首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Background and Aims A series of studies have shown that temperature triggers the onset of xylogenesis of trees after winter dormancy. However, little is known about whether and how moisture availability influences xylogenesis in spring in drought-prone areas.Methods Xylogenesis was monitored in five mature Qilian junipers (Juniperus przewalskii) by microcore sampling from 2009 to 2011 in a semi-arid area of the north-eastern Tibetan Plateau. A simple physical model of xylem cell production was developed and its sensitivity was analysed. The relationship between climate and growth was then evaluated, using weekly wood production data and climatic data from the study site.Key Results Delayed onset of xylogenesis in 2010 corresponded to a negative standardized precipitation evapotranspiration index (SPEI) value and a continuous period without rainfall in early May. The main period of wood formation was in June and July, and drier conditions from May to July led to a smaller number of xylem cells. Dry conditions in July could cause early cessation of xylem differentiation. The final number of xylem cells was mainly determined by the average production rate rather than the duration of new cell production. Xylem growth showed a positive and significant response to precipitation, but not to temperature.Conclusions Precipitation in late spring and summer can play a critical role in the onset of xylogenesis and xylem cell production. The delay in the initiation of xylogenesis under extremely dry conditions seems to be a stress-avoidance strategy against hydraulic failure. These findings could thus demonstrate an evolutionary adaptation of Qilian juniper to the extremely dry conditions of the north-eastern Tibetan Plateau.  相似文献   

2.
The effect of global warming on alpine forests is complex. It is crucial, therefore, to investigate the effects of climate change on the radial growth of trees at different altitudes. The tree growth–climate relationship remains poorly understood at large spatial scales in the Tianshan Mountains, China. Schrenk spruce (P. schrenkiana) is a unique tree species to this area. In this study, we collected tree-ring width and maximum density data from nine plots along an altitudinal gradient. Results showed that altitude affected both tree-ring width and maximum density. At high altitudes, tree-ring width was positively correlated with temperature in February of the current year. Tree-ring width was also positively correlated with precipitation in July of the previous year, and January and July of the current year, and negatively correlated with the monthly diurnal temperature range (DTR). At low altitudes, tree-ring width was negatively correlated with temperature in the early growing season and the growing season. Tree-ring width was positively correlated with precipitation in June and September of the previous year, and May of the current year. The tree-ring maximum density was positively correlated with temperature and the DTR of the growing season, and negatively correlated with precipitation in winter and growing season. Moving correlation analysis showed that the positive response of tree-ring width to precipitation in the growing season was enhanced over time at high altitudes. In the low-altitude trees, the negative response of tree-ring width to temperature in the growing season was reduced, while the positive response to precipitation in the growing season was enhanced. The positive response relationship between tree-ring maximum density and the temperature in July weakened over time. At low altitudes, the negative response of tree-ring maximum density to winter precipitation was strengthened, and a stable negative response to July precipitation was observed. As the climate becomes wetter and warmer in the Tianshan Mountains, our results suggest that the radial growth of trees may benefit at elevations above 2400 m a.s.l. There was no obvious elevation limit for the increase in tree-ring maximum density. These findings provide a basis for sustainable forest management under global climate change.  相似文献   

3.
The effects of climate change on high‐latitude forest ecosystems are complex, making forecasts of future scenarios uncertain. The predicted lengthening of the growing season under warming conditions is expected to increase tree growth rates. However, there is evidence of an increasing sensitivity of the boreal forest to drought stress. To assess the influence of temperature and precipitation on the growth of black spruce (Picea mariana), we investigated long‐term series of wood anatomical traits on 20 trees from four sites along 600 km, the latitudinal range of the closed boreal forest in Quebec, Canada. We correlated the anatomical traits resolved at intraring level with daily temperature, vapor pressure deficit (VPD), and precipitation during the 1943–2010 period. Tree‐ring width, number of cells per ring and cell wall thickness were positively affected by spring and summer daily mean and maximum temperature at the northern sites. These results agree with the well‐known positive effect of high temperatures on tree ring formation at high latitudes. However, we captured, for the first time in this region, the latent impact of water availability on xylem traits. Indeed, in all the four sites, cell lumen area showed positive correlations with daily precipitation (mostly at low latitude), and/or negative correlations with daily mean and maximum temperature and VPD (mostly at high latitude). We inferred that drought, due to high temperatures, low precipitations, or both, negatively affects cell enlargement across the closed boreal forest, including the northernmost sites. The production of tracheids with narrower lumen, potentially more resistant to cavitation, could increase xylem hydraulic safety under a warmer and drier climate. However, this would result in lower xylem conductivity, with consequent long‐term hydraulic deterioration, growth decline, and possibly lead to tree dieback, as observed in other forest ecosystems at lower latitudes.  相似文献   

4.
During the growing season of the exceptionally dry and warm year 2003, we assessed seasonal changes in nitrogen, carbon and water balance related parameters of mature naturally grown European beech (Fagus sylvatica L.) along a North–South transect in Europe that included a beech forest stand in central Germany, two in southern Germany and one in southern France. Indicators for N balance assessed at all four sites were foliar N contents and total soluble non-protein nitrogen compounds (TSNN) in xylem sap, leaves and phloem exudates; C and water balance related parameters determined were foliar C contents, δ13C and δ18O signatures. Tissue sampling was performed in May, July and September. The N related parameters displayed seasonal courses with highest concentrations during N remobilization in May. Decreased total foliar N contents as well as higher C/N ratios in the stands in central Germany and southern France compared to the other study sites point to an impaired N nutrition status due to lower soil N contents and precipitation perception. TSNN concentrations in leaves and phloem exudates of all study sites were in ranges previously reported, but xylem sap content of amino compounds in July was lower at all study sites when compared to literature data (c. 1 μmol N mL−1). In September, TSNN concentrations increased again at the two study sites in southern Germany after a rain event, whereas they remained constant at sites in central Germany and southern France which hardly perceived precipitation during that time. Thus, TSNN concentrations in the xylem sap might be indicative for water balance related N supply in the beech trees. TSNN profiles at all study sites, however, did not indicate drought stress. Foliar δ13C, but not foliar C and δ18O followed a seasonal trend at all study sites with highest values in May. Differences in foliar δ13C and δ18O did not reflect climatic differences between the sites, and are attributed to differences in altitude, photosynthesis and δ18O signatures of the water sources. Except of low TSNN concentrations in the xylem sap, no physiological indications of drought stress were detected in the trees analysed. We suppose that the other parameters assessed might not have been sensitive to the drought events because of efficient regulation mechanisms that provide a suitable physiological setting even under conditions of prolonged water limitation. The uniform performance of the trees from southern France and central Germany under comparably dry climate conditions denotes that the metabolic plasticity of mature beech from the different sites studied might be similar.  相似文献   

5.
Trees can adjust xylem anatomical structure related with potential hydraulic functions to cope with climate variability. We therefore need a better understanding of how climate variability constrains wood anatomy and tree radial growth. Pinus tabuliformis dominates natural forests and plantations over the western Qinling Mountains, which is one of the ecologically vulnerable areas in China. Here, we investigated the response of P. tabuliformis tree-ring anatomical structure to climate variability by applying wood anatomy analysis, and evaluated the influences of anatomical traits on potential hydraulic functions and the climate significance of intra-annual density fluctuations (IADFs). We found that with the increasing temperature from spring to summer, the negative effect of temperature on the formation and enlargement of earlywood and transition-wood tracheids was gradually enhanced. However, spring precipitation not only had a direct and positive influence on the formation of earlywood, but also had a delaying impact on the transition-wood cell enlargement. Besides, the smaller earlywood tracheid size of P. tabuliformis could be a substantially characteristic reflecting spring drought. The contribution of lumen diameter on conduit wall reinforcement was dominated in earlywood, while the contribution of cell wall thickness was greater than that of lumen diameter in latewood. The different contributions of anatomical traits on conduit wall reinforcement would further affect the response of potential hydraulic function to climate. IADFs of P. tabuliformis could be a potential indicator to reflect the abnormal summer precipitation events in the western Qinling Mountains. IADFs with strong and weak intensity indicated years with high and low rates of change in mid-summer precipitation, respectively. Future warmer and drier climate in the western Qinling Mountains will likely result in the production of smaller tracheids to ensure hydraulic safety, which means the stronger drought resistant of P. tabuliformis in the future. In this study, we linked the xylem anatomy and potential hydraulics functions with intra-seasonal climate variability in the context of climate warming and drying, and proposed some xylem anatomical indices reflecting potential drought events.  相似文献   

6.
In cold climates, the expected global warming will lead to earlier cambial resumptions in spring, with a resultant lengthening of the growing season but unknown consequences on forest productivity. The phenological traits of cambium activity and xylem formation were analyzed at a short time scale along a thermal gradient represented by an alti‐latitudinal range from the 48th to 53rd parallels and covering the whole closed black‐spruce [Picea mariana (Mill.) BSP] forest in Quebec, Canada. A hypothesis was tested that warmer temperatures influence cambium phenology, allowing longer duration and higher intensity of growth, and resulting in proportionally increased xylem production. From April to October 2012, cell division in cambium and post‐cambial differentiation of xylem were observed on anatomical sections obtained from microcores collected weekly from the stem of fifty trees. The southern and warmer site was characterized by the highest radial growth, which corresponded to both the highest rates and longest durations of cell production. The differences in terms of xylem phenology and growth were marginal between the other sites. Xylem growth was positively correlated with rate and duration of cell production, with the latter explaining most variability in growth. Within the range analyzed, the relationship between temperature and most phenological phases of xylogenesis was linear. On the contrary, temperature was related with cell production according to an exponential pattern. Periods of xylogenesis of 14 days longer (+13.1%) corresponded to a massive increase in cell production (33 cells, +109%). This disproportionate change occurred at a May–September average temperature of ca. 14 °C and a snow‐free period of 210–235 days. At the lower boundary of the distribution of black spruce, small environmental changes allowing marginal lengthening of the period of cell division could potentially lead to disproportionate increases in xylem cell production, with substantial consequences for the productivity of this boreal species.  相似文献   

7.
A positive relationship between tree diversity and forest productivity is reported for many forested biomes of the world. However, whether tree diversity is able to increase the stability of forest growth to changes in climate is still an open question. We addressed this question using 36,378 permanent forest plots from National Forest Inventories of Spain and Québec (Eastern Canada), covering five of the most important climate types where forests grow on Earth and a large temperature and precipitation gradient. The plots were used to compute forest productivity (aboveground woody biomass increment) and functional diversity (based on the functional traits of species). Divergence from normal levels of precipitation (dryer or wetter than 30-year means) and temperature (warmer or colder) were computed for each plot from monthly temperature and precipitation means. Other expected drivers of forest growth were also included. Our results show a significant impact of climate divergences on forest productivity, but not always in the expected direction. Furthermore, although functional trait diversity had a general positive impact on forest productivity under normal conditions, this effect was not maintained in stands having suffered from temperature divergence (i.e., warmer conditions). Contrary to our expectations, we found that tree diversity did not result in more stable forest’s growth conditions during changes in climate. These results could have important implications for the future dynamics and management of mixed forests worldwide under climate change.  相似文献   

8.
本文依据内蒙古自治区四个考古地点的孢粉分析资料,指出呼伦贝尔盟东部地区,在11400±230年前,不仅湖沼棋布,而且生长着由松、榆、椴、胡桃等组成的繁茂的温带针叶—阔叶混交林。公元前1700年,昭乌达盟敖汗旗一带,分布着暖温带针叶—阔叶混交林,从花粉分析说明那时的人类已摆脱了单纯狩猎,开始种植作物、饲养动物。自晚更新世以来,内蒙古植被由混交林向草原迅速的发展。  相似文献   

9.
潘燕芳  阎顺  穆桂金  孔昭宸  倪健  杨振京 《生态学报》2011,31(23):6999-7006
对中国东天山天池自2001年7月至2006年7月连续5a收集的雪岭云杉大气花粉含量进行统计分析,结果表明:1)一年四季大气中都有雪岭云杉花粉,但花粉数量变化比较大,超过全年90%的大气花粉集中在5、6月份的花粉高峰期,之后花粉浓度逐渐下降,至翌年1月份浓度降至最低,2月开始花粉浓度有升高的趋势;2)5a平均花粉浓度是42.66粒/m3,最高年是2005年,花粉浓度可达99.54粒/m3,最低年2003年,仅为2.13粒/m3;3)雪岭云杉大气花粉高峰期出现在5月22至6月2日,高峰日出现在5月28至6月6日,结束日是在6月18至6月25日,平均持续时间为27 d.观测时段雪岭云杉大气花粉高峰期出现日、高峰日逐年提前,2006年出现日期比2002年提前了7d、高峰日提前9d,结束日期滞后,2006年比2002年滞后6d,花粉高峰期持续时间逐年延长,2006年比2002年延长了12d.分析显示,影响雪岭云杉大气花粉高峰期变化的主要因素是春季气温的升高;4)粗略估算每年新疆的雪岭云杉林带内由大气中降落到表土的花粉量达61 kg/hm2,新疆现有雪岭云杉52.84×104hm2,全年由大气降落到林带内表土的花粉多达3223 t,一部分降落到戈壁、荒漠以及沙漠等一些极端气候区的花粉为一些先锋种植物提供必要的营养物质,具有重要的生态意义.  相似文献   

10.
The growth phenology of Cyrilla racemiflora L., the dominant tree species of the montane rain forest, (subtropical lower montane rain forest, sensu Holdridge) of the Luquillo Mountains of Puerto Rico was studied intensively during 1989, and then semiannually through mid-1993 to determine the periodicity of changes in xylem structure. Four trees at 770 m were monitored for flowering, branch elongation, leaf litterfall, and xylem cell growth and differentiation in the lower stem, and these events were related to local seasonal patterns of rainfall and temperature. Hurricane Hugo defoliated study trees in September, 1989. Bud-break and branch elongation in March, 1989 were followed by earlywood xylem cell production in the lower stem in April and the onset of flowering in May. Leaf litterfall was greatest between April and June, coinciding with peak branch growth and new leaf formation. Latewood xylem was produced in December. The general phenological pattern was synchronized between trees and over study years. Vessel diameter and density were monitored along with thickness of earlywood and latewood and the former converted to vessel lumen area, a measure of xylem conductance capacity. Annual growth rings were formed with periods of earlywood and latewood production coinciding with traditional summer (rainy) and winter (dry) seasons, respectively, in the Luquillo Mountains. Hurricane defoliation was followed by heavy flowering in 1990, a year of reduced branch elongation and annual xylem ring width, and was associated with maximum vessel lumen area, as was flowering in 1989, prior to the hurricane. Hurricane Hugo provided a perturbation that, through its elicited stress response, allowed for the demonstration of the interplay between flowering, branching, structural growth of xylem, and xylem function.  相似文献   

11.
In the United States’ (US) Northern Rockies, synoptic pressure systems and atmospheric circulation drive interannual variation in seasonal temperature and precipitation. The radial growth of high-elevation trees in this semi-arid region captures this temperature and precipitation variability and provides long time series to contextualize instrumental-era variability in synoptic-scale climate patterns. Such variability in climate patterns can trigger extreme climate events, such as droughts, floods, and forest fires, which have a damaging impact on human and natural systems. We developed 11 tree-ring width (TRW) chronologies from multiple species and sites to investigate the seasonal climatic drivers of tree growth in the Bighorn Mountains, WY. A principal component analysis of the chronologies identified 54% of shared common variance (1894–2014). Tree growth (expressed by PC1) was driven by multiple seasonal climate variables: previous October and current July temperatures, as well as previous December and current April precipitation, had a positive influence on growth, whereas growth was limited by July precipitation. These seasonal growth-climate relationships corresponded to circulation patterns at higher atmospheric levels over the Bighorn Mountains. Tree growth was enhanced when the winter jet stream was in a northward position, which led to warmer winters, and when the spring jet stream was further south, which led to wetter springs. The second principal component, explaining 19% of the variance, clustered sites by elevation and was strongly related to summer temperature. We leverage this summer temperature signal in our TRW chronologies by combining it with an existing maximum latewood density (MXD) chronology in a nested approach. This allowed us to reconstruct Bighorn Mountains summer (June, July, and August) temperature (BMST) back to 1654, thus extending the instrumental temperature record by 250 years. Our BMST reconstruction explains 39–53% of the variance in regional summer temperature variability. The 1830s were the relatively coolest decade and the 1930s were the warmest decade over the reconstructed period (1654–1983 CE) – which excludes the most recent 3 decades. Our results contextualize recent drivers and trends of climate variability in the US Northern Rockies, which contributes to the information that managers of human and natural systems need in order to prepare for potential future variability.  相似文献   

12.
The physical and chemical variabilities as well as the distribution of diatoms of six boreal lakes in the Laurentian Mountains (southern Québec, Canada) were studied. The lakes are located along an altitudinal gradient and were sampled at a biweekly resolution from May through October, 2002. In general, we found later onset and weaker lake stratification under colder climates. Lake circulation and SiO2 are strongly correlated and together significantly explain the distribution of diatoms of the individual lakes. Diatoms that accumulated in the sediment traps were mostly composed of benthic species, suggesting resuspension. However, diatom flux and lake circulation were not significantly correlated, the diatom assemblages in the sediment traps were similar in two consecutive years, and species–environment relationships were comparable among lakes, which indicates that the effects of resuspension were minimal. In addition, we found that one lake was more productive due to forest logging. The forest in the catchment of Lake Maxi was entirely clear-cut shortly prior to our sampling. Mean total phosphorus, dissolved organic carbon, and chlorophyll a concentrations were significantly higher when compared to the other five study lakes. This study seeks to improve our understanding of how diatoms in boreal lakes respond to climate change and forest clear-cut.  相似文献   

13.
Climate affects malaria transmission through a complex network of causative pathways. We seek to evaluate the impact of hypothetical climate change scenarios on malaria transmission in the Sahel by using a novel mechanistic, high spatial- and temporal-resolution coupled hydrology and agent-based entomology model. The hydrology model component resolves individual precipitation events and individual breeding pools. The impact of future potential climate shifts on the representative Sahel village of Banizoumbou, Niger, is estimated by forcing the model of Banizoumbou environment with meteorological data from two locations along the north–south climatological gradient observed in the Sahel—both for warmer, drier scenarios from the north and cooler, wetter scenarios from the south. These shifts in climate represent hypothetical but historically realistic climate change scenarios. For Banizoumbou climatic conditions (latitude 13.54 N), a shift toward cooler, wetter conditions may dramatically increase mosquito abundance; however, our modeling results indicate that the increased malaria transmissibility is not simply proportional to the precipitation increase. The cooler, wetter conditions increase the length of the sporogonic cycle, dampening a large vectorial capacity increase otherwise brought about by increased mosquito survival and greater overall abundance. Furthermore, simulations varying rainfall event frequency demonstrate the importance of precipitation patterns, rather than simply average or time-integrated precipitation, as a controlling factor of these dynamics. Modeling results suggest that in addition to changes in temperature and total precipitation, changes in rainfall patterns are very important to predict changes in disease susceptibility resulting from climate shifts. The combined effect of these climate-shift–induced perturbations can be represented with the aid of a detailed mechanistic model.  相似文献   

14.
Three ring-width chronologies were developed from Qilian Juniper (Sabina przewalskii Kom.) at the upper treeline along a west-east gradient in the Anyemaqen Mountains.Most chronological statistics,except for mean sensitivity (MS),decreased from west to east.The first principal component (PC1) Ioadings indicated that stands in a similar climate condition were most important to the variability of radial growth.PC2 Ioadings decreased from west to east,suggesting the difference of tree-growth between eastern and western Anyemaqen Mountains.Correlations between standard chronologies and climatic factors revealed different climatic influences on radial growth along a west-east gradient in the study area.Temperature of warm season (July-August) was important to the radial growth at the upper treeline in the whole study area.Precipitation of current May was an important limiting factor of tree growth only in the western (drier) upper treeline,whereas precipitation of current September limited tree growth in the eastern (wetter) upper treeline.Response function analysis results showed that there were regional differences between tree growth and climatic factors in various sampling sites of the whole study area.Temperature and precipitation were the important factors influencing tree growth in western (drier) upper treeline.However,tree growth was greatly limited by temperature at the upper treeline in the middle area,and was more limited by precipitation than temperature in the eastern (wetter) upper treeline.  相似文献   

15.
为了解我国东南部亚热带森林不同海拔树木生长对气候响应的差异,建立了福建省武夷山脉东麓2个样点的4个马尾松(Pinus massoniana)轮宽年表,对树木径向生长与气候因子进行了bootstrapped相关分析和线性混合模型(LME)拟合。结果表明,在高海拔地区马尾松径向生长对气候因子年际波动敏感性较强,主要表现为与生长季前冬季光温条件以及生长季内7月降水的正相关,生长-气候关系在不同样点间表现出较强的一致性。线性混合模型可以较好地拟合高海拔树木生长变化,当使用前1年12月平均日最高温、当年1月日照时长和当年7月降雨量3个气候变量进行拟合时,模型解释量达到0.5,其中前1年12月最高温和当年1月日照时数在模型中起到主导作用,累积相对贡献率约占80%,说明生长季前冬季的光热条件是限制高海拔马尾松径向生长最主要的气候因子。因此,我国亚热带地区高海拔的树木径向生长可能对未来气候变化有更强的敏感性,相关森林管理政策的制定需要将此纳入考虑;同时我国亚热带地区高海拔森林中的树木有被用于树轮气候重建的潜力。  相似文献   

16.
Because climate change impacts different ecosystems and geographies in myriad ways, it is important to study how forests in different regions respond to changing climatic conditions. In northwestern China, the transition in recent decades from a warm and dry climate to a warm and wet climate is well documented. However, the response of forests to this transition is poorly understood. To better understand these changes, we collected tree-ring samples of Larix sibirica from 12 plots on the southern slope of the central Altai Mountains and established site-specific tree-ring width residual chronologies. Through hierarchical cluster analysis, we could divide the sites into two levels: high-elevation level (HEL, >1900 m) and low-elevation level (LEL, <1900 m). We then used the first principal component of each level as the regional residual chronology and performed a moving correlation analysis with climate factors (monthly temperature, monthly precipitation, scPDSI) over the period 1957–2016. We found that changes in HEL trees are mainly related to temperature: from 1957–1967, growth was positively correlated with the temperature in July of the previous year. From the 1960s to present, growth was negatively correlated with the temperature in April of current year. Since the 1980s, however, temperature in current year January has been the most important factor limiting growth. The relationship between LEL tree growth and climate has been stable throughout the period of observation, and is significantly and positively correlated with moisture. We predict that the radial growth of HEL trees will be inhibited by continued warming, whereas LEL trees will benefit from improved moisture conditions in the future. Our findings help to provide a more comprehensive understanding of the effects of climate change on forest ecosystems, and provide a scientific reference for forest management and carbon sequestration and emission mitigation policies.  相似文献   

17.
Aim In this study, we examine patterns of local and regional ant species richness along three elevational gradients in an arid ecosystem. In addition, we test the hypothesis that changes in ant species richness with elevation are related to elevation‐dependent changes in climate and available area. Location Spring Mountains, Nevada, U.S.A. Methods We used pitfall traps placed at each 100‐m elevational band in three canyons in the Spring Mountains. We compiled climate data from 68 nearby weather stations. We used multiple regression analysis to examine the effects of annual precipitation, average July precipitation, and maximum and minimum July temperature on ant species richness at each elevational band. Results We found that patterns of local ant species richness differed among the three gradients we sampled. Ant species richness increased linearly with elevation along two transects and peaked at mid‐elevation along a third transect. This suggests that patterns of species richness based on data from single transects may not generalize to larger spatial scales. Cluster analysis of community similarity revealed a high‐elevation species assemblage largely distinct from that of lower elevations. Major changes in the identity of ant species present along elevational gradients tended to coincide with changes in the dominant vegetation. Regional species richness, defined here as the total number of unique species within an elevational band in all three gradients combined, tended to increase with increasing elevation. Available area decreased with increasing elevation. Area was therefore correlated negatively with ant species richness and did not explain elevational patterns of ant species richness in the Spring Mountains. Mean July maximum and minimum temperature, July precipitation and annual precipitation combined to explain 80% of the variation in ant species richness. Main conclusions Our results suggest that in arid ecosystems, species richness for some taxa may be highest at high elevations, where lower temperatures and higher precipitation may support higher levels of primary production and cause lower levels of physiological stress.  相似文献   

18.
Aim Many high‐latitude floras contain more calcicole than calcifuge vascular plant species. The species pool hypothesis explains this pattern through an historical abundance of high‐pH soils in the Pleistocene and an associated opportunity for the evolutionary accumulation of calcicoles. To obtain insights into the history of calcicole/calcifuge patterns, we studied species richness–pH–climate relationships across a climatic gradient, which included cool and dry landscapes resembling the Pleistocene environments of northern Eurasia. Location Western Sayan Mountains, southern Siberia. Methods Vegetation and environmental variables were sampled at steppe, forest and tundra sites varying in climate and soil pH, which ranged from 3.7 to 8.6. Species richness was related to pH and other variables using linear models and regression trees. Results Species richness is higher in areas with warmer winters and at medium altitudes that are warmer than the mountains and wetter than the lowlands. In treeless vegetation, the species richness–pH relationship is unimodal. In tundra vegetation, which occurs on low‐pH soils, richness increases with pH, but it decreases in steppes, which have high‐pH soils. In forests, where soils are more acidic than in the open landscape, the species richness–pH relationship is monotonic positive. Most species occur on soils with a pH of 6–7. Main conclusions Soil pH in continental southern Siberia is strongly negatively correlated with precipitation, and species richness is determined by the opposite effects of these two variables. Species richness increases with pH until the soil is very dry. In dry soils, pH is high but species richness decreases due to drought stress. Thus, the species richness–pH relationship is unimodal in treeless vegetation. Trees do not grow on the driest soils, which results in a positive species richness–pH relationship in forests. If modern species richness resulted mainly from the species pool effects, it would suggest that historically common habitats had moderate precipitation and slightly acidic to neutral soils.  相似文献   

19.
The larch forests at the southern limit of the Siberian boreal forest in Central Asia have repeatedly experienced strong recent growth declines attributed to decreasing summer precipitation in the course of climate warming. Here, we present evidence from the southernmost Larix sibirica forests in eastern Kazakhstan that these declines are primarily caused by a decrease in effective moisture due to increasing summer temperatures, despite constant annual, and summer precipitation. Tree-ring chronologies (>800 trees) showed a reduction by 50–80% in mean ring width and an increase in the frequency of missing rings since the 1970s. Climate-response analysis revealed a stronger (negative) effect of summer temperature (in particular of the previous year’s June and July temperature) on radial growth than summer precipitation (positive effect). It is assumed that a rise in the atmospheric vapor pressure deficit, which typically increases with temperature, is negatively affecting tree water status and radial growth, either directly or indirectly through reduced soil moisture. Larch rejuvenation ceased in the 1950s, which is partly explained by increasing topsoil desiccation in a warmer climate and a high drought susceptibility of larch germination, as was demonstrated by a germination experiment with variable soil moisture levels. The lack of regeneration and the reduced annual stem increment suggest that sustainable forest management aiming at timber harvesting is no longer feasible in these southern boreal forests. Progressive climate warming is likely to cause a future northward shift of the southern limit of the boreal forest.  相似文献   

20.
We assessed if the relative importance of biotic and abiotic factors for plant community composition differs along environmental gradients and between functional groups, and asked which implications this may have in a warmer and wetter future. The study location is a unique grid of sites spanning regional-scale temperature and precipitation gradients in boreal and alpine grasslands in southern Norway. Within each site we sampled vegetation and associated biotic and abiotic factors, and combined broad- and fine-scale ordination analyses to assess the relative explanatory power of these factors for species composition. Although the community responses to biotic and abiotic factors did not consistently change as predicted along the bioclimatic gradients, abiotic variables tended to explain a larger proportion of the variation in species composition towards colder sites, whereas biotic variables explained more towards warmer sites, supporting the stress gradient hypothesis. Significant interactions with precipitation suggest that biotic variables explained more towards wetter climates in the sub alpine and boreal sites, but more towards drier climates in the colder alpine. Thus, we predict that biotic interactions may become more important in alpine and boreal grasslands in a warmer future, although more winter precipitation may counteract this trend in oceanic alpine climates. Our results show that both local and regional scales analyses are needed to disentangle the local vegetation-environment relationships and their regional-scale drivers, and biotic interactions and precipitation must be included when predicting future species assemblages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号