共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Beate Rinner Andreas Weinhaeusel Birgit Lohberger Elke Verena Froehlich Walter Pulverer Carina Fischer Katharina Meditz Susanne Scheipl Slave Trajanoski Christian Guelly Andreas Leithner Bernadette Liegl 《PloS one》2013,8(3)
Chordomas are rare mesenchymal tumors occurring exclusively in the midline from clivus to sacrum. Early tumor detection is extremely important as these tumors are resistant to chemotherapy and irradiation. Despite continuous research efforts surgical excision remains the main treatment option. Because of the often challenging anatomic location early detection is important to enable complete tumor resection and to reduce the high incidence of local recurrences. The aim of this study was to explore whether DNA methylation, a well known epigenetic marker, may play a role in chordoma development and if hypermethylation of specific CpG islands may serve as potential biomarkers correlated with SNP analyses in chordoma. The study was performed on tumor samples from ten chordoma patients. We found significant genomic instability by Affymetrix 6.0. It was interesting to see that all chordomas showed a loss of 3q26.32 (PIK 3CA) and 3q27.3 (BCL6) thus underlining the potential importance of the PI3K pathway in chordoma development. By using the AITCpG360 methylation assay we elucidated 20 genes which were hyper/hypomethylated compared to normal blood. The most promising candidates were nine hyper/hypomethylated genes C3, XIST, TACSTD2, FMR1, HIC1, RARB, DLEC1, KL, and RASSF1. In summary, we have shown that chordomas are characterized by a significant genomic instability and furthermore we demonstrated a characteristic DNA methylation pattern. These findings add new insights into chordoma development, diagnosis and potential new treatment options. 相似文献
3.
4.
Magdalena Gryzinska Ewa Blaszczak Aneta Strachecka Grazyna Jezewska-Witkowska 《Biochemical genetics》2013,51(7-8):554-563
DNA methylation is an epigenetic modification that plays an important role in the normal development and function of organisms. The level of DNA methylation is species-, tissue-, and organelle-specific, and the methylation pattern is determined during embryogenesis. DNA methylation has also been correlated with age. The aim of this study was to determine the global DNA methylation levels and their correlation with age in the chicken, using a Polish autosexing chicken breed, Polbar. A quantitative technique based on an immunoenzymatic assay was used for global DNA methylation analysis. The results show increased global DNA methylation levels with older Polbar embryos. Global DNA methylation levels decrease with the age of hens in the postembryonic stage. This study expands the current knowledge of the Polbar epigenome and the general knowledge of the function of epigenetic mechanisms in birds. 相似文献
5.
6.
7.
8.
Chul-Kee Park Ja Eun Kim Ji Young Kim Sang Woo Song Jin Wook Kim Seung Hong Choi Tae Min Kim Se-Hoon Lee Il Han Kim Sung-Hye Park 《Translational oncology》2012,5(5):393-397
To evaluate the mechanism of the development of therapeutic resistance after temozolomide treatment, we focused on changes in O6-methylguanine DNA methyltransferase (MGMT) and mismatch repair (MMR) between initial and recurrent glioblastomas. Tissue samples obtained from 24 paired histologically confirmed initial and recurrent adult glioblastoma patients who were initially treated with temozolomide were used for MGMT and MMR gene promoter methylation status and protein expression analysis using methylation-specific multiplex ligation probe amplification (MS-MLPA), methylation-specific polymerase chain reaction (MSP), and immunohistochemical staining. There was a significant decrease in the methylation ratio of the MGMT promoter determined by MS-MLPA, which was not detectable with MSP, and MGMT protein expression changes were not remarkable. However, there was no epigenetic variability in MMR genes, and a relatively homogeneous expression of MMR proteins was observed in initial and recurrent tumors. We conclude that the development of reduced methylation in the MGMT promoter is one of the mechanisms for acquiring therapeutic resistance after temozolomide treatment in glioblastomas. 相似文献
9.
DNA Methylation in Eukaryotes: Kinetics of Demethylation and De Novo Methylation during the Life Cycle 总被引:6,自引:1,他引:6 下载免费PDF全文
We present a model for the kinetics of methylation and demethylation of eukaryotic DNA; the model incorporates values for de novo methylation and the error rate of maintenance methylation. From the equations, an equilibrium is reached such that the proportion of sites which are newly methylated equals the proportion of sites which become demethylated in a cell generation. This equilibrium is empirically determined as the level of maintenance methylation. We then chose reasonable values for the parameters using maize and mice as model species. In general, if the genome is either hypermethylated or hypomethylated it will approach the equilibrium level of maintenance methylation asymptotically over time; events occurring just once per life cycle to suppress methylation can maintain a relatively hypomethylated state. Although the equations developed are used here as framework for evaluating events in the whole genome, they can also be used to evaluate the rates of methylation and demethylation in specific sites over time. 相似文献
10.
11.
Dragan Milenkovic Wim Vanden Berghe Céline Boby Christine Leroux Ken Declerck Katarzyna Szarc vel Szic Karen Heyninck Kris Laukens Martin Bizet Matthieu Defrance Sarah Dedeurwaerder Emilie Calonne Francois Fuks Guy Haegeman Guido R. M. M. Haenen Aalt Bast Antje R. Weseler 《PloS one》2014,9(4)
Background
In a recent intervention study, the daily supplementation with 200 mg monomeric and oligomeric flavanols (MOF) from grape seeds for 8 weeks revealed a vascular health benefit in male smokers. The objective of the present study was to determine the impact of MOF consumption on the gene expression profile of leukocytes and to assess changes in DNA methylation.Methodology/Principal Findings
Gene expression profiles were determined using whole genome microarrays (Agilent) and DNA methylation was assessed using HumanMethylation450 BeadChips (Illumina). MOF significantly modulated the expression of 864 genes. The majority of the affected genes are involved in chemotaxis, cell adhesion, cell infiltration or cytoskeleton organisation, suggesting lower immune cell adhesion to endothelial cells. This was corroborated by in vitro experiments showing that MOF exposure of monocytes attenuates their adhesion to TNF-α-stimulated endothelial cells. Nuclear factor kappa B (NF-κB) reporter gene assays confirmed that MOF decrease the activity of NF-κB. Strong inter-individual variability in the leukocytes'' DNA methylation was observed. As a consequence, on group level, changes due to MOF supplementation could not be found.Conclusion
Our study revealed that an 8 week daily supplementation with 200 mg MOF modulates the expression of genes associated with cardiovascular disease pathways without major changes of their DNA methylation state. However, strong inter-individual variation in leukocyte DNA methylation may obscure the subtle epigenetic response to dietary flavanols. Despite the lack of significant changes in DNA methylation, the modulation of gene expression appears to contribute to the observed vascular health effect of MOF in humans. 相似文献12.
13.
14.
Erin M. Siegel Bridget M. Riggs Amber L. Delmas Abby Koch Ardeshir Hakam Kevin D. Brown 《PloS one》2015,10(3)
Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2). A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site) per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC) of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97–1.00, p-value = 0.003). Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated. 相似文献
15.
16.
《Epigenetics》2013,8(1):54-65
DNA methylation has been viewed as a stable component of the epigenome, which is established during development and fixed thereafter. We show here using nearest neighbor analysis, immunocytochemistry, and high performance capillary electrophoresis that the DNA methylation pattern varies in HeLa cells during a single cell cycle. Immunocytochemical analysis in primary human fibroblasts shows similar variations. The global levels of DNA methylation decreased in G1 and increase during the S phase of the cell cycle. Since there was little change in the DNA methylation levels in repetitive sequences throughout the cell cycle, we examined the DNA methylation pattern of unique sequences using a human CpG island microarray. Hybridization with methylated DNA from G1 and S phase of the cell cycle revealed that 174 CG-containing sequences were differentially methylated between G1 and S. 75% of all the variations in DNA methylation detected in unique sequences represented hypomethylation at G0, with changes occurring in both CpG islands and non-CpG islands. Bisulfite mapping confirmed these changes in methylation in the regions identified by the microarray. This is the first demonstration of a dynamic DNA methylation pattern within a single cell cycle of a mature somatic cell. These data are important for our understanding of the stability of DNA methylation patterns in somatic cells. 相似文献
17.
An interesting question in maize development is why only a single zein gene is highly expressed in each of the 19-kDa zein gene clusters (A and B types), z1A2-1 and z1B4, in the immature endosperm. For instance, epigenetic marks could provide a structural difference. Therefore, we investigated the DNA methylation of the arrays of gene copies in both promoter and gene body regions of leaf (non-expressing tissue as a control), normal endosperm, and cultured endosperm. Although we could show that expressed genes have much lower methylation levels in promoter regions than silent ones in both leaf and normal endosperm, there was surprisingly also a difference in the pattern of the z1A and z1B gene clusters. The expression of z1B gene is suppressed by increased DNA methylation and activated with reduced DNA methylation, whereas z1A gene expression is not. DNA methylation in gene coding regions is higher in leaf than in endosperm, whereas no significant difference is observed in gene bodies between expressed and non-expressed gene copies. A median CHG methylation (25–30%) appears to be optimal for gene expression. Moreover, tissue-cultured endosperm can reset the DNA methylation pattern and tissue-specific gene expression. These results reveal that DNA methylation changes of the 19-kDa zein genes is subject to plant development and tissue culture treatment, but varies in different chromosomal locations, indicating that DNA methylation changes do not apply to gene expression in a uniform fashion. Because tissue culture is used to produce transgenic plants, these studies provide new insights into variation of gene expression of integrated sequences. 相似文献
18.
Gene expression divergence between closely related species could be attributed to both cis- and trans- DNA sequence changes during evolution, but it is unclear how the evolutionary dynamics of epigenetic marks are regulated. In eutherian mammals, biparental DNA methylation marks are erased and reset during gametogenesis, resulting in paternal or maternal imprints, which lead to genomic imprinting. Whether DNA methylation reprogramming exists in insects is not known. Wasps of the genus Nasonia are non-social parasitoids that are emerging as a model for studies of epigenetic processes in insects. In this study, we quantified allele-specific expression and methylation genome-wide in Nasonia vitripennis and Nasonia giraulti and their reciprocal F1 hybrids. No parent-of-origin effect in allelic expression was found for >8,000 covered genes, suggesting a lack of genomic imprinting in adult Nasonia. As we expected, both significant cis- and trans- effects are responsible for the expression divergence between N. vitripennis and N. giraulti. Surprisingly, all 178 differentially methylated genes are also differentially methylated between the two alleles in F1 hybrid offspring, recapitulating the parental methylation status with nearly 100% fidelity, indicating the presence of strong cis-elements driving the target of gene body methylation. In addition, we discovered that total and allele-specific expression are positively correlated with allele-specific methylation in a subset of the differentially methylated genes. The 100% cis-regulation in F1 hybrids suggests the methylation machinery is conserved and DNA methylation is targeted by cis features in Nasonia. The lack of genomic imprinting and parent-of-origin differentially methylated regions in Nasonia, together with the stable inheritance of methylation status between generations, suggests either a cis-regulatory motif for methylation at the DNA level or highly stable inheritance of an epigenetic signal in Nasonia. 相似文献
19.
Uchimiya Hirofumi; Kato Hiroyuki; Ohgawara Toshifumi; Harada Hiroshi; Sugiura Masahiro 《Plant & cell physiology》1982,23(6):1129-1131
Using various restriction endonucleases, methylation of nuclearribosomal RNA genes (rDNA) was investigated. Results indicatethat cytosine residues of C-G dinucleotides of Nicotiana glaucarDNA are heavily methylated.
1This work was supported in part by a grant from the ScienceResearch Fund of the Ministry of Education, Science and Cultureof Japan. (Received April 8, 1982; Accepted June 24, 1982) 相似文献
20.
Changes in the Pattern of Cytokeratin Polypeptides in Epidermis and Hair Follicles During Skin Development in Human Fetuses 总被引:3,自引:0,他引:3
Roland Moll Ingrid Moll Wolfgang Wiest 《Differentiation; research in biological diversity》1982,23(1-3):170-178
Abstract. The cytokeratin polypeptides of microdissected epidermis and hair follicles from human fetuses (from week 10 of pregnancy until birth) have been analysed by two-dimensional gel electrophoresis. Two-layered epidermis in 10-week fetuses contains major amounts of cytokeratin polypeptides typical of simple epithelia (components Nos. 8, 18, and 19 according to Moll et al. [31]). These cytokeratins are gradually reduced in their relative amounts and eventually disappear in the multilayered epidermis of later stages. At advanced stages of development, cytokeratins characteristic of adult epidermis are detected and finally predominate. These include the large and basic epidermal cytokeratin No. 1 (apparent molecular weight 68,000) which is already present in the three-layered epidermis of 13-week fetuses. Hair follicle germ cells of 13-week fetuses differ from fetal epidermal keratinocytes and show a very simple cytokeratin pattern, dominated by only two major polypeptides (Nos. 5 and 17). More developed hair follicles of 20-week fetuses have established a cytokeratin pattern similar to, but not identical with, that of hair follicles from adult skin. Different staining patterns obtained by indirect immunofluorescence microscopy using cytokeratin antibodies with different specificities suggest that, in three-layered epidermis, different cytokeratin patterns might exist in the specific cell layers. Such a differential location might explain the high complexity of polypeptide components found in fetal skin. Possible contributions of peridermal cytokeratins to this complex pattern of fetal epidermis are discussed. 相似文献