首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pyomelanin is a brown/black extracellular pigment with antioxidant and iron acquisition properties that is produced by a number of different bacteria. Production of pyomelanin in Pseudomonas aeruginosa contributes to increased resistance to oxidative stress and persistence in chronic infections. We demonstrate that pyomelanin production can be inhibited by 2-[2-nitro-4-(trifluoromethyl) benzoyl]-1,3-cyclohexanedione (NTBC). This treatment increases sensitivity of pyomelanogenic P. aeruginosa strains to oxidative stress, without altering the growth rate or resistance to aminoglycosides. As such, NTBC has potential to function as an anti-virulence factor in treating pyomelanogenic bacterial infections.  相似文献   

2.
Oxidative stress, which is the result of an imbalance between production and detoxification of reactive oxygen species, is a major contributor to chronic human disorders, including cardiovascular and neurodegenerative diseases, diabetes, aging, and cancer. Therefore, it is important to study oxidative stress not only in cell systems but also using whole organisms. C. elegans is an attractive model organism to study the genetics of oxidative stress signal transduction pathways, which are highly evolutionarily conserved.Here, we provide a protocol to measure oxidative stress resistance in C. elegans in liquid. Briefly, ROS-inducing reagents such as paraquat (PQ) and H2O2 are dissolved in M9 buffer, and solutions are aliquoted in the wells of a 96 well microtiter plate. Synchronized L4/young adult C. elegans animals are transferred to the wells (5-8 animals/well) and survival is measured every hour until most worms are dead. When performing an oxidative stress resistance assay using a low concentration of stressors in plates, aging might influence the behavior of animals upon oxidative stress, which could lead to an incorrect interpretation of the data. However, in the assay described herein, this problem is unlikely to occur since only L4/young adult animals are being used. Moreover, this protocol is inexpensive and results are obtained in one day, which renders this technique attractive for genetic screens. Overall, this will help to understand oxidative stress signal transduction pathways, which could be translated into better characterization of oxidative stress-associated human disorders.  相似文献   

3.
Background and Aims Reactive oxygen species (ROS), especially hydrogen peroxide, play a critical role in the regulation of plant development and in the induction of plant defence responses during stress adaptation, as well as in plant cell death. The antioxidant system is responsible for controlling ROS levels in these processes but redox homeostasis is also a key factor in plant cell metabolism under normal and stress situations. Thioredoxins (Trxs) are ubiquitous small proteins found in different cell compartments, including mitochondria and nuclei (Trxo1), and are involved in the regulation of target proteins through reduction of disulphide bonds, although their role under oxidative stress has been less well studied. This study describes over-expression of a Trxo1 for the first time, using a cell-culture model subjected to an oxidative treatment provoked by H2O2.Methods Control and over-expressing PsTrxo1 tobacco (Nicotiana tabacum) BY-2 cells were treated with 35 mm H2O2 and the effects were analysed by studying the growth dynamics of the cultures together with oxidative stress parameters, as well as several components of the antioxidant systems involved in the metabolism of H2O2. Analysis of different hallmarks of programmed cell death was also carried out.Key Results Over-expression of PsTrxo1 caused significant differences in the response of TBY-2 cells to high concentrations of H2O2, namely higher and maintained viability in over-expressing cells, whilst the control line presented a severe decrease in viability and marked indications of oxidative stress, with generalized cell death after 3 d of treatment. In over-expressing cells, an increase in catalase activity, decreases in H2O2 and nitric oxide contents and maintenance of the glutathione redox state were observed.Conclusions A decreased content of endogenous H2O2 may be responsible in part for the delayed cell death found in over-expressing cells, in which changes in oxidative parameters and antioxidants were less extended after the oxidative treatment. It is concluded that PsTrxo1 transformation protects TBY-2 cells from exogenous H2O2, thus increasing their viability via a process in which not only antioxidants but also Trxo1 seem to be involved.  相似文献   

4.
In order to study the behavior and resistance of bacteria under extreme conditions, physiological changes associated with oxidative stress were monitored using flow cytometry. The study was conducted to assess the maintenance of membrane integrity and potential as well as the esterase activity, the intracellular pH and the production of superoxide anions in four bacterial strains (Ralstonia metallidurans, Escherichia coli, Shewanella oneidensis and Deinococcus radiodurans). The strains were chosen for their potential use in bioremediation. Suspensions of R. metallidurans, E. coli, S. oneidensis and D. radiodurans were submitted to 1 h of oxidative stress (H2O2 at various concentrations from 0 to 880 mM). Cell membrane permeability (propidium iodide) and potential (rhodamine-123,3,3’-dihexyloxacarbocyanine iodide), intracellular esterase activity (fluorescein diacetate), intracellular-reactive oxygen species concentration (hydroethidine) and intracellular pH (carboxy-fluorescein diacetate succinimidyl ester 5-(6)) were monitored to evaluate the physiological state and the overall fitness of individual bacterial cells under oxidative stress. The four bacterial strains exhibited varying sensitivities towards H2O2. However, for all the bacterial strains, some physiological damage could already be observed from 13.25 mM H2O2 onwards, in particular with regard to their membrane permeability. Depending on the bacterial strains, moderate to high physiological damage could be observed between 13.25 mM and 220 mM H2O2. The membrane potential, esterase activity, intracellular pH and production of superoxide anion production were in all four strains considerably modified at high H2O2 concentrations. In conclusion, we show that a range of significant physiological alterations occur when bacteria are challenged with H2O2 and fluorescent staining methods coupled with flow cytometry are used for monitoring the changes induced not only by oxidative stress, but also by other stresses like temperature, radiation, pressure, pH, etc. The text was submitted by the authors in English.  相似文献   

5.
《Luminescence》2003,18(6):334-340
Oxidative stress induced by ciprofloxacin and pyoverdin, a leukotoxic pigment, was studied by comparing their effect in bacteria and leukocytes. Chemiluminescence (CL) assays with lucigenin or luminol were adapted to measure the stimuli of superoxide anion (O2?) and other reactive species of oxygen (ROS) in bacteria. Ciprofloxacin principally induced the production of O2? in the three species studied: Staphylococcus aureus, Enterococcus faecalis and Escherichia coli. Lucigenin CL assay showed high oxidative stress in S. aureus due to its low superoxide dismutase (SOD) activity, whereas E. coli exhibited important SOD activity, responsible for little production of O2? in absence or presence of ciprofloxacin. Reduction of nitroblue of tetrazolium (NBT) was applied. This assay indicated that there was higher oxidative stress in S. aureus and E. faecalis than in E. coli. The comparison of oxidative stress generated in bacteria and leukocytes was used to check the selective toxicity of ciprofloxacin in comparison with pyoverdin. Ciprofloxacin did not generate significant stimuli of O2? in neutrophils, while pyoverdin duplicated the production of O2?. CL and NBT were useful to study the leukotoxicity of ciprofloxacin. Oxidative stress caused by the antibiotic and the leukotoxic pigment was similar in bacteria. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
硫化氢(H_2S)是继一氧化氮(NO)和一氧化碳(CO)后发现的第3种气态信号分子,但其细菌生理学研究才刚刚起步。本文根据作者对奥内达希瓦氏菌的研究,结合新近文献,就细菌的H_2S产生机理及其生理功能作了较为全面的阐述。细菌的H_2S产生途径主要有2条,一是通过降解半胱氨酸产生,二是通过厌氧呼吸产生。产生的H_2S除可为互生性微生物提供能源、供氢体和无机矿质营养外,还具有抑制竞争性微生物的生长,有效占领生态位的作用。H_2S在氧化应答中也起着重要的作用,一方面可抑制过氧化氢酶活性,增加过氧化氢对细菌的杀灭效果;另一方面可作为信号分子激活细菌的氧化应答,诱导拮抗系统的表达,保护细胞免受氧化损伤。这两种看似"矛盾"的作用与H_2S的处理时间有关:短时间处理以抑制为主,而延长处理时间则以保护为主。细菌H_2S产生机理及生理功能的阐明可为硫元素生物地球化学循环规律的揭示和感染性病原细菌的控制提供有益的参考。  相似文献   

7.
Sesquiterpenes have attracted much interest with respect to their protective effect against oxidative damage that may be the cause of many diseases including several neurodegenerative disorders and cancer. Our previous unpublished work suggested that cyclosativene (CSV), a tetracyclic sesquiterpene, has antioxidant and anticarcinogenic features. However, little is known about the effects of CSV on oxidative stress induced neurotoxicity. We used hydrogen peroxide (H2O2) exposure for 6 h to model oxidative stress. Therefore, this experimental design allowed us to explore the neuroprotective potential of CSV in H2O2-induced toxicity in new-born rat cerebral cortex cell cultures for the first time. For this aim, MTT and lactate dehydrogenase release assays were carried out to evaluate cytotoxicity. Total antioxidant capacity (TAC) and total oxidative stress (TOS) parameters were used to evaluate oxidative changes. In addition to determining of 8-hydroxy-2-deoxyguanosine (8-OH-dG) levels, the single cell gel electrophoresis (or Comet assay) was also performed for measuring the resistance of neuronal DNA to H2O2-induced challenge. Our results showed that survival and TAC levels of the cells decreased, while TOS, 8-OH-dG levels and the mean values of the total scores of cells showing DNA damage (Comet assay) increased in the H2O2 alone treated cultures. But pre-treatment of CSV suppressed the cytotoxicity, genotoxicity and oxidative stress which were increased by H2O2. On the basis of these observations, it is suggested that CSV as a natural product with an antioxidant capacity in mitigating oxidative injuries in the field of neurodegenerative disorders.  相似文献   

8.
Cytochrome bd is a prokaryotic respiratory quinol:O2 oxidoreductase, phylogenetically unrelated to the extensively studied heme–copper oxidases (HCOs). The enzyme contributes to energy conservation by generating a proton motive force, though working with a lower energetic efficiency as compared to HCOs. Relevant to patho-physiology, members of the bd-family were shown to promote virulence in some pathogenic bacteria, which makes these enzymes of interest also as potential drug targets. Beyond its role in cell bioenergetics, cytochrome bd accomplishes several additional physiological functions, being apparently implicated in the response of the bacterial cell to a number of stress conditions. Compelling experimental evidence suggests that the enzyme enhances bacterial tolerance to oxidative and nitrosative stress conditions, owing to its unusually high nitric oxide (NO) dissociation rate and a notable catalase activity; the latter has been recently documented in one of the two bd-type oxidases of Escherichia coli. Current knowledge on cytochrome bd and its reactivity with O2, NO and H2O2 is summarized in this review in the light of the hypothesis that the preferential (over HCOs) expression of cytochrome bd in pathogenic bacteria may represent a strategy to evade the host immune attack based on production of NO and reactive oxygen species (ROS). This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   

9.
10.
Thioredoxin peroxidase (Tpx), also named peroxiredoxin (Prx), is an important peroxidase that can protect organisms against stressful environments. AccTpx4, a 1-Cys thioredoxin peroxidase gene from the Chinese honey bee Apis cerana cerana, was cloned and characterized. The AccTpx4 gene encodes a protein that is predicted to contain the conserved PVCTTE motif from 1-Cys peroxiredoxin. Quantitative real-time PCR (Q-PCR) and Western blotting revealed that AccTpx4 was induced by various oxidative stresses, such as cold, heat, insecticides, H2O2, and HgCl2. The in vivo peroxidase activity assay showed that recombinant AccTpx4 protein could efficiently degrade H2O2 in the presence of DL-dithiothreitol (DTT). In addition, disc fusion assays revealed that AccTpx4 could function to protect cells against oxidative stresses. These results indicate that AccTpx4 plays an important role in oxidative stress responses and may contribute to the conservation of honeybees.  相似文献   

11.
The adverse effects of arsenic (As) toxicity on seedling growth, root and shoot anatomy, chlorophyll and carotenoid contents, root oxidizability (RO), antioxidant enzyme activities, H2O2 content, lipid peroxidation and electrolyte leakage (EL%) in common bean (Phaseolus vulgaris L.) were investigated. The role of exogenous nitric oxide (NO) in amelioration of As-induced inhibitory effect was also evaluated using sodium nitroprusside (100 μM SNP) as NO donor and 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (200 μM PTIO) as NO scavenger in different combinations with 50 μM As. As-induced growth inhibition was associated with marked anomalies in anatomical features, reduction in pigment composition, increased RO and severe perturbations in antioxidant enzyme activities. While activity of superoxide dismutase and catalase increased, levels of ascorbate peroxidase, dehydroascorbate reductase and glutathione reductase decreased significantly and guaiacol peroxidase remained normal. The over-accumulation of H2O2 content along with high level of lipid peroxidation and electrolyte leakage indicates As-induced oxidative damage in P. vulgaris seedlings with more pronounced effect on the roots than the shoots. Exogenous addition of NO significantly reversed the As-induced oxidative stress, maintaining H2O2 in a certain level through balanced alterations of antioxidant enzyme activities. The role of NO in the process of amelioration has ultimately been manifested by significant reduction of membrane damage and improvement of growth performance in plants grown on As + SNP media. Onset of oxidative stress was more severe after addition of PTIO, which confirms the protective role of NO against As-induced oxidative damage in P. vulgaris seedlings.  相似文献   

12.
The degeneration of retinal pigment epithelium (RPE) cells in the sub retinal pigment epithelial space and choroid is an initial pathological characteristic for the age-related macular degeneration which is the leading cause of severe vision loss in old people. Moreover, oxidative stress is implicated as a major inducer of RPE cell death. Here, we assessed the correlation between the H2O2-induced RPE cell death and glutamine metabolism. We found under low glutamine supply (20 %), the ARPE-19 cells were more susceptive to H2O2-induced apoptosis. Moreover, the glutamine uptake and the glutaminase (GLS) were suppressed by H2O2 treatments. Moreover, we observed miR-23a was upregulated by H2O2 treatments and overexpression of miR-23a significantly sensitized ARPE-19 cells to H2O2. Importantly, Western blotting and luciferase assay demonstrated GLS1 is a direct target of miR-23a in RPE cells. Inhibition of the H2O2-induced miR-23a by antagomiR protected the RPE cells from the oxidative stress-induced cell death. In addition, recovery of GLS1 expression in miR-23a overexpressed RPE cells rescued the H2O2-induced cell death. This study illustrated a mechanism for the protection of the oxidative-induced RPE cell death through the recovery of glutamine metabolism by inhibition of miR-23a, contributing to the discovery of novel targets and the developments of therapeutic strategies for the prevention of RPE cells from oxidative stress.  相似文献   

13.
A novel method was described for promoting conidial production of nematophagous fungus, Pochonia chlamydosporia AS6.8, by hydrogen peroxide (H2O2) treatment and two-stage cultivation. The fungi were first grown on potato dextrose agar plates to encourage vegetative growth, after briefly treating with 90 mM concentrations of H2O2, and then were transferred to water agar (WA) plates for sporulation. Sporulation of the P. chlamydosporia AS6.8 was significantly enhanced (as much as 15 times) using this method. Enhancement of sporulation by H2O2 (oxidative stress) and by transfer to WA (low-nutrient stress) was not synergistic. In order to make sure if the H2O2 had enhancing effect on other nematophagous fungi, we also evaluated the effect of H2O2 on sporulation of Arthrobotrys oligospora CBS 115.81 and Dactylellina cionopaga CBS 113355 besides P. chlamydosporia. And the result showed that 90 mM concentrations of H2O2 had enhancing effect on sporulation of all of the three isolates.  相似文献   

14.
15.
Agmatine, at concentrations of 10 μM or 100 μM, is able to induce oxidative stress in rat liver mitochondria (RLM), as evidenced by increased oxygen uptake, H2O2 generation, and oxidation of sulfhydryl groups and glutathione. One proposal for the production of H2O2 and, most probably, other reactive oxygen species (ROS), is that they are the reaction products of agmatine oxidation by an unknown mitochondrial amine oxidase. Alternatively, by interacting with an iron-sulfur center of the respiratory chain, agmatine can produce an imino radical and subsequently the superoxide anion and other ROS. The observed oxidative stress causes a drop in ATP synthesis and amplification of the mitochondrial permeability transition (MPT) induced by Ca2+. Instead, 1 mM agmatine generates larger amounts of H2O2 than the lower concentrations, but does not affect RLM respiration or redox levels of thiols and glutathione. Indeed, it maintains the normal level of ATP synthesis and prevents Ca2+-induced MPT in the presence of phosphate. The self-scavenging effect against ROS production by agmatine at higher concentrations is also proposed.  相似文献   

16.
《Free radical research》2013,47(3):347-356
Abstract

Oxidative stress is induced by excess accumulation of reactive oxygen and nitrogen species (RONS). Astrocytes are metabolically active cells in the brain and understanding astrocytic responses to oxidative stress is essential to understand brain pathologies. In addition to direct oxidative stress, exogenous hydrogen peroxide (H2O2) can penetrate biological membranes and enhance formation of other RONS. The present study was carried out to examine the role of insulin in H2O2-induced oxidative stress in rat astrocytic cells. To measure changes in the viability of astrocytes at different concentrations of H2O2 for 3 h, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT)-based assay was used and 500 μM H2O2 was selected to establish a model of H2O2-induced oxidative stress. Further assays showed that 3 h of 500 μM H2O2-induced significant changes in the levels of lactate dehydrogenase (LDH), reactive oxygen species (ROS) and calcium ion (Ca2+) in C6 cells, with insulin able to effectively diminish H2O2-induced oxidative damage to C6 cells. Western blotting studies showed that insulin treatment of astrocytes increased the levels of phosphorylated Akt and magnified the decrease in total Bcl-2 protein. The protective effect of insulin treatment on H2O2-induced oxidative stress in astrocytes by reducing apoptosis may relate to the PI3K/Akt pathway.  相似文献   

17.
Hydrogen peroxide (H2O2) has been widely used to study the oxidative stress response. However, H2O2 is unstable and easily decomposes into H2O and O2. Consequently, a wide range of exposure times and treatment concentrations has been described in the literature. In the present study, we established a ferrous oxidation-xylenol orange (FOX) assay, which was originally described for food and body liquids, as a method for the precise quantification of H2O2 concentrations in cell culture media. We observed that the presence of FCS and high cell densities significantly accelerate the decomposition of H2O2, therefore acting as a protection against cell death by accidental necrosis.  相似文献   

18.
Oxidative stress, or the production of oxygen-centered free radicals, has been hypothesized as the major source of DNA damage that can lead to a variety of diseases including cancer. It is known that 8-hydroxy-deoxyguanosine (8-oxo-dG) is a useful biomarker of oxidative DNA damage. Our recent data showed that JWA, initially being cloned as a novel cell differentiation-associated gene, was also actively responsive to environmental stressors, such as heat-shock, oxidative stress and so on. In the present study, we have applied a modified comet assay and bacterial repair endonucleases system (endonuclease III and formamidopyrimidine glycosylase) to investigate if JWA is involved in hydrogen peroxide (H2O2)-induced DNA damage and repair in K562 and MCF-7 cells, and to demonstrate if the damage is associated with 8-oxo-dG. The results from the comet assay have shown that the average tail length and the percentage of the cells with DNA tails are greatly induced by H2O2 treatment and further significantly enhanced by the post-treatment of repair endonucleases. The H2O2-induced 8-oxo-dG formation in K562 and MCF-7 cells is dose-dependent. In addition, the data have clearly demonstrated that JWA gene expression is actively induced by H2O2 treatment in K562 and MCF-7 cells. The results suggest that JWA can be regulated by oxidative stress and is actively involved in the signal pathways of oxidative stress in the cells.  相似文献   

19.
Quorum sensing (QS) coordinates the expression of virulence factors and allows bacteria to counteract the immune response, partly by increasing their tolerance to the oxidative stress generated by immune cells. Despite the recognized role of QS in enhancing the oxidative stress response, the consequences of this relationship for the bacterial ecology remain unexplored. Here we demonstrate that QS increases resistance also to osmotic, thermal and heavy metal stress. Furthermore a QS-deficient lasR rhlR mutant is unable to exert a robust response against H2O2 as it has less induction of catalase and NADPH-producing dehydrogenases. Phenotypic microarrays revealed that the mutant is very sensitive to several toxic compounds. As the anti-oxidative enzymes are private goods not shared by the population, only the individuals that produce them benefit from their action. Based on this premise, we show that in mixed populations of wild-type and the mexR mutant (resistant to the QS inhibitor furanone C-30), treatment with C-30 and H2O2 increases the proportion of mexR mutants; hence, oxidative stress selects resistance to QS compounds. In addition, oxidative stress alone strongly selects for strains with active QS systems that are able to exert a robust anti oxidative response and thereby decreases the proportion of QS cheaters in cultures that are otherwise prone to invasion by cheats. As in natural environments stress is omnipresent, it is likely that this QS enhancement of stress tolerance allows cells to counteract QS inhibition and invasions by social cheaters, therefore having a broad impact in bacterial ecology.  相似文献   

20.
Aim: To develop a faster and easier in vivo method to screen compounds for anti‐oxidant activity using a microbial system. Methods and Results: Bacterial redox sensor‐based assay systems were applied. The activities of SoxR and OxyR, the bacterial redox sensors, were monitored to probe the intracellular redox status through two reporter strains, Escherichia coli soxSplacZ and oxySplacZ fusions, which specifically respond to paraquat, a superoxide generator, and H2O2, respectively, with practically no cross reactivity. For the test screening, 27 natural compounds including phenolics and flavonoids that are putatively considered anti‐oxidant nutritional supplements were collected and assayed for their capability to alleviate oxidative stress in these bacterial systems. Among them, rutin, kaempferol and quercetin had significant anti‐H2O2 activity, and betaine, glycyrrhizic acid and baicalin had weak anti‐superoxide activity. While rutin, kaempferol and quercetin significantly reduced the H2O2 stress at low concentrations, betaine, glycyrrhizic acid and baicalin required higher concentration for their anti‐superoxide effects. In vitro, only quercetin protected DNA in a metal‐catalysed oxidation system, suggesting that the other compounds might indirectly exert their anti‐oxidant activities through other biological functions. Finally, quercetin, rutin and kaempferol significantly restored the viability of a superoxide dismutase mutant that has limited viability because of defective defence against oxidative stress. Conclusion: These bacterial systems could provide a more efficient method for measuring the activity of compounds affecting cellular oxidative stress and viability. Significance and Impact of the Study: The demand for anti‐oxidant and anti‐ageing activities is increasing in one of the fastest growing segments of the functional food market, but the screening for these activities is currently very laborious, expensive and time consuming. This study suggests a basis for a high throughput screening method for these activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号