us to devise a quantitative, cooperativity-based heuristic model for the assembly of DNA nanostructures, which is highly consistent with experimental observations.  相似文献   

13.
The development of DNA microarray technology a decade ago led to the establishment of functional genomics as one of the most active and successful scientific disciplines today. With the ongoing development of immunomic microarray technology—a spatially addressable, large-scale technology for measurement of specific immunological response—the new challenge of functional immunomics is emerging, which bears similarities to but is also significantly different from functional genomics. Immunonic data has been successfully used to identify biological markers involved in autoimmune diseases, allergies, viral infections such as human immunodeficiency virus (HIV), influenza, diabetes, and responses to cancer vaccines. This review intends to provide a coherent vision of this nascent scientific field, and speculate on future research directions. We discuss at some length issues such as epitope prediction, immunomic microarray technology and its applications, and computation and statistical challenges related to functional immunomics. Based on the recent discovery of regulation mechanisms in T cell responses, we envision the use of immunomic microarrays as a tool for advances in systems biology of cellular immune responses, by means of immunomic regulatory network models.  相似文献   

14.
On the basis of a scientific-philosophical analysis, this paper tries to show that the approaches in current nutritional science—including its subdisciplines which focus on molecular aspects—are predominantly application-oriented. This becomes particularly evident through a number of conceptual problems characterized by the triad of ‘dearth of theoretical foundation,’ ‘particularist research questions,’ and ‘reductionist understanding of nutrition.’ The thesis presented here is that an interpretive framework based on nutritional biology is able to shed constructive light on the fundamental problems of nutritional science. In this context, the establishment of ‘nutritional biology’ as a basic discipline in research and education would be a first step toward recognizing the phenomenon of ‘nutrition’ as an oecic process as a special case of an organism–environment interaction. Modern nutritional science should be substantively grounded on ecological—and therefore systems biology as well as organismic—principles. The aim of nutritional biology, then, should be to develop near-universal ‘law statements’ in nutritional science—a task which presents a major challenge for the current science system.  相似文献   

15.

Background

Fluid handling technology is acquiring an ever more prominent place in laboratory science whether it is in simple buffer exchange systems, perfusion chambers, or advanced microfluidic devices. Many of these applications remain the providence of laboratories at large institutions with a great deal of expertise and specialized equipment. Even with the expansion of these techniques, limitations remain that frequently prevent the coupling of controlled fluid flow with other technologies, such as coupling microfluidics and high-resolution position and force measurements by optical trapping microscopy.

Method

Here we present a method for fabrication of multiple-input laminar flow devices that are optically clear [glass] on each face, chemically inert, reusable, inexpensive, and can be fabricated on the benchtop in approximately one hour. Further these devices are designed to allow flow regulation by a simple gravity method thus requiring no specialized equipment to drive flow. Here we use these devices to perform total internal reflection fluorescence microscopy measurements as well as position sensitive optical trapping experiments.

Significance

Flow chamber technology needs to be more accessible to the general scientific community. The method presented here is versatile and robust. These devices use standard slides and coverslips making them compatible with nearly all types and models of light microscopes. These devices meet the needs of groups doing advanced optical trapping experiments, but could also be adapted by nearly any lab that has a function for solution flow coupled with microscopy.  相似文献   

16.
17.
Synthetic DNA has great propensity for efficiently and stably storing non-biological information. With DNA writing and reading technologies rapidly advancing, new applications for synthetic DNA are emerging in data storage and communication. Traditionally, DNA communication has focused on the encoding and transfer of complete sets of information. Here, we explore the use of DNA for the communication of short messages that are fragmented across multiple distinct DNA molecules. We identified three pivotal points in a communication—data encoding, data transfer & data extraction—and developed novel tools to enable communication via molecules of DNA. To address data encoding, we designed DNA-based individualized keyboards (iKeys) to convert plaintext into DNA, while reducing the occurrence of DNA homopolymers to improve synthesis and sequencing processes. To address data transfer, we implemented a secret-sharing system—Multiplexed Sequence Encoding (MuSE)—that conceals messages between multiple distinct DNA molecules, requiring a combination key to reveal messages. To address data extraction, we achieved the first instance of chromatogram patterning through multiplexed sequencing, thereby enabling a new method for data extraction. We envision these approaches will enable more widespread communication of information via DNA.  相似文献   

18.
Restriction endonucleases are used prevalently in recombinant DNA technology because they bind so stably to a specific target sequence and, in the presence of cofactors, cleave double-helical DNA specifically at a target sequence at a high rate. Using synthetic nanopores along with molecular dynamics (MD), we have analyzed with atomic resolution how a prototypical restriction endonuclease, EcoRI, binds to the DNA target sequence—GAATTC—in the absence of a Mg2+ ion cofactor. We have previously shown that there is a voltage threshold for permeation of DNA bound to restriction enzymes through a nanopore that is associated with a nanonewton force required to rupture the complex. By introducing mutations in the DNA, we now show that this threshold depends on the recognition sequence and scales linearly with the dissociation energy, independent of the pore geometry. To predict the effect of mutation in a base pair on the free energy of dissociation, MD is used to qualitatively rank the stability of bonds in the EcoRI–DNA complex. We find that the second base in the target sequence exhibits the strongest binding to the protein, followed by the third and first bases, with even the flanking sequence affecting the binding, corroborating our experiments.  相似文献   

19.
Beal J  Lu T  Weiss R 《PloS one》2011,6(8):e22490

Background

The field of synthetic biology promises to revolutionize our ability to engineer biological systems, providing important benefits for a variety of applications. Recent advances in DNA synthesis and automated DNA assembly technologies suggest that it is now possible to construct synthetic systems of significant complexity. However, while a variety of novel genetic devices and small engineered gene networks have been successfully demonstrated, the regulatory complexity of synthetic systems that have been reported recently has somewhat plateaued due to a variety of factors, including the complexity of biology itself and the lag in our ability to design and optimize sophisticated biological circuitry.

Methodology/Principal Findings

To address the gap between DNA synthesis and circuit design capabilities, we present a platform that enables synthetic biologists to express desired behavior using a convenient high-level biologically-oriented programming language, Proto. The high level specification is compiled, using a regulatory motif based mechanism, to a gene network, optimized, and then converted to a computational simulation for numerical verification. Through several example programs we illustrate the automated process of biological system design with our platform, and show that our compiler optimizations can yield significant reductions in the number of genes () and latency of the optimized engineered gene networks.

Conclusions/Significance

Our platform provides a convenient and accessible tool for the automated design of sophisticated synthetic biological systems, bridging an important gap between DNA synthesis and circuit design capabilities. Our platform is user-friendly and features biologically relevant compiler optimizations, providing an important foundation for the development of sophisticated biological systems.  相似文献   

20.
This paper describes the fabrication of transparent electrodes based on grids of copper microwires using a non-photolithographic process. The process—“abrasion lithography”—takes two forms. In the first implementation (Method I), a water-soluble commodity polymer film is abraded with a sharp tool, coated with a conductive film, and developed by immersion in water. Water dissolves the polymer film and lifts off the conductive film in the unabraded areas. In the second implementation (Method II), the substrate is abraded directly by scratching with a sharp tool (i.e., no polymer film necessary). The abraded regions of the substrate are recessed and roughened. Following deposition of a conductive film, the lower profile and roughened topography in the abraded regions prevents mechanical exfoliation of the conductive film using adhesive tape, and thus the conductive film remains only where the substrate is scratched. As an application, conductive grids exhibit average sheet resistances of 17 Ω sq–1 and transparencies of 86% are fabricated and used as the anode in organic photovoltaic cells in concert with the conductive polymer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). Compared to devices in which PEDOT:PSS alone serves as an anode, devices comprising grids of copper/nickel microwires and PEDOT:PSS exhibit lowered series resistance, which manifests in greater fill factor and power conversion efficiency. This simple method of forming micropatterns could find use in applications where cost and environmental impact should be minimized, especially as a potential replacement for the transparent electrode indium tin oxide (ITO) in thin-film electronics over large areas (i.e., solar cells) or as a method of rapid prototyping for laboratory-scale devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号