共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhenzhu Xu Hideyuki Shimizu Yasumi Yagasaki Shoko Ito Yuanrun Zheng Guangsheng Zhou 《Journal of Plant Growth Regulation》2013,32(4):692-707
Adverse climate change attributed to elevated atmospheric carbon dioxide concentration (CO2) and increased temperature components of global warming has been a central issue affecting economic and social development. Climate change, particularly global warming, imposes a severe impact on the terrestrial ecosystem. Elevated CO2, drought, and high temperature have been extensively documented individually; however, relatively little is known about how plants respond to the interaction of these factors. To summarize current knowledge on the response of plants to global change factors, we focus on the interactive effects of CO2 enrichment, warming, and drought on plant growth, carbon allocation, and photosynthesis. Stimulation due to elevated CO2 might be suppressed under other negative climatic/environmental stresses such as drought, high temperature, and their combination. However, elevated CO2 could alleviate deleterious effects of moderate drought via reducing stomatal conductance, altering leaf surface, and regulating gene expression. High CO2 levels and rising temperatures may result in opposite responses in plant water use efficiency. Stimulation of plant growth due to elevated CO2 for C3 species occurs regardless of water conditions, but only under a water deficit for C4 species. The positive effect of elevated CO2 on C4 species is derived mainly from the improved water status. Plant adaptive or maladaptive responses to multivariate environments are interactive; thus, researchers need to explore the ecological underpinnings involved in such responses to the multiple factors involved in climate change. 相似文献
2.
Yolima Carrillo Feike A. Dijkstra Elise Pendall Jack A. Morgan Dana M. Blumenthal 《Ecosystems》2012,15(5):761-774
Long-term responses of terrestrial ecosystems to the combined effects of warming and elevated CO2 (eCO2) will likely be regulated by N availability. The stock of soil N determines availability for organisms, but also influences loss to the atmosphere or groundwater. eCO2 and warming can elicit changes in soil N via direct effects on microbial and plant activity, or indirectly, via soil moisture. Detangling the interplay of direct- and moisture-mediated impacts on soil N and the role of organisms in controlling soil N will improve predictions of ecosystem-level responses. We followed individual soil N pools over two growing seasons in a semiarid temperate grassland, at the Prairie Heating and CO2 Enrichment experiment. We evaluated relationships of N pools with environmental factors and explored the role of plants by assessing plant biomass, plant N, and plant inputs to soil. We also assessed N forms in plots with and without vegetation to remove plant-mediated effects. Our study demonstrated that the effects of warming and eCO2 are highly dependent on individual N form and on year. In this water-constrained grassland, eCO2, warming and their combination appear to impact soil N pools through a complex combination of direct- and moisture-mediated effects. eCO2 decreased NO3 ? but had neutral to positive effects on NH4 + and dissolved organic N (DON), particularly in a wet year. Warming increased NO3 ? availability due to a combination of indirect drying and direct temperature-driven effects. Warming also increased DON only in vegetated plots, suggesting plant mediation. Our results suggest that impacts of combined eCO2 and warming are not always equivalent for plant and soil pools; although warming can help offset the decrease in NO3 ? availability for plants under eCO2, the NO3 ? pool in soil is mainly driven by the negative effects of eCO2. 相似文献
3.
Dorsaf Kerfahi Jason M. Hall-Spencer Binu M. Tripathi Marco Milazzo Junghoon Lee Jonathan M. Adams 《Microbial ecology》2014,67(4):819-828
The effects of increasing atmospheric CO2 on ocean ecosystems are a major environmental concern, as rapid shoaling of the carbonate saturation horizon is exposing vast areas of marine sediments to corrosive waters worldwide. Natural CO2 gradients off Vulcano, Italy, have revealed profound ecosystem changes along rocky shore habitats as carbonate saturation levels decrease, but no investigations have yet been made of the sedimentary habitat. Here, we sampled the upper 2 cm of volcanic sand in three zones, ambient (median pCO2 419 μatm, minimum Ωarag 3.77), moderately CO2-enriched (median pCO2 592 μatm, minimum Ωarag 2.96), and highly CO2-enriched (median pCO2 1611 μatm, minimum Ωarag 0.35). We tested the hypothesis that increasing levels of seawater pCO2 would cause significant shifts in sediment bacterial community composition, as shown recently in epilithic biofilms at the study site. In this study, 454 pyrosequencing of the V1 to V3 region of the 16S rRNA gene revealed a shift in community composition with increasing pCO2. The relative abundances of most of the dominant genera were unaffected by the pCO2 gradient, although there were significant differences for some 5 % of the genera present (viz. Georgenia, Lutibacter, Photobacterium, Acinetobacter, and Paenibacillus), and Shannon Diversity was greatest in sediments subject to long-term acidification (>100 years). Overall, this supports the view that globally increased ocean pCO2 will be associated with changes in sediment bacterial community composition but that most of these organisms are resilient. However, further work is required to assess whether these results apply to other types of coastal sediments and whether the changes in relative abundance of bacterial taxa that we observed can significantly alter the biogeochemical functions of marine sediments. 相似文献
4.
Janet M. Bandeff Kurt S. Pregitzer Wendy M. Loya William E. Holmes Donald R. Zak 《Plant and Soil》2006,282(1-2):251-259
Elevated atmospheric CO2 and O3 have the potential to affect the primary productivity of the forest overstory, but little attention has been given to potential
responses of understory vegetation. Our objective was to document the effects of elevated atmospheric CO2 and O3 on understory species composition and biomass and to quantify nitrogen (N) acquisition by the understory vegetation. The
research took place at the aspen free-air CO2 and O3 enrichment (FACE) experiment, which has four treatments (control, elevated CO2, elevated O3, and elevated CO2+O3) and three tree communities: aspen, aspen/birch, and aspen/maple. In June 2003, each FACE ring was uniformly labeled with
15N applied as NH4Cl. Understory biomass was harvested in June of 2004 for productivity, N, and 15N measurements, and photosynthetically active
radiation (PAR) was measured below the canopy. The understory was divided into five species groups, which dominate in this
young aggrading forest: Taraxacum officinale (dandelion), Solidago sp. (goldenrod), Trifolium repens and T. pretense (clover), various species from the Poaceae family (grass), and composited minor components (CMC). Understory species composition, total and individual species biomass,
N content, and 15N recovery showed overstory community effects, but the direct effects of treatments was masked by the high
variability of these data. Total understory biomass increased with increasing light, and thus was greatest under the open
canopy of the aspen/maple community, as well as the more open canopy of the elevated O3 treatments. Species were different from one another in terms of 15N recovery, with virtually no 15N recovered in clover and
the greatest amount recovered in dandelion. Thus, understory species composition and biomass appear to be driven by the structure
of the overstory community, which is determined by the tree species present and their response to the treatments. However,
N acquisition by the understory does not appear to be affected by either the overstory community or the treatments at this
point. 相似文献
5.
Dana M. Blumenthal Kevin E. Mueller Julie A. Kray Daniel R. LeCain Elise Pendall Sara Duke T. Jane Zelikova Feike A. Dijkstra David G. Williams Jack A. Morgan 《Ecosystems》2018,21(8):1533-1544
Global changes that alter soil water availability may have profound effects on semiarid ecosystems. Although both elevated CO2 (eCO2) and warming can alter water availability, often in opposite ways, few studies have measured their combined influence on the amount, timing, and temporal variability of soil water. Here, we ask how free air CO2 enrichment (to 600 ppmv) and infrared warming (+?1.5 °C day, +?3 °C night) effects on soil water vary within years and across wet-dry periods in North American mixed-grass prairie. We found that eCO2 and warming interacted to influence soil water and that those interactions varied by season. In the spring, negative effects of warming on soil water largely offset positive effects of eCO2. As the growing season progressed, however, warming reduced soil water primarily (summer) or only (autumn) in plots treated with eCO2. These interactions constrained the combined effect of eCO2 and warming on soil water, which ranged from neutral in spring to positive in autumn. Within seasons, eCO2 increased soil water under drier conditions, and warming decreased soil water under wetter conditions. By increasing soil water under dry conditions, eCO2 also reduced temporal variability in soil water. These temporal patterns explain previously observed plant responses, including reduced leaf area with warming in summer, and delayed senescence with eCO2 plus warming in autumn. They also suggest that eCO2 and warming may favor plant species that grow in autumn, including winter annuals and C3 graminoids, and species able to remain active under the dry conditions moderated by eCO2. 相似文献
6.
7.
Climate change affects the abundance, distribution and activity of natural enemies that are important for suppressing herbivore crop pests. Moreover, higher mean temperatures and increased frequency of climatic extremes are expected to induce different responses across trophic levels, potentially disrupting predator-prey interactions. Using field observations, we examined the response of an aphid host-parasitoid system to variation in temperature. Temperature was positively associated with attack rates by parasitoids, but also with a non-significant trend towards increased attack rates by higher-level hyperparasitoids. Elevated hyperparasitism could partly offset any benefit of climate warming to parasitoids, and would suggest that higher trophic levels may hamper predictions of predator-prey interactions. Additionally, the mechanisms affecting host-parasitoid dynamics were examined using controlled laboratory experiments that simulated both temperature increase and drought. Parasitoid fitness and longevity responded differently when exposed to each climatic variable in isolation, compared to the interaction of both variables at once. Although temperature increase or drought tended to positively affect the ability of parasitoids to control aphid populations, these effects were significantly reversed when the drivers were expressed in concert. Additionally, separate warming and drought treatments reduced parasitoid longevity, and although temperature increased parasitoid emergence success and drought increased offspring production, combined temperature and drought produced the lowest parasitoid emergence. The non-additive effects of different climate drivers, combined with differing responses across trophic levels, suggest that predicting future pest outbreaks will be more challenging than previously imagined. 相似文献
8.
The effects of CO2 elevation on the dynamics of fine root (FR) mass and ectomycorrhizal (EM) mass and colonization were studied in situ in a Florida scrub oak system over four years of postfire regeneration. Soil cores were taken at five dates and sorted to assess the standing crop of ectomycorrhizal and fine roots. We used ingrowth bags to estimate the effects of elevated CO2 on production of EM roots and fine roots. Elevated CO2 tended to increase EM colonization frequency but did not affect EM mass nor FR mass in soil cores (standing mass). However, elevated CO2 strongly increased EM mass and FR mass in ingrowth bags (production), but it did not affect the EM colonization frequency therein. An increase in belowground production with unchanged biomass indicates that elevated CO2 may stimulate root turnover. The CO2-stimulated increase of belowground production was initially larger than that of aboveground production. The oaks may allocate a larger portion of resources to root/mycorrhizal production in this system in elevated rather than ambient CO2. 相似文献
9.
The effects of elevated CO2 (ambient, +175, and +350 μl l−1) and nitrogen fertilization (0, 100, and 200 kg N ha−1 yr−1 as ammonium sulfate) on C and N accumulations in biomass and soils planted with ponderosa pine (Pinus ponderosa Laws) over a 6-year study period are reported. Both nitrogen fertilization and elevated CO2 caused increases in C and N contents of vegetation over the study period. The pattern of responses varied over time. Responses
to CO2 decreased in the +175 μl l−1 and increased in the +350 μl l−1 after the first year, whereas responses to N decreased after the first year and became non-significant by year six. Foliar
N concentrations were lower and tree C:N ratios were higher with elevated CO2 in the early years, but this was offset by the increases in biomass, resulting in substantial increases in N uptake with
elevated CO2. Nitrogen budget estimates showed that the major source of the N for unfertilized trees, with or without elevated CO2, was likely the soil organic N pool. There were no effects of elevated CO2 on soil C, but a significant decrease in soil N and an increase in soil C:N ratio in year six. Nitrogen fertilization had
no significant effect on tree C:N ratios, foliar N concentrations, soil C content, soil N content, or soil C:N ratios. There
were no significant interactions between CO2 and N treatments, indicating that N fertilization had no effect on responses to CO2 and that CO2 treatments had no effect on responses to N fertilization. These results illustrate the importance of long-term studies involving
more than one level of treatment to assess the effects of elevated CO2. 相似文献
10.
11.
D.C. Uprety N. Dwivedi V. Jain R. Mohan D.C. Saxena M. Jolly G. Paswan 《Biologia Plantarum》2003,46(1):35-39
The effect of CO2 concentration elevated to 575 – 620 µmol mol–1 on growth, tillering, grain yield, net photosynthetic rate, dark respiration rate, stomatal conductance, sugar content and protein profile of two rice (Oryza sativa L.) cultivars Pusa Basmati-1 and Pusa-677 at flowering stage was studied using open top chambers. The cultivar Pusa Basmati-1 responded more markedly for most of the growth and physiological parameters compared to Pusa-677. The increase in grain yield in Pusa Basmati-1 attributed largely to increased grain number. The increased net photosynthetic rate and greater accumulation of sugar contributed significantly to the accelerated development of leaves and tillers in both the cultivars. The reduction in the low molecular mass proteins including Rubisco and increase in high molecular mass photosystem 2 proteins was observed in both the cultivars. Additional sugars may possibly help in balancing the profile of photosynthetic proteins and sustain greater growth and productivity in rice cultivars. 相似文献
12.
Previous reports suggest that fungivorous nematodes are the only trophic group in forest soils affected by elevated CO2. However, there can be ambiguity within trophic groups, and we examined data at a genus level to determine whether the conclusion remains similar. Nematodes were extracted from roots and soil of loblolly pine (Pinus taeda) and sweet gum (Liquidambar styraciflua) forests fumigated with either ambient air or CO2-enriched air. Root length and nematode biomass were estimated using video image analysis. Most common genera included Acrobeloides, Aphelenchoides, Cephalobus, Ditylenchus, Ecphyadorphora, Filenchus, Plectus, Prismatolaimus, and Tylencholaimus. Maturity Index values and diversity increased with elevated CO2 in loblolly pine but decreased with elevated CO2 in sweet gum forests. Elevated CO2 treatment affected the occurrence of more nematode genera in sweet gum than loblolly pine forests. Numbers were similar but size of Xiphinema decreased in elevated CO2. Abundance, but not biomass, of Aphelenchoides was reduced by elevated CO2. Treatment effects were apparent at the genus levels that were masked at the trophic level. For example, bacterivores were unaffected by elevated CO2, but abundance of Cephalobus was affected by CO2 treatment in both forests. 相似文献
13.
Aim
Effects of elevated CO2 on N relations are well studied, but effects on other nutrients, especially micronutrients, are not. We investigated effects of elevated CO2 on response to variation in boron (B) availability in three unrelated species: seed geranium (Pelargonium x hortorum), barley (Hordeum vulgare), and water fern (Azolla caroliniana).Methods
Plants were grown at two levels of CO2 (370, 700?ppm) and low, medium, and high B. Treatment effects were measured on biomass, net photosynthesis (Pn) and related variables, tissue nutrient concentrations, and B transporter protein BOR1.Results
In geranium, there were interactive effects (P?<?0.05) of B and CO2 on leaf, stem, and total plant mass, root:shoot ratio, leaf [B], B uptake rate, root [Zn], and Pn. Elevated CO2 stimulated growth at 45?μM B, but decreased it at 450?μM B and did not affect it at 4.5?μM B. Pn was stimulated by elevated CO2 only at 45?μM B and chlorophyll was enhanced only at 450?μM B. Soluble sugars increased with high CO2 only at 4.5 and 45?μM B. High CO2 decreased leaf [B] and B uptake rate, especially at 450?μM B. Though CO2 and B individually affected the concentration of several other nutrients, B x CO2 interactions were evident only for Zn in roots, wherein [Zn] decreased under elevated CO2. Interactive effects of B and CO2 on growth were confirmed in (1) barley grown at 0, 30, or 1,000?μM B, wherein growth at high CO2 was stimulated more at 30?μM B, and (2) Azolla grown at 0, 10, and 1,000?μM B, wherein growth at high CO2 was stimulated at 0 and 10?μM B.Conclusion
Thus, low and high B both may limit growth stimulation under elevated vs. current [CO2], and B deficiency and toxicity, already common, may increase in the future. 相似文献14.
Juliette M. G. Bloor Patrick Pichon Robert Falcimagne Paul Leadley Jean-François Soussana 《Ecosystems》2010,13(6):888-900
Future climate scenarios predict simultaneous changes in environmental conditions, but the impacts of multiple climate change
drivers on ecosystem structure and function remain unclear. We used a novel experimental approach to examine the responses
of an upland grassland ecosystem to the 2080 climate scenario predicted for the study area (3.5°C temperature increase, 20%
reduction in summer precipitation, atmospheric CO2 levels of 600 ppm) over three growing seasons. We also assessed whether patterns of grassland response to a combination of
climate change treatments could be forecast by ecosystem responses to single climate change drivers. Effects of climate change
on aboveground production showed considerable seasonal and interannual variation; April biomass increased in response to both
warming and the simultaneous application of warming, summer drought, and CO2 enrichment, whereas October biomass responses were either non-significant or negative depending on the year. Negative impacts
of summer drought on production were only observed in combination with a below-average rainfall regime, and showed lagged
effects on spring biomass. Elevated CO2 had no significant effect on aboveground biomass during this study. Both warming and the 2080 climate change scenario were
associated with a significant advance in flowering time for the dominant grass species studied. However, flowering phenology
showed no significant response to either summer drought or elevated CO2. Species diversity and equitability showed no response to climate change treatments throughout this study. Overall, our data
suggest that single-factor warming experiments may provide valuable information for projections of future ecosystem changes
in cool temperate grasslands. 相似文献
15.
植物对大气CO2浓度升高的光合适应机理 总被引:9,自引:2,他引:9
光合作用对大气中CO2浓度升高适应的可能原因主要表现在以下几个方面:由于CO2浓度升高,碳水化合物过量积累,光合电子传递链中质体醌与过氧化氢(H2O2)的氧化还原信号对光合作用发生反馈抑制;核酮糖1,5-二磷酸羧化/加氧酶(Rubisco)的含量及其活性下降;气孔状态发生变化.此外,植物体内C/N平衡、生长调节物质和己糖激酶对光合基因表达水平的调控等多个方面会对光合适应产生影响. 相似文献
16.
光合作用对大气中CO2浓度升高适应的可能原因主要表现在以下几个方面: 由于CO2浓度升高,碳水化合物过量积累, 光合电子传递链中质体醌与过氧化氢(H2O2)的氧化还原信号对光合作用发生反馈抑制; 核酮糖1,5-二磷酸羧化/加氧酶(Rubisco)的含量及其活性下降; 气孔状态发生变化。此外, 植物体内C/N平衡、生长调节物质和己糖激酶对光合基因表达水平的调控等多个方面会对光合适应产生影响。 相似文献
17.
18.
19.
Climate change has profound influences on plant community composition and ecosystem functions. However, its effects on plant community composition and biomass production are not well understood. A four-year field experiment was conducted to examine the effects of warming, nitrogen (N) addition, and their interactions on plant community composition and biomass production in a temperate meadow ecosystem in northeast China. Experimental warming had no significant effect on plant species richness, evenness, and diversity, while N addition highly reduced the species richness and diversity. Warming tended to reduce the importance value of graminoid species but increased the value of forbs, while N addition had the opposite effect. Warming tended to increase the belowground biomass, but had an opposite tendency to decrease the aboveground biomass. The influences of warming on aboveground production were dependent upon precipitation. Experimental warming had little effect on aboveground biomass in the years with higher precipitation, but significantly suppressed aboveground biomass in dry years. Our results suggest that warming had indirect effects on plant production via its effect on the water availability. Nitrogen addition significantly increased above- and below-ground production, suggesting that N is one of the most important limiting factors determining plant productivity in the studied meadow steppe. Significant interactive effects of warming plus N addition on belowground biomass were also detected. Our observations revealed that environmental changes (warming and N deposition) play significant roles in regulating plant community composition and biomass production in temperate meadow steppe ecosystem in northeast China. 相似文献