首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Alternative splicing is an important mechanism for the regulation of bovine papillomavirus type 1 (BPV-1) gene expression during the virus life cycle. Previous studies in our laboratory have identified two purine-rich exonic splicing enhancers (ESEs), SE1 and SE2, located between two alternative 3′ splice sites at nucleotide (nt) 3225 and nt 3605. Further analysis of BPV-1 late-pre-mRNA splicing in vitro revealed a 48-nt pyrimidine-rich region immediately downstream of SE1 that inhibits utilization of the nt 3225 3′ splice site. This inhibitory element, which we named an exonic splicing suppressor (ESS), has a U-rich 5′ end, a C-rich central part, and an AG-rich 3′ end (Z. M. Zheng, P. He, and C. C. Baker, J. Virol. 70:4691–4699, 1996). The present study utilized in vitro splicing of both homologous and heterologous pre-mRNAs to further characterize the ESS. The BPV-1 ESS was inserted downstream of the 3′ splice site in the BPV-1 late pre-mRNA, Rous sarcoma virus src pre-mRNA, human immunodeficiency virus tat-rev pre-mRNA, and Drosophila dsx pre-mRNA, all containing a suboptimal 3′ splice site, and in the human β-globin pre-mRNA, which contains a constitutive 3′ splice site. These studies demonstrated that suppression of splicing by the BPV-1 ESS requires an upstream suboptimal 3′ splice site but not an upstream ESE. Furthermore, the ESS functions when located either upstream or downstream of BPV-1 SE1. Mutational analyses demonstrated that the function of the ESS is sequence dependent and that only the C-rich region of the ESS is essential for suppression of splicing in all the pre-mRNAs tested.  相似文献   

2.
3.
4.
RSUME (RWD-containing SUMO Enhancer) is a small protein that increases SUMO conjugation to proteins. To date, four splice variants that codify three RSUME isoforms have been described, which differ in their C-terminal end. Comparing the structure of the RSUME isoforms we found that, in addition to the previously described RWD domain in the N-terminal, all these RSUME variants also contain an intermediate domain. Only the longest RSUME isoform presents a C-terminal domain that is absent in the others. Given these differences, we used the shortest and longest RSUME variants for comparative studies. We found that the C-terminal domain is dispensable for the SUMO-conjugation enhancer properties of RSUME. We also demonstrate that these two RSUME variants are equally induced by hypoxia. The NF-κB signaling pathway is inhibited and the HIF-1 pathway is increased more efficiently by the longest RSUME, by means of a greater physical interaction of RSUME267 with the target proteins. In addition, the mRNA and protein levels of these isoforms differ in human glioma samples; while the shortest RSUME isoform is expressed in all the tumors analyzed, the longest variant is expressed in most but not all of them. The results presented here show a degree of redundancy of the RSUME variants on the SUMO pathway. However, the increased inhibition conferred by RSUME267 over the NF-κB signaling pathway, the increased activation over the HIF-1 pathway and the different expression of the RSUME isoforms suggest specific roles for each RSUME isoform which may be relevant in certain types of brain tumors that express RSUME, like human pituitary adenomas and gliomas.  相似文献   

5.
Congenital ichthyoses are life-threatening conditions in humans. We describe here the identification and molecular characterization of a novel recessive mutation in mice that results in newborn lethality with severe congenital lamellar ichthyosis. Mutant newborns have a taut, shiny, non-expandable epidermis that resembles cornified manifestations of autosomal-recessive congenital ichthyosis in humans. The skin is stretched so tightly that the newborn mice are immobilized. The genetic defect was mapped to a region near the proximal end of chromosome 2 by SNP analysis, suggesting Fatp4/Slc27a4 as a candidate gene. FATP4 mutations in humans cause ichthyosis prematurity syndrome (IPS), and mutations of Fatp4 in mice have previously been found to cause a phenotype that resembles human congenital ichthyoses. Characterization of the Fatp4 cDNA revealed a fusion of exon 8 to exon 10, with deletion of exon 9. Genomic sequencing identified an A to T mutation in the splice donor sequence at the 3′-end of exon 9. Loss of exon 9 results in a frame shift mutation upstream from the conserved very long-chain acyl-CoA synthase (VLACS) domain. Histological studies revealed that the mutant mice have defects in keratinocyte differentiation, along with hyperproliferation of the stratum basale of the epidermis, a hyperkeratotic stratum corneum, and reduced numbers of secondary hair follicles. Since Fatp4 protein is present primarily at the stratum granulosum and the stratum spinosum, the hyperproliferation and the alterations in hair follicle induction suggest that very long chain fatty acids, in addition to being required for normal cornification, may influence signals from the stratum corneum to the basal cells that help to orchestrate normal skin differentiation.  相似文献   

6.
本文鉴定了苯丙氨酸羟化酶基因355位密码子上的一个新的错义突变Q355 H, 此突变异致谷氨酰胺变成了组氨酸。此突变位点恰位于外显子10和内含子11的交界处, 因此将引起mRNA形成过程中的剪接错误而产生异常的mR NA。Q355H的鉴定为一例苯丙酮尿症胎儿的产前诊断提供了理论依据。 Abstract:A novel missense mutation at code 355 of phenylalanine hydroxlase gene was identified,this mutation caused the substitution of Gln 355 for His 355.The mutant site was at the boundary of exon 10 and intro 11 and might cause splicing errors during RNA processing,Which could result in abnormal mRNA.Identification of Q355H provided a theortic evidence for prenatal diagnosis of a fetus with PKU.  相似文献   

7.
Nocturnal frontal lobe epilepsy has been historically considered a channelopathy caused by mutations in subunits of the neuronal nicotinic acetylcholine receptor or in a recently reported potassium channel. However, these mutations account for only a minority of patients, and the existence of at least a new locus for the disease has been demonstrated. In 2005, we detected two nucleotide variations in the promoter of the CRH gene coding for the corticotropin releasing hormone in 7 patients. These variations cosegregated with the disease and were demonstrated to alter the cellular levels of this hormone. Here, we report the identification in an Italian affected family of a novel missense mutation (hpreproCRH p.Pro30Arg) located in the region of the CRH coding for the protein pro-sequence. The mutation was detected in heterozygosity in the two affected individuals. In vitro assays demonstrated that this mutation results in reduced levels of protein secretion in the short time thus suggesting that mutated people could present an altered capability to respond immediately to stress agents.  相似文献   

8.
9.
10.
Congenital cataracts are major cause of visual impairment and blindness in children and previous studies have shown about 1/3 of non-syndromic congenital cataracts are inherited. Major intrinsic protein of the lens (MIP), also known as AQP0, plays a critical role in transparency and development of the lens. To date, more than 10 mutations in MIP have been linked to hereditary cataracts in humans. In this study, we investigated the genetic and functional defects underlying a four-generation Chinese family affected with congenital progressive cortical punctate cataract. Mutation screening of the candidate genes revealed a missense mutation at position 448 (c.448G>C) of MIP, which resulted in the substitution of a conserved aspartic acid with histidine at codon 150 (p.D150H). By linkage and haplotype analysis, we obtained positive multipoint logarithm of odds (LOD) scores at microsatellite markers D12S1632 (Zmax = 1.804 at α = 1.000) and D12S1691 (Zmax = 1.806 at α = 1.000), which flanked the candidate locus. The prediction results of PolyPhen-2 and SIFT indicated that the p.D150H mutation was likely to damage to the structure and function of AQP0. The wild type and p.D150H mutant AQP0 were expressed in HeLa cells separately and the immunofluorescence results showed that the WT-AQP0 distributed at the plasma membrane and in cytoplasm, while AQP0-D150H failed to reach the plasma membrane and was mainly retained in the Golgi apparatus. Moreover, protein levels of AQP0-D150H were significantly lower than those of wide type AQP0 in membrane-enriched lysates when the HEK-293T cells were transfected with the same amount of wild type and mutant plasmids individually. Taken together, our data suggest the p.D150H mutation is a novel disease-causing mutation in MIP, which leads to congenital progressive cortical punctate cataract by impairing the trafficking mechanism of AQP0.  相似文献   

11.
Congenital cataract is a clinically and genetically heterogeneous group of eye disorders that causes visual impairment and childhood blindness. The purpose of this study was to identify the genetic defect associated with autosomal dominant congenital perinuclear cataract in a Chinese family. A detailed family history and clinical data of the family were recorded, and candidate gene sequencing was performed to screen for mutation-causing disease in our study. Direct sequencing revealed a c.601G>A (p.E201K) transversion in exon 2 of GJA8. This mutation co-segregated with all affected individuals in the family and was not found in unaffected family members or 100 unrelated controls. The function and mechanism of novel GJA8 point mutation E201K in Chinese patients were then investigated in this study. We found E201K aberrantly located in cytoplasm and prevented its location in the plasma membrane. Induction of E201K expression led to a decrease in cell growth and viability by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Our study provides important evidence that GJA8 is a disease-causing gene for congenital cataract and that mutation of GJA8 has a potential causative effect.  相似文献   

12.
13.
Lysozyme gene from Fenneropenaeus indicus was cloned, expressed in Escherichia coli and characterized. The cDNA consists of 477 base pairs and encodes amino acid sequence of 159 residues. F. indicus lysozyme had high identity (98 %) with Fenneropenaeus merguiensis and Fenneropenaeus chinensis and exhibits low to moderate identities with lysozymes of other invertebrates and vertebrates. This lysozyme is presumed to be chicken types as it possesses two catalytic and eight cysteine residues that are conserved across c-type lysozymes and a c-terminal extension, which is a characteristic of lysozymes from marine invertebrates. Further, the antimicrobial properties of the recombinant lysozyme from F. indicus were determined in comparison with recombinant hen egg white lysozyme. This exhibited high activity against a Gram-negative pathogenic bacterium Salmonella typhimurium and two fungal strains Pichia pastoris and Saccharomyces cerevisiae in turbidimetric assay. Distribution of lysozyme gene and protein in tissues of shrimps infected with white spot syndrome virus revealed that the high levels of lysozyme are correlated with low and high viral load in abdominal muscle and tail, respectively. In conclusion, lysozyme from F. indicus has a broad spectrum of antimicrobial properties, which once again emphasizes its role in shrimp innate immune response.  相似文献   

14.
The bacterium Xenorhabdus nematophila is a mutualist of Steinernema carpocapsae nematodes and a pathogen of insects. Presently, it is not known what nutrients the bacterium uses to thrive in these host environments. In other symbiotic bacteria, oligopeptide permeases have been shown to be important in host interactions, and we therefore sought to determine if oligopeptide uptake is essential for growth or symbiotic functions of X. nematophila in laboratory or host environments. We identified an X. nematophila oligopeptide permease (opp) operon of two sequential oppA genes, predicted to encode oligopeptide-binding proteins, and putative permease-encoding genes oppB, oppC, oppD, and oppF. Peptide-feeding studies indicated that this opp operon encodes a functional oligopeptide permease. We constructed strains with mutations in oppA1, oppA2, or oppB and examined the ability of each mutant strain to grow in a peptide-rich laboratory medium and to interact with the two hosts. We found that the opp mutant strains had altered growth phenotypes in the laboratory medium and in hemolymph isolated from larval insects. However, the opp mutant strains were capable of initiating and maintaining both mutualistic and pathogenic host interactions. These data demonstrate that the opp genes allow X. nematophila to utilize peptides as a nutrient source but that this function is not essential for the existence of X. nematophila in either of its host niches. To our knowledge, this study represents the first experimental analysis of the role of oligopeptide transport in mediating a mutualistic invertebrate-bacterium interaction.  相似文献   

15.
Rare variation in protein coding sequence is poorly captured by GWAS arrays and has been hypothesized to contribute to disease heritability. Using the Illumina HumanExome SNP array, we successfully genotyped 191,032 common and rare non-synonymous, splice site, or nonsense variants in a multiethnic sample of 2,984 breast cancer cases, 4,376 prostate cancer cases, and 7,545 controls. In breast cancer, the strongest associations included either SNPs in or gene burden scores for genes LDLRAD1, SLC19A1, FGFBP3, CASP5, MMAB, SLC16A6, and INS-IGF2. In prostate cancer, one of the most associated SNPs was in the gene GPRC6A (rs2274911, Pro91Ser, OR = 0.88, P = 1.3×10−5) near to a known risk locus for prostate cancer; other suggestive associations were noted in genes such as F13A1, ANXA4, MANSC1, and GP6. For both breast and prostate cancer, several of the most significant associations involving SNPs or gene burden scores (sum of minor alleles) were noted in genes previously reported to be associated with a cancer-related phenotype. However, only one of the associations (rs145889899 in LDLRAD1, p = 2.5×10−7 only seen in African Americans) for overall breast or prostate cancer risk was statistically significant after correcting for multiple comparisons. In addition to breast and prostate cancer, other cancer-related traits were examined (body mass index, PSA level, and alcohol drinking) with a number of known and potentially novel associations described. In general, these findings do not support there being many protein coding variants of moderate to high risk for breast and prostate cancer with odds ratios over a range that is probably required for protein coding variation to play a truly outstanding role in risk heritability. Very large sample sizes will be required to better define the role of rare and less penetrant coding variation in prostate and breast cancer disease genetics.  相似文献   

16.
Badnavirus infecting betel vine (Piper betle L) and Indian long pepper (P. longum L) were detected with primers designed from the open reading frame (ORF III) region of the virus using Polymerase Chain Reaction (PCR). The amplicons obtained from these infected hosts were cloned and sequenced. The sequenced region of ORF III contained 597 nucleotides in both the isolates. Sequence analysis with recognized badnaviruses revealed that Badnavirus infecting P. betle and P. longum had highest sequence identity (>89.1% at nucleotide level and >93.4% at amino acid level) with an Indian isolate of Piper yellow mottle virus (PYMoV) infecting black pepper. Based on the sequence identity and phylogenetic relationship studies, it was concluded that Badnavirus infecting P. betle and P. longum in India is a strain of PYMoV. To our knowledge, this is the first report on the identification and characterization of PYMoV infecting P. betle in India and PYMoV infecting P. longum in India and elsewhere.  相似文献   

17.
18.
The inwardly rectifying potassium channel Kir6.2 assembles with sulfonylurea receptor 1 to form the ATP-sensitive potassium (KATP) channels that regulate insulin secretion in pancreatic β-cells. Mutations in KATP channels underlie insulin secretion disease. Here, we report the characterization of a heterozygous missense Kir6.2 mutation, G156R, identified in congenital hyperinsulinism. Homomeric mutant channels reconstituted in COS cells show similar surface expression as wild-type channels but fail to conduct potassium currents. The mutated glycine is in the pore-lining transmembrane helix of Kir6.2; an equivalent glycine in other potassium channels has been proposed to serve as a hinge to allow helix bending during gating. We found that mutation of an adjacent asparagine, Asn-160, to aspartate, which converts the channel from a weak to a strong inward rectifier, on the G156R background restored ion conduction in the mutant channel. Unlike N160D channels, however, G156R/N160D channels are not blocked by intracellular polyamines at positive membrane potential and exhibit wild-type-like nucleotide sensitivities, suggesting the aspartate introduced at position 160 interacts with arginine at 156 to restore ion conduction and gating. Using tandem Kir6.2 tetramers containing G156R and/or N160D in designated positions, we show that one mutant subunit in the tetramer is insufficient to abolish conductance and that G156R and N160D can interact in the same or adjacent subunits to restore conduction. We conclude that the glycine at 156 is not essential for KATP channel gating and that the Kir6.2 gating defect caused by the G156R mutation could be rescued by manipulating chemical interactions between pore residues.  相似文献   

19.
CYP4B1 belongs to the cytochrome P450 family 4, one of the oldest P450 families whose members have been highly conserved throughout evolution. The CYP4 monooxygenases typically oxidize fatty acids to both inactive and active lipid mediators, although the endogenous ligand(s) is largely unknown. During evolution, at the transition of great apes to humanoids, the CYP4B1 protein acquired a serine instead of a proline at the canonical position 427 in the meander region. Although this alteration impairs P450 function related to the processing of naturally occurring lung toxins, a study in transgenic mice suggested that an additional serine insertion at position 207 in human CYP4B1 can rescue the enzyme stability and activity. Here, we report that the genomic insertion of a CAG triplet at the intron 5–exon 6 boundary in human CYP4B1 introduced an additional splice acceptor site in frame. During evolution, this change occurred presumably at the stage of Hominoidae and leads to two major isoforms of the CYP4B1 enzymes of humans and great apes, either with or without a serine 207 insertion (insSer207). We further demonstrated that the CYP4B1 enzyme with insSer207 is the dominant isoform (76%) in humans. Importantly, this amino acid insertion did not affect the 4-ipomeanol metabolizing activities or stabilities of the native rabbit or human CYP4B1 enzymes, when introduced as transgenes in human primary cells and cell lines. In our 3D modeling, this functional neutrality of insSer207 is compatible with its predicted location on the exterior surface of CYP4B1 in a flexible side chain. Therefore, the Ser207 insertion does not rescue the P450 functional activity of human CYP4B1 that has been lost during evolution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号