首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seasonally dry tropical forests are an important global climatic regulator, a main driver of the global carbon sink dynamics and are predicted to suffer future reductions in their productivity due to climate change. Yet, little is known about how interannual climate variability affects tree growth and how climate-growth responses vary across rainfall gradients in these forests. Here we evaluate changes in climate sensitivity of tree growth along an environmental gradient of seasonally dry tropical vegetation types (evergreen forest – savannah – dry forest) in Northeastern Brazil, using congeneric species of two common neotropical genera: Aspidosperma and Handroanthus. We built tree-ring width chronologies for each species × forest type combinations and explored how growth variability correlated with local (precipitation, temperature) and global (the El Niño Southern Oscillation - ENSO) climatic factors. We also assessed how growth sensitivity to climate and the presence of growth deviations varied along the gradient. Precipitation stimulates tree growth and was the main growth-influencing factor across vegetation types. Trees in the dry forest site showed highest growth sensitivity to interannual variation in precipitation. Temperature and ENSO phenomena correlated negatively with growth and sensitivity to both climatic factors were similar across sites. Negative growth deviations were present and found mostly in the dry-forest species. Our results reveal a dominant effect of precipitation on tree growth in seasonally dry tropical forests and suggest that along the gradient, dry forests are the most sensitivity to drought. These forests may therefore be the most vulnerable to the deleterious effects of future climatic changes. These results highlight the importance of understanding the climatic sensitivity of different tropical forests. This understanding is key to predict the carbon dynamics in tropical regions, and sensitivity differences should be considered when prioritizing conservation measures of seasonally dry topical forests.  相似文献   

2.
Tropical dry forests (TDF) are highly important tropical forest ecosystems. Yet, these forests are highly threatened, usually neglected and only poorly studied. Understanding the long-term influences of environmental conditions on tree growth in these forests is crucial to understand the functioning, carbon dynamics and potential responses to future climate change of these forests. Dendrochronology can be used as a tool to provide these insights but has only scantly been applied in (dry) tropical forests. Here we evaluate the dendrochronological potential of four Caatinga neotropical dry forest tree species – Aspidosperma pyrifolium, Ziziphus joazeiro, Tabebuia aurea, and Libidibia ferrea – collected in two locations in northeastern Brazil (Sergipe state). We provide an anatomical characterization of the ring boundaries for the four species and investigate correlations of their growth with local and regional climatic variables. All four species form annual rings and show high inter-correlation (up to 0.806) and sensitivity (up to 0.565). Growth of all species correlated with local precipitation as well as with sea-surface temperatures in the tropical Atlantic and/or tropical Pacific oceans. We also show teleconnections between growth and the El Niño South Oscillation. The strong dependence of tree on precipitation is worrisome, considering that climate change scenarios forecast increased drought conditions in the Caatinga dry forest. Including more species and expanding dendrochronological studies to more areas would greatly improve our understanding of tree growth and functioning in TDFs. This type of knowledge is essential to assist the conservation, management and restoration of these critical tropical ecosystems.  相似文献   

3.
The Seasonally Dry Tropical Forests (SDTF) present very high biodiversity and a number of tree species that are adapted to prolonged periods of water stress. Considering tree ring formation is mainly driven by seasonal variation in precipitation in tropical environments, tree-ring studies from STDF can provide important contributions to understanding how these forests are responding to climate variations. In the present study, we demonstrate the influence of edaphoclimatic variables (precipitation, air temperature and soil water deficit-SWD) and the ocean teleconnections (Tropical Southern Atlantic-TSA, Atlantic Multidecadal Oscillation-AMO, Western Hemisphere Warm Pool-WHWP and El Niño 3.4) on Cedrela odorata L. growth from a SDTF of northeastern Brazil. We used standard dendrochronological methods to develop an 89-year-long ring-width index chronology. The climate sensitivity of C. odorata was assessed through Pearson's correlation tests and linear regressions, which allowed to identify the determinant months (cause-effect) of each variable on the chronology. Tree growth was positively correlated with precipitation and negatively correlated with air temperature and SWD, particularly during the rainy season (March to August). In parallel, we identified that extremely dry years can contribute to missing rings, exposing the lack of growth in C. odorata caused by water stress. Among the oceanic variables, all of them showed a negative effect on radial growth of C. odorata, except for TSA, which had no significant effect. Tree growth is constrained in years with strong El Niño and high values of AMO index during the rainy months (May, June and October). However, the WHWP showed a more pronounced negative effect in the beginning of the dry season (September). Our findings add valuable information on C. odorata responses to hydrological seasonality from SDTF and the fluctuations in oceanic teleconnections, which in turn, influence the rainfall dynamics in northeastern Brazil.  相似文献   

4.
Summary Root attributes of tree seedlings of seven species from the tropical deciduous forest along the Pacific Coast of Mexico are described using morphometirc root system analysis. Mean relative growth rate, root/shoot ratios, specific root length, root density, mean number of roots tips and root length/leaf area ratio were determined in seedlings grown for 35 days inside growth chambers. All the species had low relative growth rates, low root/shoot ratios and low root densities (<0.5 cm/cm3). The species associated with disturbed habitats, in contrast to the species characteristic of undisturbed areas, presented small seeds, a dichotomous root branching pattern and large specific root length. No relationship was found between seed size and mean relative growth rate among the species studied.  相似文献   

5.
In temperate forests, juvenile trees anticipate leaf phenology compared to adults, thus avoiding shading and herbivory. This is also expected to occur in seasonal tropical forests due to intense herbivory and shading during the rainy season; however, the anticipation of leaf phenology by juveniles in seasonal tropical forests has yet to be demonstrated. Stem‐succulent species are expected to be prone to juvenile phenological anticipation because these species are able to use water stored in their stems for leaf flushing in the dry season. We investigated this hypothesis by comparing leaf phenology (bud break, leaf expansion) of juveniles and adults of two species with contrasting wood densities in the transition between dry and rainy seasons in a tropical dry woodland. We also investigated the level of light limitation that juveniles experience in the rainy season. Both species exhibited bud break during the dry season, but only expanded their leaves with the occurrence of the first rains. In general, the stem‐succulent species had a more precocious bud break; however, anticipation by juveniles occurred only in the species with more dense wood. Canopy openness was lower than in temperate deciduous forests, but the fact that the full expansion of leaves occurred only with rainfall indicates that bud break in anticipation of canopy closure contributes only to keeping leaf photosynthetic balance from going negative, and not to higher carbon gain. The importance of anticipated budding for escaping herbivory remains an alternative explanation in need of investigation.  相似文献   

6.
Tropical forests are carbon rich ecosystems and small changes in tropical forest tree growth substantially influence the global carbon cycle. Forest monitoring studies report inconsistent growth changes in tropical forest trees over the past decades. Most of the studies highlighted changes in the forest level carbon gain, neglecting the species-specific growth changes which ultimately determine community-level responses. Tree-ring analysis can provide historical data on species-specific tree growth with annual resolution. Such studies are inadequate in Bangladesh, which is one of the most climate sensitive regions in the tropics. In this study, we investigated long-term growth rates of Toona ciliata in a moist tropical forest of Bangladesh by using tree-ring analysis. We sampled 50 trees of varying size, obtained increment cores from these trees and measured tree-ring width. Analyses of growth patterns revealed size-dependent growth increments. After correcting for the effect of tree size on tree growth (ontogenetic changes) by two different methods we found declining growth rates in T. ciliata from 1960 to 2013. Standardized ring-width index (RWI) was strongly negatively correlated with annual mean and maximum temperatures suggesting that rising temperature might cause the observed growth decline in T. ciliata. Assuming that global temperatures will rise at the current rate, the observed growth decline is assumed to continue. The analysis of stable carbon and oxygen isotopes may reveal more insight on the physiological response of this species to future climatic changes.  相似文献   

7.
Species-specific climate sensitivity of tree growth in Central-West Germany   总被引:1,自引:0,他引:1  
Growth responses to twentieth century climate variability of the three main European tree species Fagus sylvatica, Quercus petraea, and Pinus sylvestris within two temperate low mountain forest sites were analyzed, with particular emphasis on their dependence upon ecological factors and temporal stability in the obtained relationships. While site conditions in Central (~51°N, 9°E, KEL) and West (50.5°N, 6.5°E, EIF) Germany are similar, annual precipitation totals of ≅700 mm and ≅1,000 mm describe a maritime-continental gradient. Ring-width samples from 228 trees were collected and PCA used to identify common growth patterns. Chronologies were developed and redundancy analysis and simple correlation coefficients calculated to detect twentieth century temperature, precipitation, and drought fingerprints in the tree-ring data. Summer drought is the dominant driver of forest productivity, but regional and species-specific differences indicate more complex influences upon tree growth. F. sylvatica reveals the highest climate sensitivity, whereas Q. petraea is most drought tolerant. Drier growth conditions in KEL result in climate sensitivity of all species, and Q. petraea shifted from non-significant to significant drought sensitivity during recent decades at EIF. Drought sensitivity dynamics of all species vary over time. An increase of drought sensitivity in tree growth was found in the wetter forest area EIF, whereas a decrease occurred in the middle of the last century for all species in the drier KEL region. Species-specific and regional differences in long-term climate sensitivities, as evidenced by temporal variability in drought sensitivity, are potential indicators for a changing climate that effects Central-West German forest growth, but meanwhile hampers a general assessment of these effects.  相似文献   

8.
 Seasonal drought may limit primary productivity in most of the tropics, but the determinants of tree growth are not well known. A 10-year study of the deciduous trees Cochlospermum vitifolium (Willd.) Spreng. (Cochlospermaceae) and Cnidoscolus spinosus Lundell (Euphorbiaceae) in southwestern México showed radial growth to be highly correlated (both r>0.85) only with precipitation during an interval of <2 months in the mid-wet season. Growth was not affected by total annual precipitation or by an early starting or late ending of the wet season, or by heavy rainfall in the dry season. Annual mean girth increments ranged from 0.03 to 3.31 cm and −0.1 to 2.01 cm, respectively. The best model for growth (r 2>0.85) was a linear combination of mid-summer precipitation (positive coefficient) and total precipitation over the previous 2 years (negative coefficient). Comparison with other species showed heterogeneous responses of wood production to climate variation, and suggests that the range of functional types of dry forest trees is still unknown. Received: 9 September 1996 / Accepted: 4 March 1997  相似文献   

9.
The phenology of sprouts (>1 year old, up to 1.5 m in height) and seedlings (<1 year old) of six woody species (four deciduous, one brevi-deciduous, and one evergreen) was examined during the dry season in a tropical deciduous forest of South India. Xylem water potential (x), leaf relative water content (RWC; % turgid weight), and xylem specific conductivity (K S; kg s–1 m–1 MPa–1) of sprouts were measured on two occasions during the dry season. In addition, K S of seedlings (<1 year old) of one deciduous and one evergreen species was determined to allow comparison with sprouts. x of deciduous species was significantly higher at the second sampling date and was accompanied by a significant increase in K S and RWC, while the brevi-deciduous and evergreen species did not show any difference in x. Seedlings of Terminalia crenulata (deciduous) and Ixora parviflora (evergreen) had significantly lower K S compared to sprouts, while seedlings of all four deciduous species shed their leaves much earlier in the dry season than did conspecific sprouts. More favorable water relations of sprouts compared to seedlings during the peak of the dry season may explain the lower rates of die-back and mortality of sprouts observed in dry deciduous forests of India.
This revised version was published online in May 2005 with corrections to Received-/Accepted-dates.  相似文献   

10.
11.
Global climate change has led to rising temperatures and drought in boreal forests in Northeast China. In some areas, shrubs and trees coexist in high altitude and high latitude areas, and their differences with global warming may lead to significant changes in vegetation composition and distribution. Therefore, we compared the relationships between climate and growth for the most widely distributed dwarf shrub (Pinus pumila) and the two dominant tree species (Larix gmelinii and Pinus sylvestris var. mongolica) in boreal forests in the Daxing’an Mountains, China. A total of 340 tree-ring cores from 172 trees and 64 discs from shrubs were collected from four sites and compared the responses of shrub and tree growth to climate patterns using dendrochronological methods. The shrub and two tree species responded differently to interannual climate variance. The negative effect of growing season temperature was greater on growth of L.gmelinii and P. sylvestrisvar.mongolica than on P. pumila, and the promoting effect of winter and spring precipitation was greatest on P. pumila. Compared with the two tree species, P. pumila had a higher temperature threshold and grew over a shorter growing season. Our findings suggested that L. gmelinii and P. sylvestrisvar.mongolica are more susceptible to global warming than the shrubs that coexist with them. However, P.pumila should be studied from an individual perspective in the future due to the dwarf morphology of shrubs and their complex microenvironment.  相似文献   

12.
There are a number of controversies surrounding both biomass estimation and carbon balance in tropical forests. Here we use long-term (from 1978 through 2000) data from five 0.5-ha permanent sample plots (PSPs) within a large tract of relatively undisturbed Atlantic moist forest in southeastern Brazil to quantify the biomass increment (MI), and change in total stand biomass (Mstand), from mortality, recruitment, and growth data for trees 10 cm diameter at breast height (DBH). Despite receiving an average of only 1,200 mm annual precipitation, total forests biomass (334.5±11.3 Mg ha–1) was comparable to moist tropical forests with much greater precipitation. Over this relatively long-term study, forest biomass experienced rapid declines associated with El Niño events, followed by gradual biomass accumulation. Over short time intervals that overlook extreme events, these dynamics can be misinterpreted as net biomass accumulation. However for the 22 years of this study, there was a small reduction in forest biomass, averaging –1.2 Mg ha–1 year–1 (±3.1). Strong climatic disturbances can severely reduce forest biomass, and if the frequency and intensity of these events increases beyond historical averages, these changing disturbance regimes have the capacity to significantly reduce forest biomass, resulting in a net source of carbon to the atmosphere.  相似文献   

13.
We report architectural divergence between two congeneric tropical tree species coexisting in the same stratum which suggests different strategies: reducing self-shading and support costs, or maximizing light foraging. We found species-specific differential performance across light environments, suggesting that architectural differentiation could facilitate the coexistence of species with similar vertical habitat.  相似文献   

14.
  1. In seasonally dry tropical forests, plant functional type can be classified as deciduous low wood density, deciduous high wood density, or evergreen high wood density species. While deciduousness is often associated with drought‐avoidance and low wood density is often associated with tissue water storage, the degree to which these functional types may correspond to diverging and unique water use strategies has not been extensively tested.
  2. We examined (a) tolerance to water stress, measured by predawn and mid‐day leaf water potential; (b) water use efficiency, measured via foliar δ13C; and (c) access to soil water, measured via stem water δ18O.
  3. We found that deciduous low wood density species maintain high leaf water potential and low water use efficiency. Deciduous high wood density species have lower leaf water potential and variable water use efficiency. Both groups rely on shallow soil water. Evergreen high wood density species have low leaf water potential, higher water use efficiency, and access alternative water sources. These findings indicate that deciduous low wood density species are drought avoiders, with a specialized strategy for storing root and stem water. Deciduous high wood density species are moderately drought tolerant, and evergreen high wood density species are the most drought tolerant group.
  4. Synthesis. Our results broadly support the plant functional type framework as a way to understand water use strategies, but also highlight species‐level differences.
  相似文献   

15.
Radial growth in trees responds to environmental changes in various ways ranging from immediate to hysteretic responses. However, species-specific tree radial growth patterns and their responses to short-term weather changes are not fully understood. Here, the daily stem radial changes (SRCs) in four common tree species, linden (Tilia mongolica), birch (Betula dahurica), oak (Quercus wutaishanica) and larch (Larix principis-rupprechtii), were monitored with high-resolution point dendrometers during the main growing seasons in 2017–2019 on Dongling Mountain, northern China. The SRC was differentiated into tree water deficit-induced stem shrinkage (TWD) and growth-induced irreversible stem expansion (GRO) to evaluate species-specific responses to weather variables and short-term drought events. We found that the TWD and GRO of the four species were significantly different. The TWD was influenced primarily by the vapor pressure deficit (VPD), whereas the GRO was influenced primarily by precipitation (P). In linden and birch, a larger proportion of the GRO occurred at higher air temperature (Tmean) and VPD values; in contrast, the range of these changes was lower in oak and larch. With the increased durations of drought periods, oak and larch experienced large and rapid increases in TWD, whereas birch and linden showed small and slow increases. These results indicate that oak and larch would be sensitive to warmer and drier weather conditions predicted for the future, while linden and birch would have a conservative growth strategy. Our results provide further insights into the physiology of these four tree species and allow us to better predict the growth response of forest dynamics under climate change.  相似文献   

16.
The applicability of succession models from temperate and tropical wet forests to threatened seasonally dry tropical forests (SDTFs) is questioned. Plant phenology affects ecosystem functions and changes along forest regeneration gradient. To investigate the recovery of ecological functions after disturbances in a SDTF, we recorded the vegetative and reproductive phenologies for trees (DBH >5 cm) for 17 months in southeast Brazil in three successional stages: early (10–15 years after clearing), intermediate (25–30) and late (>50). The vegetative phenology of the 523 individuals was strongly seasonal, with 3% of individuals presenting green leaves in a deciduous dry season. Besides structural and floristic differences, phenological trends were similar between the later stages. Reproduction occurred with higher intensities in the early stage and in the advanced stages only in the dry season, providing key resources to local fauna. The studied SDTF is resilient to ecological functions, rapidly recovering functional processes. The integration of structural and functional knowledge of succession of STDFs may lead to better management of its secondary remnants. Our study suggests that classical forest succession theory developed for other ecosystems may not fully reflect the pattern of SDTF succession, an ecosystem that originally covered 42% of the earth's tropical and subtropical landmass.  相似文献   

17.
Water availability acts as a major constraint on productivity in many sub-humid forest regions. Precipitation can be an important limiting factor for tree growth in such areas, but the strength of the relationship can vary by habitat and species, as well as with tree size and local hydrology. We quantified the influence of past weather conditions on the growth of two conifer species (Pinus contorta and Picea glauca) across a water-limited forest landscape in western Canada. The two species differ in moisture requirements and are segregated across a local elevational gradient, and so we expected them to exhibit different sensitivities to precipitation. We also expected that larger trees and those more distant from creeks would have a stronger response to precipitation. A hierarchical Bayesian model fit to the annual ring widths of 387 trees showed that historical precipitation from 1951 to 2016 had a positive overall effect on radial growth. The magnitude of precipitation effects on radial tree growth varied with creek proximity (a proxy for the soil moisture provided by an elevated water table in the valley bottom) and tree size. Precipitation had a greater positive influence on the growth of larger P. glauca trees, as well as individuals of both species at far and intermediate distances from creeks. Precipitation had a weaker but still positive effect on P. glauca trees growing close to creeks. Tree growth rates may change with the predicted greater inter-annual variability of precipitation under climate change, but the magnitude of these responses appear to vary by species, size, and creek proximity. Overall changes in tree growth are expected to be relatively small as trees are well-adapted to cope with the variation in water availability across a moisture-limited landscape.  相似文献   

18.
Seasonally dry tropical forests (SDTF) are a widely distributed vegetation type in the tropics, characterized by seasonal rainfall with several months of drought when they are subject to fire. This study is one of the first attempts to quantify above- and belowground biomass (AGB and BGB) and above- and belowground carbon (AGC and BGC) pools to calculate their recovery after fire, using a chronosequence approach (six forests that ranged form 1 to 29 years after fire and mature forest). We quantified AGB and AGC pools of trees, lianas, palms, and seedlings, and BGB and BGC pools (Oi, Oe, Oa soil horizons, and fine roots). Total AGC ranged from 0.05 to nearly 72 Mg C ha−1, BGC from 21.6 to nearly 85 Mg C ha−1, and total ecosystem carbon from 21.7 to 153.5 Mg C ha−1; all these pools increased with forest age. Nearly 50% of the total ecosystem carbon was stored in the Oa horizon of mature forests, and up to 90% was stored in the Oa-horizon of early successional SDTF stands. The soils were shallow with a depth of <20 cm at the study site. To recover values similar to mature forests, BGC and BGB required <19 years with accumulation rates greater than 20 Mg C ha−1 yr−1, while AGB required 80 years with accumulation rates nearly 2.5 Mg C ha−1 yr−1. Total ecosystem biomass and carbon required 70 and 50 years, respectively, to recover values similar to mature forests. When belowground pools are not included in the calculation of total ecosystem biomass or carbon recovery, we estimated an overestimation of 10 and 30 years, respectively.  相似文献   

19.
Hydropower plants are important sources of renewable energy, but the climatic impacts of their constructions remain poorly explored. Considering that tree growth analysis is a useful tool to identify environmental impacts, this study aimed at using climate records and tree-ring chronologies to understand possible local climate changes caused by the construction of a hydropower plant in the 1980s in the State of Paraná, Southern Brazil. Historical climatic data were obtained from the local meteorological station and surrounding municipalities and analyzed using ANOVA and means tests. The Pettitt test was additionally used to identify change-points in the meteorological data. Wood samples from a total of 60 trees from Araucaria angustifolia (Bertol.) Kuntze (Araucariaceae) and Cedrela fissilis Vell. (Meliaceae) were collected, and tree-ring chronologies were built using dendrochronological standard procedures. Chronologies for A. angustifolia and C. fissilis represented time periods from 1800 to 2016 and 1899–2015, respectively. Tree-ring growth responses to climatic variables were evaluated by adjusting generalized mixed linear models and the Spearman correlations. Our results evidenced that the hydropower plant altered the local climate, mostly influencing the hydrological cycle by increasing local rainfall, with monthly rain volumes being statistically higher than in other meteorological stations. Significant responses in the growth of A. angustifolia were found to be associated with the water level increase caused by the dam and of C. fissilis due to the increase in cloud cover.  相似文献   

20.
Biogeographic patterns of avifaunas associated with seasonally dry tropical forests in Mesoamerica are poorly understood despite their high levels of species richness and endemism. Through the parsimony analysis of endemicity, we analyzed biogeographic relationships of 650 resident species of birds associated with seasonally dry tropical forests from Mexico to Panama, based on potential distributions obtained through ecological niche modeling. Results show two general avifaunal groups, east and west of the Isthmus of Tehuantepec. Patterns of biogeographic distribution and species richness also helped illuminate the importance of key areas for birds associated to this habitat in the region.

Los patrones biogeográficos de las avifaunas asociadas a los bosques tropicales estacionalmente secos en Mesoamérica están pobremente entendidos, a pesar de que estas áreas poseen una gran riqueza de especies y endemismo. Analizamos las relaciones biogeográficas con base en distribuciones potenciales, hechas a partir de modelos del nicho ecológico usando el análisis de parsimonia de endemismos, de 650 especies de aves residentes asociadas a los bosques tropicales estacionalmente secos desde México hasta Panamá. Los resultados muestran dos grupos generales de la avifauna, al este y oeste del Istmo de Tehuantepec. El contexto biogeográfico y la riqueza de especies resalta también la importancia de áreas clave para las aves asociadas a este tipo de hábitat en la región.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号