首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Grant MA  Baikeev RF  Gilbert GE  Rigby AC 《Biochemistry》2004,43(49):15367-15378
The binding of factor IX to cell membranes requires a structured N-terminal omega-loop conformation that exposes hydrophobic residues for a highly regulated interaction with a phospholipid. We hypothesized that a peptide comprised of amino acids Gly4-Gln11 of factor IX (fIX(G4)(-)(Q11)) and constrained by an engineered disulfide bond would assume the native factor IX omega-loop conformation in the absence of Ca(2+). The small size and freedom from aggregation-inducing calcium interactions would make fIX(G4)(-)(Q11) suitable for structural studies for eliciting details about phospholipid interactions. fIX(G4)(-)(Q11) competes with factor IXa for binding sites on phosphatidylserine-containing membranes with a K(i) of 11 microM and inhibits the activation of factor X by the factor VIIIa-IXa complex with a K(i) of 285 microM. The NMR structure of fIX(G4)(-)(Q11) reveals an omega-loop backbone fold and side chain orientation similar to those found in the calcium-bound factor IX Gla domain, FIX(1-47)-Ca(2+). Dicaproylphosphatidylserine (C(6)PS) induces HN, Halpha backbone, and Hbeta chemical shift perturbations at residues Lys5, Leu6, Phe9, and Val10 of fIX(G4)(-)(Q11), while selectively protecting the NHzeta side chain resonance of Lys5 from solvent exchange. NOEs between the aromatic ring protons of Phe9 and specific acyl chain protons of C(6)PS indicate that these phosphatidylserine protons reside 3-6 A from Phe9. Stabilization of the phosphoserine headgroup and glycerol backbone of C(6)PS identifies that phosphatidylserine is in a protected environment that is spatially juxtaposed with fIX(G4)(-)(Q11). Together, these data demonstrate that Lys5, Leu6, Phe9, and Val10 preferentially interact with C(6)PS and allow us to correlate known hemophilia B mutations of factor IX at Lys5 or Phe9 with impaired phosphatidylserine interaction.  相似文献   

2.
Protein S (PS) and growth arrest specific factor 6 (GAS6) are vitamin K-dependent proteins with similar structures. They are mosaic proteins possessing a carboxyl-terminal region presenting sequence similarity with plasma sex hormone binding globulin (plasma SHBG), although apparently not involved in steroid binding. The SHBG-like modules have sequence similarity with the G repeats of the chain A of laminin. Laminin G repeats have been reported to contain mainly β-strands (about 40–50%) but no or little α structure by circular dichroism (CD) spectroscopy. Secondary structure predictions carried out in the present work unexpectedly showed a 20 to 27% helices content in the SHBG region of PS/GAS6 (about 100 residues), while plasma SHBG and laminin G repeats had around 10% helices. CD measurements for human PS indicated also that its SHBG region had about 100 residues in α-helical structure. These data suggest that the SHBG region of PS/GAS6 on the one hand, and the laminin G repeats and possibly plasma SHBG on the other hand, could present important structural differences. Previously reported polymorphisms and point mutations leading to PS deficiency and thrombophilia have been analyzed with our structural predictions. We found a good agreement between these structural predictions, CD measurements, experimental and clinical data. This information allows us to gain insights into the three-dimensional structure of PS that will be helpful for the design of new experiments and future clinical investigations. Proteins 29:478–491, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
Binding of short chain phosphatidylserine (C6PS) enhances the proteolytic activity of factor X(a) by 60-fold (Koppaka, V., Wang, J., Banerjee, M., and Lentz, B. R. (1996) Biochemistry 35, 7482-7491). In the present study, we locate three C6PS binding sites to different domains of factor X(a) using a combination of activity, circular dichroism, fluorescence, and equilibrium dialysis measurements on proteolytic and biosynthetic fragments of factor X(a). Our results demonstrate that the structural responses of human and bovine factor X(a) to C6PS binding are somewhat different. Despite this difference, data obtained with fragments from both human and bovine factor X(a) are consistent with a common hypothesis for the location of C6PS binding sites to different structural domains. First, the gamma-carboxyglutamic acid (Gla) domain binds C6PS only in the absence of Ca(2+) (k(d) approximately 1 mm), although this PS site does not influence the functional response of factor X(a). Second, a Ca(2+)-dependent binding site is in the epidermal growth factor domains (EGF(NC)) that are linked by Ca(2+) and C6PS binding to the Gla domain. This site appears to be the lipid regulatory site of factor X(a). Third, a Ca(2+)-requiring site seems to be in the EGF(C)-catalytic domain. This site appears not to be a lipid regulatory site but rather to share residues with the substrate recognition site. Finally, the full functional response to C6PS requires linkage of the Gla, EGF(NC), and catalytic domains in the presence of Ca(2+), meaning that PS regulation of factor X(a) involves linkage between widely separated parts of the protein.  相似文献   

4.
A promising target on tumor vasculature is phosphatidylserine (PS), an anionic phospholipid that resides exclusively on the inner leaflet of the plasma membrane of resting mammalian cells. We have shown previously that PS becomes exposed on the surface of endothelial cells (EC) in solid tumors. To target PS on tumor vasculature, the murine monoclonal antibody 3G4 was developed. 3G4 localizes to tumor vasculature, inhibits tumor growth, and enhances anti-tumor chemotherapies without toxicity in mice. A chimeric version of 3G4 is in clinical trials. In this study, we investigated the basis for the interaction between 3G4 and EC with surface-exposed PS. We demonstrate that antibody binding to PS is dependent on plasma protein beta-2-glycoprotein 1 (beta2GP1). beta2GP1 is a 50-kDa glycoprotein that binds weakly to anionic phospholipids under physiological conditions. We show that 3G4 enhances binding of beta2GP1 to EC induced to expose PS. We also show that divalent 3G4-beta2GP1 complexes are required for enhanced binding, since 3G4 Fab' fragments do not bind EC with exposed PS. Finally, we demonstrate that an artificial dimeric beta2GP1 construct binds to EC with exposed PS in the absence of 3G4, confirming that antibody binding is mediated by dimerization of beta2GP1. Together, these data indicate that 3G4 targets tumor EC by increasing the avidity of beta2GP1 for anionic phospholipids through formation of multivalent 3G4-beta2GP1 complexes.  相似文献   

5.
45Ca(II) binding studies (equilibrium dialysis) on the kringle domain of bovine prothrombin fragment 1 were conducted using a mixture of peptides (residues 43-156 and 46-156) resulting from limited alpha-chymotryptic hydrolysis of fragment 1. Analysis of the Scatchard plot of these data indicates a single, low affinity Ca(II)-binding site to be present. Similar results were obtained from studies on the decarboxylated fragment 1 derivative, 10-gamma-MGlu-fragment 1. Acetylation of bovine fragment 1 in the absence of Ca(II) or Mg(II) ions results in the loss of the metal ion-promoted quenching of the intrinsic Trp fluorescence of the protein and the Ca(II)-mediated binding to phosphatidylserine/phosphatidylcholine (PS/PC) vesicles. The acetylation of the NH2 alpha-group of Ala-1 has been shown (Welsch, D. J., and Nelsestuen, G. L. (1988) Biochemistry 27, 4946-4952) to abolish the PS/PC binding property of fragment 1. The present study demonstrates that acetylation of a second site possibly Ser-79 or Thr-81 using the conditions described in the preceding paper results in loss of both the fluorescence transition and the Ca(II)-mediated PS/PC binding of the resulting protein derivative. Removal of the O-acetyl group at the Ser-79/Thr-81 site is accomplished by aminolysis with 0.2 M hydroxylamine, pH 10, 50 degrees C; the fluorescence transition is partially restored. PS/PC binding is partially restored if the NH2 alpha-group of Ala-1 is trinitrophenylated but is not restored if the NH2 alpha-group of Ala-1 is acetylated. We conclude that the Ser-79/Thr-81 site may represent a portion of the metal ion-binding site within the kringle domain of fragment 1. Occupancy of this site by a Ca(II) ion appears to be important in the binding of the protein to PS/PC vesicles.  相似文献   

6.
PLC(Bc) is a 28.5 kDa monomeric enzyme that catalyzes the hydrolysis of the phosphodiester bond of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine to provide a diacylglycerol and the corresponding phosphorylated headgroup. Because single replacements of Glu4, Tyr56, and Phe66 in the headgroup binding pocket led to changes in substrate specificity [Martin et al. (2000) Biochemistry 39, 3410-3415], a combinatorial library of approximately 6000 maltose binding protein-PLC(Bc) fusion protein mutants containing random permutations of these three residues was generated to identify PLC(Bc) mutants with altered specificity profiles and high catalytic activities. Members of this library were screened for hydrolytic activity toward the water soluble substrates C6PC, C6PE, and C6PS using a novel protocol that was conducted in a 96-well format and featured the in situ cleavage of the fusion protein to release the mutant PLC(Bc)s. Ten mutant enzymes that exhibited significant preferences toward C6PE or C6PS were selected and analyzed by steady-state kinetics to determine their specificity constants, k(cat)/K(M). The C6PS selective clones E4G, E4Q/Y56T/F66Y, and E4K/Y56V exhibited higher specificity constants toward C6PS than wt, whereas Y56T, F66Y, and Y56T/F66Y were C6PE selective and had comparable or higher specificity constants than wt for C6PE. The corresponding wt residues were singly reinserted back into the E4Q/Y56T/F66Y and E4K/Y56V mutants via site-directed mutagenesis, and the E4Q/F66Y mutant thus obtained exhibited a 10-fold higher specificity constant toward C6PS than wt, a value significantly higher than other PLC(Bc) mutants. On the basis of available data, an aromatic residue at position 66 appears important for significant catalytic activity toward all three substrates, especially C6PC and C6PE. The charge of residue 4 also appears to be a determinant of enzyme specificity as a negatively charged residue at this position endows the enzyme with C6PC and C6PE preference, whereas a polar neutral or positively charged residue results in C6PS selectivity. Replacing Tyr56 with Val, Ala, Thr, or Ser greatly reduces activity toward C6PC. Thus, the substrate specificity of PLC(Bc) can be modulated by varying three of the amino acid residues that constitute the headgroup binding pocket, and it is now apparent that this enzyme is not evolutionarily optimized to hydrolyze phospholipids with ethanolamine or serine headgroups.  相似文献   

7.
The Cl- channel blocker NPPB (5-nitro-2-(3-phenylpropylamino) benzoic acid) inhibited photosynthetic oxygen evolution of isolated thylakoid membranes in a pH-dependent manner with a K(i) of about 2 microM at pH 6. Applying different electron acceptors, taking electrons either directly from photosystem II (PS II) or photosystem I (PS I), the site of inhibition was localized within PS II. Measurements of fluorescence induction kinetics and thermoluminescence suggest that the binding of NPPB to the QB binding site of PS II is similar to the herbicide DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea). The effects of different arylaminobenzoate derivatives and other Cl- channel inhibitors on photosynthetic electron transport were investigated. The structure--activity relationship of the inhibitory effect on PS II shows interesting parallels to the one observed for the arylaminobenzoate block of mammalian Cl- channels. A molecular modeling approach was used to fit NPPB into the QB binding site and to identify possible molecular interactions between NPPB and the amino acid residues of the binding site in PS II. Taken together, these data give a detailed molecular picture of the mechanism of NPPB binding.  相似文献   

8.
Experiments directed to measure the interaction of lysozyme with liposomes consisting of phosphatidylcholine (PC) and phosphatidylserine (PS) have been conducted by monitoring both protein and lipid fluorescence and fluorescence anisotropy of the protein. The binding of lysozyme to the unilamellar vesicles was quantified using a novel method of analysis in which the fractional contribution at moderate binding conditions is determined from either total fluorescence decay or anisotropy decay curves of tryptophan at limiting binding conditions. In the energy transfer experiments PC and PS lipids labelled with two pyrene acyl chains served as energy acceptors of the excited tryptophan residues in lysozyme. The binding was strongly dependent on the molar fraction of negatively charged PS in neutral PC membranes and on the ionic strength. Changes in the tryptophan fluorescence decay characteristics were found to be connected with long correlation times, indicating conformational rearrangements induced by binding of the protein to these lipid membranes. The dynamics of membrane bound protein appeared to be dependent on the physical state of the membrane. Independent of protein fluorescence studies, formation of a protein-membrane complex can also be observed from the lipid properties of the system. The interaction of lysozyme with di-pyrenyl-labelled phosphatidylserine in anionic PS/PC membranes resulted in a substantial decrease of the intramolecular excimer formation, while the excimer formation of dipyrenyl-labelled phosphatidylcholine in neutral PC membranes barely changed in the presence of lysozyme.Abbreviations dipyr4 sn-1,2-(pyrenylbutyl) - dipyr10 sn-1,2-(pyrenyldecanoyl). - DMPC dimyristoyl-phosphatidylcholine - DOPC dioleoyl-phosphatidylcholine - DPPC dipalmitoyl-phosphatidylcholine - DPPC dipalmitoylphosphatidylcholine - PC phosphatidylcholine - PS phosphatidylserine Correspondence to: A. J. W. G. Visser  相似文献   

9.
Human gallbladders with cholesterol stones (ChS) exhibit an impaired muscle contraction and relaxation and a lower CCK receptor-binding capacity compared with those with pigment stones (PS). This study was designed to determine whether there is an abnormal receptor-G protein coupling in human gallbladders with ChS using (35)S-labeled guanosine 5'-O-(3-thiotriphosphate) ([(35)S]GTPgammaS) binding, (125)I-labeled CCK-8 autoradiography, immunoblotting, and G protein quantitation. CCK and vasoactive intestinal peptide caused significant increases in [(35)S]GTPgammaS binding to Galpha(i-3) and G(s)alpha, respectively. The binding was lower in ChS than in PS (P < 0.01). The reduced [(35)S]GTPgammaS binding in ChS was normalized after the muscles were treated with cholesterol-free liposomes (P < 0.01). Autoradiography and immunoblots showed a decreased optical density (OD) for CCK receptors, an even lower OD value for receptor-G protein coupling, and a higher OD for uncoupled receptors or Galpha(i-3) protein in ChS compared with PS (P < 0.001). G protein quantitation also showed that there were no significant differences in the Galpha(i-3) and G(s)alpha content in ChS and PS. We conclude that, in addition to an impaired CCK receptor-binding capacity, there is a defect in receptor-G protein coupling in muscle cells from gallbladder with ChS. These changes may be normalized after removal of excess cholesterol from the plasma membrane.  相似文献   

10.
An X  Guo X  Sum H  Morrow J  Gratzer W  Mohandas N 《Biochemistry》2004,43(2):310-315
The erythrocyte membrane is a composite structure consisting of a lipid bilayer tethered to the spectrin-based membrane skeleton. Two complexes of spectrin with other proteins are known to participate in the attachment. Spectrin has also been shown to interact with phosphatidylserine (PS), a component of the lipid bilayer, which is confined to its inner leaflet. That there may be multiple sites of interaction with PS in the spectrin sequence has been inferred, but they have not hitherto been identified. Here we have explored the interaction of PS-containing liposomes with native alpha- and beta-spectrin chains and with recombinant spectrin fragments encompassing the entire sequences of both chains. We show that both alpha-spectrin and beta-spectrin bind PS and that sites of high affinity are located within 8 of the 38 triple-helical structural repeats which make up the bulk of both chains; these are alpha8, alpha9-10, beta2, beta3, beta4, beta12, beta13, and beta14, and PS affinity was also found in the nonhomologous N-terminal domain of the beta-chain. No other fragments of either chain showed appreciable binding. Binding of spectrin and its constituent chains to mixed liposomes of PS and phosphatidylcholine (PC) depended on the proportion of PS. Binding of spectrin dimers to PS liposomes was inhibited by single repeats containing PS binding sites. It is noteworthy that the PS binding sites in beta-spectrin are grouped in close proximity to the sites of attachment both of ankyrin and of 4.1R, the proteins engaged in attachment of spectrin to the membrane. We conjecture that direct interaction of spectrin with PS in the membrane may modulate its interactions with the proteins and that (considering also the known affinity of 4.1R for PS) the formation of PS-rich lipid domains, which have been observed in the red cell membrane, may be a result.  相似文献   

11.
Phosphatidylserine (PS) is a well-characterized biomarker for apoptosis. Ligands that bind to PS can be used for noninvasive imaging of therapy-induced cell death, particularly apoptosis. In this study, we screened a random 12-mer peptide phage library on liposomes prepared from PS. One clone displaying the peptide SVSVGMKPSPRP (designated as PS3-10) bound to PS approximately 4-fold better than its binding to phosphatidylcholine and 18-fold better than to bovine serum albumin in a solid-phase binding assay. In addition, the binding of the corresponding PS3-10 peptide to PS was significantly higher than that of a scrambled peptide. PS3-10 phages, but not a control 4-2-2 phage, bound to aged red blood cells that had PS exposed on their surface. Binding of PS3-10 phages and PS3-10 peptide to TRAIL-induced apoptotic DLD1 cells was 3.2 and 5.4 times higher than their binding to untreated viable cells, respectively. Significantly, immunohistochemical staining confirmed selective binding of PS3-10 phages to apoptotic cells. Our data suggest that panning of phage display libraries may allow the selection of suitable peptide ligands for apoptotic cells and that PS3-10 peptide may serve as a template for further development of molecular probes for in vitro and in vivo imaging of apoptosis.  相似文献   

12.
Chemical modification of bovine prothrombin fragment 1 according to the procedure of D. J. Welsch and G. L. Nelsestuen (1988) [Biochemistry 27, 4946-4952 and ealier papers] provided a series of fragment 1 derivatives in which various nitrogen-containing side chains were N-acetylated and/or N-2,4,6-trinitrophenylated. In addition the des-[Ala-1,Asn-2]- and des-[Ala-1,Asn-2,Lys-3]-fragment 1 derivatives were prepared by limited enzymatic hydrolysis of fragment 1 using cathepsin C and plasmin, respectively. Quantitative studies on the Ca(II) binding of these proteins have been accomplished using 45Ca(II) equilibrium dialysis. Binding of these fragment 1 derivatives to phosphatidylserine/phosphatidylcholine (PS/PC) vesicles (25:75) in the presence of Ca(II) ions has been studied using the light-scattering technique. Acylation of the 5 lysine residues of fragment 1 by the action of acetic anhydride (500-fold molar excess) in the presence of 75 mM Ca(II), pH 8.0, results in loss of positive cooperativity in Ca(II) binding (Scatchard plot) and an increase in the number of Ca(II) ions bound. The Ca(II)-dependent PS/PC binding of the acylated protein is reduced. Removal of 2 and 3 residues from the amino terminus likewise leads to loss of positive cooperativity in Ca(II) binding and reduced binding affinity to PS/PC vesicles. The important role of the amino-terminal 1-10 sequence is discussed. We conclude that positive cooperativity in Ca(II) binding is not a prerequisite for the Ca(II)-dependent binding of bovine prothrombin fragment 1 to PS/PC vesicles.  相似文献   

13.
The entry of enveloped animal viruses into their host cells always depends on membrane fusion triggered by conformational changes in viral envelope glycoproteins. Vesicular stomatitis virus (VSV) infection is mediated by virus spike glycoprotein G, which induces membrane fusion between the viral envelope and the endosomal membrane at the acidic environment of this compartment. In this work, we evaluated VSV interactions with membranes of different phospholipid compositions, at neutral and acidic pH, using atomic force microscopy (AFM) operating in the force spectroscopy mode, isothermal calorimetry (ITC) and molecular dynamics simulation. We found that the binding forces differed dramatically depending on the membrane phospholipid composition, revealing a high specificity of G protein binding to membranes containing phosphatidylserine (PS). In a previous work, we showed that the sequence corresponding amino acid 164 of VSV G protein was as efficient as the virus in catalyzing membrane fusion at pH 6.0. Here, we used this sequence to explore VSV–PS interaction using ITC. We found that peptide binding to membranes was exothermic, suggesting the participation of electrostatic interactions. Peptide–membrane interaction at pH 7.5 was shown to be specific to PS and dependent on the presence of His residues in the fusion peptide. The application of the simplified continuum Gouy–Chapman theory to our system predicted a pH of 5.0 at membrane surface, suggesting that the His residues should be protonated when located close to the membrane. Molecular dynamics simulations suggested that the peptide interacts with the lipid bilayer through its N-terminal residues, especially Val145 and His148. Fabiana A.Carneiro and Pedro A. Lapido-Loureiro contributed equally to this work An erratum to this article can be found at  相似文献   

14.
Phosphatidylserine (PS) plays a crucial role, in the conversion of prothrombin into thrombin by the protease, factor Xa. Physiologically, the conversion occurs in the prothrombinase complex. The question of how water-soluble proteins that normally circulate in plasma bind remains to be unambiguously determined. We previously found that the amphitropic proteins (prothrombin, factors V and Va) penetrate into phospholipid layers. AC polarography has allowed the detection for the first time of insertion of factor Xa into condensed monolayers containing phosphatidylserine (PS) and phosphatidylcholine (PC) either 100% PS or 25% PS in the presence of Ca2+. This observation demonstrates that part of factor Xa can cross the phospholipid polar headgroup/hydrocarbon chain interface. In parallel experiments, radioactive surface measurements permitted measuring binding of tritium-labeled factor Xa onto a PS monolayer and calculate an association constant, 6x10(6) M(-1). Penetration of factor Xa into PS-containing vesicles was investigated also using photoactivable 5-[125I]iodonaphthalene-1-azide, which binds selectively to the lipid embedded domains of the protein. These experiments suggest that Factor Xa penetrates preferentially by its heavy chain, an alternative mode of binding to the commonly accepted binding via its Gla domain. Interaction of factor Xa with PS vesicles also changes its apparent K(m) for S 2222.  相似文献   

15.
The clathrin-induced fusion of liposome membranes, the membrane binding of clathrin, and the conformational states of clathrin were investigated over a wide pH range using large unilamellar and multilamellar vesicles composed of phosphatidylserine (PS), phosphatidylcholine (PC), PS/PC (2:1), PS/PC (1:1), or PS/PC (1:2). The pH profiles of clathrin-induced fusion of all types of liposomes containing PS showed biphasic patterns. Their pH thresholds were found in the pH range of 5-6 and shifted to lower pH values with decrease in the PS content. Similar shifts were observed in the pH range of 5-6 and shifted to lower pH values with decrease in the PS content. Similar shifts were observed in the pH profiles of clathrin binding to these vesicles, but the pH profiles of binding were different from the biphasic fusion patterns. With PC vesicles, only small degrees of fusion and clathrin binding were observed at pH 2-4. The pH dependences of the conformation and hydrophobicity of clathrin were determined by measuring the extent of the blue shift of the fluorescence maximum of 1-anilinonaphthalene-8-sulfonate in the presence of the protein, the fluorescence intensity of N-(1-anilinonaphthyl-4)maleimide bound to the clathrin molecule, the resonance energy transfer from its tryptophan to anilinonaphthyl residues, the partitioning of the protein in Triton X-114 solution, and the hydrophobicity index of clathrin using cis-parinaric acid. These measurements indicated that conformational change and exposure of hydrophobic regions occur below pH 6 and suggested that clathrin may adopt different conformational states in the pH region where it induced membrane fusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
New steroidal alkaloids from the bulbs of Fritillaria puqiensis   总被引:3,自引:0,他引:3  
Jiang Y  Li P  Li HJ  Yu H 《Steroids》2006,71(9):843-848
Six new steroidal alkaloids, namely puqienines C-E (1-3), puqiedine (4), 3alpha-puqiedin-7-ol (5), and puqietinedione (6), along with two known steroidal alkaloids puqiedinone (7) and peimisine (8), were isolated from the bulbs of Fritillaria puqiensis G.D. Yu et G.Y. Chen (Liliaceae). Their structures were elucidated on the basis of spectroscopic analysis, including 1D and 2D NMR experiments. Among these alkaloids, 1-3 had a veratramine-type skeleton, 4, 5, 7 a cevanine-type skeleton, 6 a secosolanidine-type skeleton, and 8 a jervine-type skeleton. The existence of multiple types of steroidal skeletons, especially of relatively large amount of veratramine-type alkaloids in one species is rare in the genus Fritillaria, and the results might be of chemotaxonomic significance for this species.  相似文献   

17.
18.
Vesicular stomatitis virus (VSV) infection depends on the fusion of viral and cellular membranes, which is mediated by virus spike glycoprotein G at the acidic environment of the endosomal compartment. VSV G protein does not contain a hydrophobic amino acid sequence similar to the fusion peptides found among other viral glycoproteins, suggesting that membrane recognition occurs through an alternative mechanism. Here we studied the interaction between VSV G protein and liposomes of different phospholipid composition by force spectroscopy, isothermal titration calorimetry (ITC), and fluorescence spectroscopy. Force spectroscopy experiments revealed the requirement for negatively charged phospholipids for VSV binding to membranes, suggesting that this interaction is electrostatic in nature. In addition, ITC experiments showed that VSV binding to liposomes is an enthalpically driven process. Fluorescence data also showed the lack of VSV interaction with the vesicles as well as inhibition of VSV-induced membrane fusion at high ionic strength. Intrinsic fluorescence measurements showed that the extent of G protein conformational changes depends on the presence of phosphatidylserine (PS) on the target membrane. Although the increase in PS content did not change the binding profile, the rate of the fusion reaction was remarkably increased when the PS content was increased from 25 to 75%. On the basis of these data, we suggest that G protein binding to the target membrane essentially depends on electrostatic interactions, probably between positive charges on the protein surface and negatively charged phospholipids in the cellular membrane. In addition, the fusion is exothermic, indicating no entropic constraints to this process.  相似文献   

19.
The VWF A1 domain seems to possess two heparin binding regions (residues 565-587 and 633-648) displaying positively charged amino acids, but the overall polyanion-A1 domain interaction scheme remains essentially elusive. To probe this molecular reaction as well as the role of electrostatic forces in VWF-heparin interaction, we performed mutagenesis and molecular modeling experiments. Fifteen mutated rVWFs were expressed [R571A, K572A, R573A, K585A, R571A/K572A/R573A, R578A/R579A, R578A/R579A/K585A, R571A/K572A/R573A/R578A/R579A/K585A (6A), K642G, K643G, K644G, K645G, K642G/K645G, K643G/K644G, and K642G/K643G/K644G/K645G (4G)]. Experimental results indicate that the multimeric structure of the mutants was similar to that of wild-type (WT) rVWF and that all rVWFs displayed normal binding to four conformation-dependent mAbs directed against the A1 domain. Three variants displayed significant reductions in the level of heparin binding. The 6A variant showed 39.2 +/- 1.3% of the WT rVWF level (p < 0.005), while mutants K643G/K644G and 4G showed 63.6 +/- 3.2 and 53.3 +/- 5% of the WT rVWF level, respectively (p < 0.005). Computational investigations showed that one face of the A1 domain is strongly electropositive, indicating that electrostatic forces should be essential in steering heparin onto its binding site. In agreement with our experimental data, the most striking alterations of the electrostatic potential contours were seen for mutants 4G, K643G/K644G, and 6A. Our data suggest that two clusters, one at positions 571-573, 578, 579, and 585 and the other at positions 642-645, act in concert for the recognition of heparin, forming a single extended binding surface across the electropositive face of the VWF A1 domain. A structural model of the VWF A1 domain-heparin complex is proposed, taking into account both experimental and computer modeling data.  相似文献   

20.
Two groups of bacteriophage clones displaying the antigenic properties of serotype 6B pneumococcal capsular polysaccharide (PS) were obtained from different phage libraries expressing random heptameric peptides. One group, biopanned with a mouse mAb (Hyp6BM1), is comprised of 17 phage clones expressing 10 unique sequences of linear peptides. The other group, selected with another mAb (Hyp6BM8), contained six clones, all of which expressed the identical circular peptide. Phage clones expressing the linear peptides (e.g., PhaM1L3) bound only to Hyp6BM1, but not other 6B PS-specific mAb, and their binding could be inhibited with pneumococcal capsular type 6B PS only. In contrast, a phage clone expressing the circular peptide (PhaM8C1) cross-reacted with several other 6B PS-specific mAbs, and their binding could be inhibited with pneumococcal capsular PS of 6A and 6B serotypes. Two short peptides, PepM1L3 and PepM8C1, reflecting the peptide inserts of the corresponding phage clones, could inhibit the binding of the two clones to their respective mAb. Interestingly, the peptide insert in PhaM8C1 was identical to that in PhaB3C4, a previously reported mimotope of alpha(2-->8) polysialic acid, Neisseria meningitidis group B PS. Indeed, PhaM8C1 bound to HmenB3 (a meningococcal Ab), and their association could be inhibited with alpha(2-8) polysialic acid, but not with 6B PS. Conversely, alpha(2-8) polysialic acid could not inhibit the binding of PhaM8C1 to Hyp6BM8. The two-dimensional nuclear magnetic resonance studies indicate that PepM8C1 peptide can assume several conformations in solution. The ability of this peptide to assume multiple conformations might account for its ability to mimic more than one Ag type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号