首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In contrast to most high elevation areas, plant growth at Mediterranean mountains is exposed to a summer drought period, which represents an additional climatic constraint to low temperatures. Although arboreal and shrubby conifers coexist at high altitudes, most dendroecological studies have focused on climatic responses of tree species, whereas those of shrubby species remain mostly unexplored. We built tree-ring width chronologies for two conifer species, a shrub (Juniperus sabina) and a tree (Pinus sylvestris), coexisting at three high-altitude localities of the Iberian System mountains, eastern Spain. We analyzed their climate–growth relationships for the period 1950–2009 using correlation analyses and multiple regressions. Coexisting species responded to year-to-year climatic variability in different ways. Radial growth in junipers and pines responded positively to April and May temperatures, respectively. Summer drought constrained growth in both cases, although its impact was stronger on junipers than on pines. Our findings suggest that junipers respond earlier than pines to spring temperatures due to their prostrate morphology which may enhance a fast warming of their cambial meristems after snowmelt. The higher dependence of J. sabina on summer rainfall as compared with co-occurring pines confirms that drought stress negatively impacts secondary growth in Mediterranean mountains. This sensitivity to water availability may be caused by the juniper shallow root systems, which mainly use superficial soil water. The climatic signal registered in J. sabina allows studying the response of other similar shrubby woody species growing in Mediterranean alpine areas to the ongoing climate warming, which could also reduce water availability.  相似文献   

2.
The Truckee River Basin, located on the Nevada-California border, is an area of extreme hydrologic variability, being subject to both prolonged multi-decadal droughts and devastating floods; however, due to the brief instrumental record, understanding of the full range of this variability is limited. To assist local water managers assess the post-2000 drought in the context of historic droughts, this study revisits the first tree-ring reconstruction of Truckee River runoff: Hardman and Reil (1936). Incorporating their original 1930s tree cores as well as newly sampled material, three new site chronologies were developed and combined with other regional chronologies to produce a 1491–2003 reconstruction of Truckee River streamflow, an over 400-year extension of the instrumental record and 230 years longer than the previous reconstruction, providing new insights into the basin’s natural variability. In addition to evidence of extended droughts and extreme high streamflow years, this reconstruction shows a marked hydroclimatic shift centered around the 1850s. Prior to then, the Truckee River experienced decadal to multi-decadal periods of higher than average streamflow; subsequently, these periods have been decreasing in length with only two instances above three consecutive years of high streamflow since 1900. Whether this represents fundamental shift to a new hydroclimatic regime remains unclear. However, as global temperatures continue to rise, fewer long-term high streamflow episodes may have lasting impacts on water availability in the basin, raising the question further of whether the post-2000 drought is a new megadrought or a sign of aridification.  相似文献   

3.
We compared three approaches to study climatic signals of Pinus sylvestris and Larix sibirica treering width chronologies from the forest-steppe zone of South Siberia, where both temperature and precipitation limit the conifer tree growth: 1—paired correlation of chronologies with monthly climatic variables; 2— paired and partial correlations with monthly and seasonal series of primary and secondary climatic factors, calculated in the Seascorr program; 3—paired correlation with a 15-day moving average series of climatic variables. The comparison showed that simple paired correlation with monthly series as the simplest approach could be used for a wide range of dendroclimatic studies, both as a main procedure and for preliminary analysis. The Seascorr analysis is the most suitable for assessing climate-growth relationship in extreme growth conditions and for reconstructions of extremes, e.g. droughts, and of their impact periods. The application of the 15-day moving average series is limited by availability of daily climatic data, but it describes the seasonal window of climatic response with high precision. Altogether, the combination of three approaches allowed to explore the spatial-temporal pattern of the conifers radial growth climatic response in South Siberia.  相似文献   

4.
Climate transition zone is a sensitive area of climate change and ecological transition where forests are vulnerable to climate extremes. Extreme droughts are increasing in frequency and magnitude under climate change, resulting in structure and function changes of forest ecosystems. Here, to analyze climate-growth relationships and quantify tree resilience to extreme droughts, we developed six tree-ring-width chronologies from P. tabulaeformis and P. massoniana sampling sites in Mt. Jigong region, Central China. The results indicated that all chronologies from the two species had good consistency, precipitation in current April and mean temperature in current August or mean minimum temperature from current August to October were the main limiting factors of the two tree species growth, but the responses of P. massoniana ring-width to climatic factors was more complex than that of P. tabulaeformis. The results also showed that tree growth of 1999–2005 was the lowest growing period during 1979–2018, and P. massoniana grew better than P. tabulaeformis before 2005 and vice versa after 2005. Comparing low growth years of trees, we identified to study tree growth resilience. The calculations from 1988, 1999–2005 and 2011 drought years indicated that P. tabulaeformis had more increased resilience to extreme droughts than that of P. massoniana, and the two species had stronger ecological recovery and resilience under global warming and non-extreme drought conditions in the recent 40 years. These results have implications for predicting tree resilience and identifying tree species in heterogeneous forest landscapes vulnerable to future climate change in climatic transition zone.  相似文献   

5.
During the past years, growth and productivity of different oak species have been constrained by water shortage in seasonally dry regions such as the Mediterranean Basin. Thinning could improve oak radial growth in these drought-prone regions through the reduction of tree competition for soil water in summer. However, we still lack adequate, long-term assessments on how lasting are thinning treatments effects and to what extent they contribute to oak growth recovery after drought. Here we aim: (i) to study the radial growth sensitivity to drought of Quercus subpyrenaica in the Spanish Pre-Pyrenees, and (ii) to verify if thinning represents a suitable option to enhance growth resistance to drought and post-drought growth recovery. We analysed basal area increment (BAI) trends in the period 1960–2020 of formerly coppiced oak stands thinned in 1984 and compared them with unthinned plots and also with coexisting Scots pine (Pinus sylvestris) growing in thinned plots. We used the Standardized Precipitation Evapotranspiration Index (SPEI) to estimate the severity of droughts and we also assessed climate-growth relationships. Oaks in thinned plots showed higher BAI (369 mm2) than those in unthinned plots (221 mm2). Growth rates remained higher in thinned than in unthinned plots also under severe drought stress. A severe summer drought in 1986 caused abrupt BAI reductions in both oaks (- 40.5%) and pines (- 40.1%). The positive effect of thinning on growth lasted for over 20 years and slightly declined as canopies closed. In the thinned plots, trees with smaller diameter showed the greatest growth release. Oaks in unthinned plots and Scots pine were more sensitive to short-term droughts in terms of growth reduction than oaks in thinned plots, while long term droughts have similar effects on oaks from both thinned and unthinned plots. Oaks were resilient to drought, showing recovery periods lasting from 1 to 2 years in both thinned and unthinned plots. However, intense and prolonged droughts could strongly reverse the expected growth enhancement of thinned plots, and a greater frequency of droughts would limit coppice growth and productivity thus lengthening the rotation periods.  相似文献   

6.
Responses of tree growth to climate are usually spatially heterogeneous. Besides regionally varying external environments, species specificity is a crucial factor in determining said spatial heterogeneity. A better understanding of this species specificity would improve our estimations of the warming effects on forests. In this study, we selected two widely-distributed boreal conifers, Dahurian larch (Larix gmelinii) and Mongolian pine (Pinus sylvestris var. mongolica), to compare their growth-climate responses, including long-term growth-climate correlations and short-term growth resilience to drought. We sampled 160 trees and 481 tree-ring cores from the two species in two pure and two mixed forests, located in the Greater Khingan Range, northeast China. We found that Dahurian larch was generally positively correlated with spring temperature and negatively correlated with summer temperature. In contrast, Mongolian pine was more sensitive to summer moisture. Our results suggest that the main climatic limitations were low spring temperatures for Dahurian larch and summer moisture deficits for Mongolian pine. Dahurian larch represented higher growth resistance to drought, while Mongolia pine represented higher recovery. Based on this, we inferred that Dahurian larch was more vulnerable to extreme droughts, while Mongolian pine was more vulnerable to frequent droughts. We also demonstrated the effects of forest type on growth-climate responses. The negative effects of summer temperatures on Mongolian pine seemed to be more significant in mixed forests. As warming continued, Mongolian pine in this area would suffer severer moisture deficits, especially when coexisting with Dahurian larch. Our results suggest that Dahurian larch gained an advantage in the competition with Mongolian pine during high moisture stress. Driven by the warming trends, the species specificity in growth response would ultimately promote the separation of the two species in distribution. This study will help improve our estimations of the warming effects on forests and develop more species-targeted forest management practices.  相似文献   

7.
《Dendrochronologia》2014,32(2):97-106
The relationship of streamflow records of the Lachen River with tree-ring parameters of total tree-ring width (TRW), earlywood width (EWW) and latewood width (LWW) chronologies of Larix griffithiana from Lachen, North Sikkim, Eastern Himalaya was generated. These chronologies correlate significantly with the observed discharge of the Lachen River where the EWW chronology explains 61.2% of the streamflow variance. Based on this result, Lachen River discharge for the period of previous year March to current year February was reconstructed using EWW chronology, which extends back to AD 1790. In the smoothed reconstructed data the period of extreme low streamflows were during AD 1791–1805, 1813–1822 and 1914–1925 and the extreme highs were during AD 1823–1835, 1879–1890, 1926–1946 and 1980–1989. The streamflow is also found to be lower than average during the monsoon failure (or East India Drought) of AD 1792–1796 and past great droughts of AD 1876–1878. The lower tree growth during AD 1816–1822 is consistent with that of the Tambora volcanic eruption of Indonesia in AD 1815. High spectral power at 4–8 years in the reconstructed streamflow is similar to that of ENSO range.  相似文献   

8.
Tree-ring chronologies were examined to investigate the influence of climate on radial growth of Pinus nigra in southeastern Spain. We addressed whether drought differentially affected the ring-widths of dominant and suppressed trees and if our results supported the hypothesis that, in a Mediterranean climate, suppressed conifer trees suffer greater growth reductions than dominant trees. Climate–growth relationships were analyzed using response and correlation functions, whereas the effect of drought on trees growth was approached by superposed epoch analysis in 10 dry years. A cool, wet autumn and spring, and/or mild winter enhanced radial growth. Latewood was the most sensitive ring section in both kinds of trees and it was primarily influenced by current year precipitations. Earlywood was mostly influenced by climatic conditions previous to the growing season. In general, May was the most influential month. Pinus nigra was shown to be very drought sensitive tree in the study area. Tree-rings in suppressed trees showed lower growth reductions caused by drought than those of dominant trees. However, dominant trees recovered normal growth faster. Dominant trees showed a more plastic response, and suppression appeared to reduce the effect of climate on tree radial growth. Some possible causes for these effects are discussed. Our results support the essential role of the balance between light and moisture limitations for plant development during droughts and show that it is not appropriate to generalize about the way in which suppression affects climate-growth relationship in conifers.  相似文献   

9.
Climate change has an inevitable impact on forest ecosystems, to better understand the influence of climate change on forest growth, we analyzed the growth response of four major conifers to climate on Haba Snow Mountain in central Hengduan Mountains. Tree ring samples were taken from four species at their upper distributional limits, and residual chronologies were developed by using tree ring width data. Response function and redundancy analysis were taken to reveal the key climatic factors affecting tree growth and moving interval analysis was applied to detect the stability of growth-climate relationships. The results showed that previous November temperature, precipitation in current February, current May and current June were common factors affecting the radial growth of the studied species. Abies georgei was mainly influenced by the temperature in previous November. The photothermal condition in May and June controlled the growth of Larix potaninii. Moisture condition in previous August and current May was the key factor affecting Pinus densata growth. As for Pinus yunnanensis, the drought in current May was the limiting factor influencing its growth. The dynamic relationship between tree growth and climatic factors varied among species, and the results were consistent with response function analysis. A forecast in future forest growth on Haba Snow Mountain was complex, since future climate change had both positive and negative effects on the radial growth of four major conifers.  相似文献   

10.
不同径级油松径向生长对气候的响应   总被引:1,自引:0,他引:1  
建立了黑里河自然保护区油松年轮宽度年表,通过不同径级油松径向生长对逐月气候因子的响应关系,研究了干旱对不同径级油松径向生长的影响。结果表明:两个径级油松的年轮宽度指数达到极显著相关(R=0.943,P<0.01),其中小径级(平均胸径20 cm)油松年表的平均敏感度显著高于大径级(平均胸径43 cm)油松年表(P<0.01)。不同径级油松均与上年9月、当年2月及当年5—6月的降水显著正相关(P<0.05),与当年6月的平均温度显著负相关(P<0.05),此外,小径级油松还与当年7月的降水显著正相关(P<0.05);降水是影响油松生长的主要气候因子。不同径级油松的径向生长量在干旱年份均显著降低(P<0.01)且小径级油松的生长降低量显著高于大径级油松(P<0.01);不同径级油松生长量在干旱发生后1年左右的时间内均恢复正常且小径级油松恢复速度更快。  相似文献   

11.
Extreme climatic events such as intense droughts are becoming more frequent in Mediterranean regions, but our understanding of their impact on tree performance is still fragmentary. We analyzed growth and sap flow responses for a 3-year period including the most stressful drought over the last half century in the evergreen Pinus nigra and the deciduous Quercus faginea, two dominant tree species in the continental plateau of the Iberian Peninsula. Our aim was to quantify the differential impacts of this event on the performance of both species and their modulation by local microclimate. Growth was registered with digital dendrometers, and water use was assessed by continuously recording sap flow in 8–9 coexisting adult individuals of each species in two sites. Q. faginea spring growth rate decreased by 60 % during the dry year at the dry site, while the decrease in P. nigra was around 36 %. P. nigra exhibited larger sap flow reductions during the dry season and also larger decreases during the extreme year, but in contrast to Q. faginea, it was able to recover growth and sap flow values after the extreme drought. Minor microclimatic differences between sites had significant effects on growth and water use, with slightly more mesic conditions significantly attenuating the impact of drought on both species. Findings suggest that the study species were near to their tolerance thresholds, so that even moderate increases in the intensity and frequency of unusual droughts have important consequences for individual tree performance, and eventually species coexistence and ecosystem processes.  相似文献   

12.
Earlywood ring-width chronologies derived primarily from Douglas-fir trees were used to reconstruct winter–spring (November–May) precipitation and fall–spring (September–June) streamflow volumes for the period 1765–1993 in the forested upper Nazas watershed in Durango, Mexico. The tree-ring data were obtained from mixed conifer stands within or adjacent to the upper Nazas watershed. Precipitation data were derived from one of the longest regional records. The streamflow data were obtained from a guage located in the upper Nazas watershed. The Principal Component 1 (PC1) of nine residual earlywood chronologies accounted for 73% of the variance in November–May precipitation 1967–1993, and 64% for the total period with available data 1941–1993. The mean of three residual earlywood chronologies from Douglas-fir explained 51% of the normalized streamflow at Sardinas from 1971–1992. The 20th century was characterized by severe droughts, especially between 1950 and 1963 that also affected other regions of Mexico and the southwestern United States. Additional droughts of similar or greater magnitude occurred in the 1790s, 1810s, 1860–1870s and 1890–1910s. Similar periods of low flow occur in the September–June streamflow reconstruction between 1765 and 1993. These results indicate that tree-ring chronologies from this region document a high percentage of the precipitation and streamflow variance. Spectral analysis detected significant high periodicities in both records at peaks of 4 and 7 years that could be related to the ENSO frequency bands (approximately 4.0 and 6.25 years). Analysis of the reconstructed records show strong influence of ENSO on precipitation and streamflow amounts on an interannual basis. These results can provide significant inputs to decisions regarding management of water resources that are used to irrigate land in the Comarca Lagunera: specifically they indicate that water budgeting should be managed over longer time periods to account for this ENSO-related variability rather than on the year-to-year basis that is presently used.  相似文献   

13.
《Dendrochronologia》2006,23(3):215-223
Earlywood ring-width chronologies derived primarily from Douglas-fir trees were used to reconstruct winter–spring (November–May) precipitation and fall–spring (September–June) streamflow volumes for the period 1765–1993 in the forested upper Nazas watershed in Durango, Mexico. The tree-ring data were obtained from mixed conifer stands within or adjacent to the upper Nazas watershed. Precipitation data were derived from one of the longest regional records. The streamflow data were obtained from a guage located in the upper Nazas watershed. The Principal Component 1 (PC1) of nine residual earlywood chronologies accounted for 73% of the variance in November–May precipitation 1967–1993, and 64% for the total period with available data 1941–1993. The mean of three residual earlywood chronologies from Douglas-fir explained 51% of the normalized streamflow at Sardinas from 1971–1992. The 20th century was characterized by severe droughts, especially between 1950 and 1963 that also affected other regions of Mexico and the southwestern United States. Additional droughts of similar or greater magnitude occurred in the 1790s, 1810s, 1860–1870s and 1890–1910s. Similar periods of low flow occur in the September–June streamflow reconstruction between 1765 and 1993. These results indicate that tree-ring chronologies from this region document a high percentage of the precipitation and streamflow variance. Spectral analysis detected significant high periodicities in both records at peaks of 4 and 7 years that could be related to the ENSO frequency bands (approximately 4.0 and 6.25 years). Analysis of the reconstructed records show strong influence of ENSO on precipitation and streamflow amounts on an interannual basis. These results can provide significant inputs to decisions regarding management of water resources that are used to irrigate land in the Comarca Lagunera: specifically they indicate that water budgeting should be managed over longer time periods to account for this ENSO-related variability rather than on the year-to-year basis that is presently used.  相似文献   

14.
Pinus Massoniana is the most widely distributed coniferous species in southern China and one of the most distributed species for plantation in China. It is not uncertain about the responses of tree growth to the combined effects of regional drying and the increase in the intrinsic water-use efficiency (iWUE) due to increased atmospheric CO2. This study addressed this issue by comparing the tree growth patterns as represented by three tree-ring width chronologies with climate variables and three iWUE series derived from three tree-ring stable carbon isotope discrimination chronologies (Δ13C) from Pinus Massoniana in Daiyun Mountain, central Fujian province of China. Among these chronologies, we reported the first tree-ring carbon isotope discrimination chronologies (Δ13C) from Fuzhou area spanning last 210 years. It was found that tree radial growth is mainly limited by dry condition from May to October. Growth limitation by cold condition was only found in one high altitude site (780m) in early spring and late autumn. The tree-ring carbon discrimination was enhanced under conditions with low relative humidity and sufficient sunshine in late summer and autumn. In general, the iWUE showed a significantly increasing trend since the 1850s for all the sites in response to the increase in atmospheric CO2. However, the growth promotion of the increased iWUE on tree growth could not compensate the growth limitation caused by drought. Especially since the 1960s, a growth decline was found at two drought stressed sites at low altitudes. On the other hand, the increase in temperature of spring and autumn and iWUE has most likely enhanced tree growth at the high altitude site.  相似文献   

15.
Recent increases in temperature over the semi-arid western United States have been shown to exacerbate drought, reducing streamflow, and increasing stress on ecosystems. Our understanding of the role temperature played during drought in the more distant past is far from complete. While numerous tree-ring proxy records of moisture provide evidence for past extreme droughts in this region, few contemporaneous tree-ring proxy records of temperatures exist. This limits our ability to evaluate the variable influence of temperature on drought over past centuries and to contextualize the present interplay of moisture and temperature during more recent drought events. It is also important to understand the complexity of climatic interactions that produced drought under natural variability prior to evaluating the potential impacts of future climate change. In response to this knowledge gap, we undertook the first extensive evaluation of climate sensitivity in Rocky Mountain bristlecone pine (Pinus aristata Engelm.), focusing on the potential for developing new multi-century proxy records of both temperature and precipitation. We isolated dominant patterns of growth variability among trees from ten ring-width datasets across the Southern Rocky Mountains of Colorado and New Mexico and assessed their response to climate. We utilized both an empirical orthogonal function (EOF) analysis and a modified form of hierarchical cluster analysis to produce time series representing growth patterns in P. aristata. The results indicate a widespread June drought stress signal with a high potential for multi-millennial reconstruction. We also found a positive minimum temperature response during late summer, evident only at lower frequency and co-occurring at locations with the June drought stress signal. The potential for temperature reconstruction will require further investigation into the physiological linkages between P. aristata and climate variability. The presence of multiple climate responses within P. aristata sampling sites highlights the need for particular care when including P. aristata in regional climate reconstructions.  相似文献   

16.
Drought causes reduced growth of trembling aspen in western Canada   总被引:1,自引:0,他引:1       下载免费PDF全文
Adequate and advance knowledge of the response of forest ecosystems to temperature‐induced drought is critical for a comprehensive understanding of the impacts of global climate change on forest ecosystem structure and function. Recent massive decline in aspen‐dominated forests and an increased aspen mortality in boreal forests have been associated with global warming, but it is still uncertain whether the decline and mortality are driven by drought. We used a series of ring‐width chronologies from 40 trembling aspen (Populus tremuloides Michx.) sites along a latitudinal gradient (from 52° to 58°N) in western Canada, in an attempt to clarify the impacts of drought on aspen growth by using Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI). Results indicated that prolonged and large‐scale droughts had a strong negative impact on trembling aspen growth. Furthermore, the spatiotemporal variability of drought indices is useful for explaining the spatial heterogeneity in the radial growth of trembling aspen. Due to ongoing global warming and rising temperatures, it is likely that severer droughts with a higher frequency will occur in western Canada. As trembling aspen is sensitive to drought, we suggest that drought indices could be applied to monitor the potential effects of increased drought stress on aspen trees growth, achieve classification of eco‐regions and develop effective mitigation strategies to maintain western Canadian boreal forests.  相似文献   

17.
Multiple sources of evidence suggest an increasing frequency of extreme climatic events during the past century. In Bangladesh, a country strongly influenced by the South Asian monsoon climate, the years 1999 and 2006 were the most severe droughts among the ten drought events identified over the last four decades. We investigated the impact of these two drought events on radial growth and xylem anatomical features of the brevi-deciduous tree species Chukrasia tabularis in a moist tropical forest in Bangladesh. Tree radial growth declined by 54% during the 1999 and 48.7% during the 2006 droughts, respectively. Among the wood anatomical features, the number of vessels (NV) showed the highest sensitivity to drought, with a 45% decrease in the 1999 drought year, followed by total vessel area (TVA) and mean vessel area (MVA). On the other hand, Vessel density (VD) increased by 13% during the 1999 drought but the increase in VD was very low in the drought year 2006. The decreasing vessel area and increasing vessel density indicate xylem hydraulic adaptation of C. tabularis to minimize drought induced cavitation risk and to avoid hydraulic failure. The significant correlations between the Standardized Precipitation Evapotranspiration Index (SPEI) and time series of tree-ring width and vessel variables imply that decline in radial growth and changes in vessel features in C. tabularis are likely to be caused by drought induced water stress. Our analyses suggest that radial growth and wood anatomical features of C. tabularis are highly sensitive to extreme drought events in South Asian moist tropical forests and can be used to reconstruct past droughts and to model tree response to drought stress under future climate conditions.  相似文献   

18.
Tropical dry forests (hereafter TDFs) have been extensively logged and converted into croplands or grasslands worldwide. Tumbesian forests in southwest Ecuador are among the most diverse and endangered TDFs. They face seasonal droughts of varied severity and are also subjected to episodic very wet and cloudy conditions during El Niño events. However, we lack a local quantification of their responses to regional climate (temperature, precipitation, cloud cover) and El Niño which could change across sites. Here we use dendrochronology to quantify the radial-growth rates and the responses to climate (mean temperatures, precipitation amount, cloud cover and drought severity) of two major tree species forming annual rings (Geoffroea spinosa, Handroanthus chrysanthus) in three TDFs with different local climate conditions. The lowest (1.0 mm yr−1) and the highest (2.1 mm yr−1) radial-growth rates of both tree species were found in the hottest-driest and moderately hot sites, respectively. G. spinosa growth responded positively to wet, cool and cloudy conditions in the hottest-driest and moderately hot sites, but the most intense response to drought was observed in the driest site at 1–5 months long scales. H. chrysanthus growth reacted positively to high growing-season precipitation in all sites, particularly in the driest site, and to cloudy conditions in moderately hot sites. The growth of H. chrysanthus was negatively associated to the Southern Oscillation Index in the dry-hot and in the moderately hot sites. Tree species coexisting in TDFs show varied growth responses to regional weather variability, drought severity and El Niño events across sites with different local climate conditions.  相似文献   

19.
Eleven stands of Scots pine (Pinus sylvestris L.) from the city of Ekaterinburg and its surroundings were sampled and analyzed using dendrochronological methods to detect the effects of climate, biotic and anthropogenic factors on the annual growth of trees. Tree-ring chronologies were developed for six sites within the city and for five control sites. All chronologies were highly and positively correlated before the 1940s. However, after this period, there was a significant decrease in the correlation among chronologies from urban and rural sites. Divergence lasted about 20 years. This firstly has an anthropogenic cause, mainly due to the evacuation in 1941 of more than 60 industrial factories to Sverdlovsk (now Ekaterinburg), which generated a significant increase in air pollution. Environmental pollution seems to negatively affect tree growth. In the early 1950s, trees in the region also suffered from severe droughts. The results of climate and historical data analysis suggest that the trees on urban sites were weakened by both climate and air pollution factors, which led to a massive nun moth (Lymantria monacha L.) infestation of trees. Defoliation led to a drastic reduction in tree-ring width and, in some cases, to the complete loss of annual rings. The recovery period lasted 10–15 years on average. Rural populations were much less affected by the insect outbreak. After urban populations of pine recovered in the 1960s, radial growth of urban and rural populations became synchronized again.  相似文献   

20.
The proportion of planted forests in the Mediterranean Basin is one of the largest in the world. These plantations are dominated by pine species and present a series of characteristics such as low elevation, high competition or small tree size that make them more vulnerable to droughts. However, quantitative assessments of their post-drought growth resilience in accordance with species, site factors and tree characteristics are lacking. In this study we sampled 164 trees at four forest sites located in the drought-prone Sierra Nevada, southeastern Spain. We compared growth responsiveness to drought in rear-edge planted vs. relic natural Scots pine (Pinus sylvestris) and coexisting Pyrenean oak (Quercus pyrenaica) stands. Our objective was to characterize and compare the different growth responses to drought between species and sites and the effect of the main physiographic factors (altitude, aspect, and slope) on these responses since the influence of these factors on post-drought resistance and resilience has received little attention to date. Our results reveal that the planted pine sites with the lowest mean growth rates displayed greater resistance during drought, and that higher altitude was associated with improved resistance and/or resilience for all species and sites. Natural pine and Pyrenean oak stands were better adapted to the dry climatic conditions of the Mediterranean region where the study was undertaken, displaying greater resistance and/or resilience and lower influence of drought on growth in comparison to stands of planted pines. These results suggest that promoting the conservation of high-elevation pine plantations and enhancing the regeneration of natural pine and oak may improve the resistance and resilience of these drought-prone forest ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号