共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmentally transmitted pathogens face ecological interactions (e.g., competition, predation, parasitism) in the outside-host environment and host immune system during infection. Despite the ubiquitousness of environmental opportunist pathogens, traditional epidemiology focuses on obligatory pathogens incapable of environmental growth. Here we ask how competitive interactions in the outside-host environment affect the dynamics of an opportunist pathogen. We present a model coupling the classical SI and Lotka–Volterra competition models. In this model we compare a linear infectivity response and a sigmoidal infectivity response. An important assumption is that pathogen virulence is traded off with competitive ability in the environment. Removing this trade-off easily results in host extinction. The sigmoidal response is associated with catastrophic appearances of disease outbreaks when outside-host species richness, or overall competition pressure, decreases. This indicates that alleviating outside-host competition with antibacterial substances that also target the competitors can have unexpected outcomes by providing benefits for opportunist pathogens. These findings may help in developing alternative ways of controlling environmental opportunist pathogens. 相似文献
2.
3.
Matteo Marcantonio Annapaola Rizzoli Markus Metz Roberto Rosà Giovanni Marini Elizabeth Chadwick Markus Neteler 《PloS one》2015,10(3)
West Nile Virus (WNV) is a globally important mosquito borne virus, with significant implications for human and animal health. The emergence and spread of new lineages, and increased pathogenicity, is the cause of escalating public health concern. Pinpointing the environmental conditions that favour WNV circulation and transmission to humans is challenging, due both to the complexity of its biological cycle, and the under-diagnosis and reporting of epidemiological data. Here, we used remote sensing and GIS to enable collation of multiple types of environmental data over a continental spatial scale, in order to model annual West Nile Fever (WNF) incidence across Europe and neighbouring countries. Multi-model selection and inference were used to gain a consensus from multiple linear mixed models. Climate and landscape were key predictors of WNF outbreaks (specifically, high precipitation in late winter/early spring, high summer temperatures, summer drought, occurrence of irrigated croplands and highly fragmented forests). Identification of the environmental conditions associated with WNF outbreaks is key to enabling public health bodies to properly focus surveillance and mitigation of West Nile virus impact, but more work needs to be done to enable accurate predictions of WNF risk. 相似文献
4.
Lisandro Benedetti-Cecchi Antonio Canepa Veronica Fuentes Laura Tamburello Jennifer E. Purcell Stefano Piraino Jason Roberts Ferdinando Boero Patrick Halpin 《PloS one》2015,10(10)
Jellyfish outbreaks are increasingly viewed as a deterministic response to escalating levels of environmental degradation and climate extremes. However, a comprehensive understanding of the influence of deterministic drivers and stochastic environmental variations favouring population renewal processes has remained elusive. This study quantifies the deterministic and stochastic components of environmental change that lead to outbreaks of the jellyfish Pelagia noctiluca in the Mediterranen Sea. Using data of jellyfish abundance collected at 241 sites along the Catalan coast from 2007 to 2010 we: (1) tested hypotheses about the influence of time-varying and spatial predictors of jellyfish outbreaks; (2) evaluated the relative importance of stochastic vs. deterministic forcing of outbreaks through the environmental bootstrap method; and (3) quantified return times of extreme events. Outbreaks were common in May and June and less likely in other summer months, which resulted in a negative relationship between outbreaks and SST. Cross- and along-shore advection by geostrophic flow were important concentrating forces of jellyfish, but most outbreaks occurred in the proximity of two canyons in the northern part of the study area. This result supported the recent hypothesis that canyons can funnel P. noctiluca blooms towards shore during upwelling. This can be a general, yet unappreciated mechanism leading to outbreaks of holoplanktonic jellyfish species. The environmental bootstrap indicated that stochastic environmental fluctuations have negligible effects on return times of outbreaks. Our analysis emphasized the importance of deterministic processes leading to jellyfish outbreaks compared to the stochastic component of environmental variation. A better understanding of how environmental drivers affect demographic and population processes in jellyfish species will increase the ability to anticipate jellyfish outbreaks in the future. 相似文献
5.
6.
Strawberries are a popular economic crop, and one of the major plantations and exporting countries is Korea in the world. The Fusarium oxysporum species complex (FOSC) is a soil-borne pathogen with genetic diversity, resulting in wilt disease in various crops. In Korea, strawberries wilt disease was first reported in the 1980s due to the infection of FOSC, causing significant economic damage every year. The causal agent, F. oxysporum f. sp. fragariae, is a soil-borne pathogen with a characteristic of FOSC that is difficult to control chemically and mutates easily. This study obtained genetic polymorphism information that was based on AFLP, of F. oxysporum f. sp. fragariae 91 strains, which were isolated from strawberry cultivation sites in Gyeongsangnam-do and Chungcheongnam-do, and compared strains information, which was the isolated location, host variety, response to chemical fungicide, and antagonistic bacteria, and mycelium phenotype. As a result, AFLP phylogeny found that two groups were mainly present, and group B was present at a high frequency in Gyeongsangnam-do. Group B proved less sensitive to tebuconazole than group A through Student’s t-test. In addition, the fractions pattern of AFLP was calculated by comparing the strain information using PCA and PERMANOVA, and the main criteria were separated localization and strawberry varieties (PERMANOVA; p < 0.05). And tebuconazole was different with weak confidence (PERMANOVA; p < 0.10). This study suggests that the F. oxysporum f. sp. fragariae should be continuously monitored and managed, including group B, which is less chemically effective. 相似文献
7.
8.
Cryptococcus is an opportunistic pathogen that lives in the environment as a free-living yeast and inflicts disease in humans, primarily in immunocompromised patients such as organ-transplant recipients and people with HIV/AIDS. A key factor allowing emergence of this fungal pathogen is a copper-containing laccase enzyme that facilitates nutrient foraging as a saprophyte and offers protection against environmental dangers such as free-living amoebae and mammalian macrophages during infection. The promiscuous substrate specificity of laccase facilitates the degradation of hard plant lignin polymers as well as the synthesis of lignin-like pigments from plant flavonoids and melanin pigments from dopamine. The enzyme also possesses an iron oxidase activity that prevents Fenton product formation in macrophages and another activity that allows synthesis of immune-modulatory prostaglandins that fool the host, shutting off an effective immune response. This review provides a brief overview of key points in laccase function and its role in virulence, as well as regulation and trafficking of the enzyme during the interconversion between saprophyte and pathogen, yielding insights into pathogenesis from this adaptable pathogen. 相似文献
9.
Aines Castro-Prieto Bettina Wachter Joerg Melzheimer Susanne Thalwitzer Heribert Hofer Simone Sommer 《PloS one》2012,7(11)
Background
Genes under selection provide ecologically important information useful for conservation issues. Major histocompatibility complex (MHC) class I and II genes are essential for the immune defence against pathogens from intracellular (e.g. viruses) and extracellular (e.g. helminths) origins, respectively. Serosurvey studies in Namibian cheetahs (Acinonyx juabuts) revealed higher exposure to viral pathogens in individuals from north-central than east-central regions. Here we examined whether the observed differences in exposure to viruses influence the patterns of genetic variation and differentiation at MHC loci in 88 free-ranging Namibian cheetahs.Methodology/Principal Findings
Genetic variation at MHC I and II loci was assessed through single-stranded conformation polymorphism (SSCP) analysis and sequencing. While the overall allelic diversity did not differ, we observed a high genetic differentiation at MHC class I loci between cheetahs from north-central and east-central Namibia. No such differentiation in MHC class II and neutral markers were found.Conclusions/Significance
Our results suggest that MHC class I variation mirrors the variation in selection pressure imposed by viruses in free-ranging cheetahs across Namibian farmland. This is of high significance for future management and conservation programs of this species. 相似文献10.
11.
12.
The purpose of the article is to test the relationship between national identities and modernisation. We test the hypotheses that not all forms of identity are equally compatible with modernisation as measured by Human Development Index. The less developed societies are characterised by strong ascribed national identities based on birth, territory and religion, but also by strong voluntarist identities based on civic features selected and/or achieved by an individual. While the former decreases with further modernisation, the latter may either decrease or remain at high levels and coexist with instrumental supranational identifications, typical for the most developed countries. The results, which are also confirmed by multilevel regression models, thus demonstrate that increasing modernisation in terms of development contributes to the shifts from classical, especially ascribed, identities towards instrumental identifications. These findings are particularly relevant in the turbulent times increasingly dominated by the hardly predictable effects of the recent mass migrations. 相似文献
13.
14.
Pathogenic microorganisms may survive the composting process in low numbers and subsequently regrow to high levels under favorable conditions. The objective of this study was to investigate the regrowth potential of Salmonella spp., Escherichia coli O157:H7, and Listeria monocytogenes in dairy-based composts under different environmental conditions. Water extract of commercially available dairy compost was used as a model system. Cocktails of five rifampin-resistant strains of each pathogen previously grown in reduced nutrient media (1/2 or 1/10 strength of tryptic soy broth, TSB) were inoculated into water extract of compost of different ratios (1:2,1:5, and 1:10, w/v), and then stored at 35°C or 22°C for 7 days. The strains exhibiting greatest survival or regrowth were identified by pulsed-field gel electrophoresis (PFGE). At 22°C, both E. coli O157:H7 and L. monocytogenes multiplied in all compost extracts, whereas Salmonella spp. regrew in both 1:2 and 1:5 compost extracts but not in 1:10. For all three pathogens, incubation at 22°C provides better conditions for regrowth than at 35°C. Both Salmonella and E. coli O157:H7 previously adapted to nutrient-limited broth (1/10 strength of TSB) regrew in compost extracts to higher populations than the control cultures grown previously in full strength of TSB. In the absence of indigenous microorganisms, all three pathogens regrew even in the most diluted sterile compost extract (1:10) with growth potentials ranging from 2.30 to 3.59 log CFU/ml. In nonsterile compost extract with ca. 5 log CFU/ml of background microorganisms, all three pathogens regrew only in the most concentrated compost extract (1:2) with much less population increases ranging from 0.70 to 1.43 log CFU/ml. Compost extract samples of all ages supported the regrowth of both Salmonella and E. coli O157:H7 with population increases ranging from 0.95 to 2.32 log CFU/ml. The PFGE patterns for E. coli O157:H7 isolates from sterile compost extracts matched with either the spinach outbreak strain or an avirulent B6914 strain. These results demonstrated that compost extract of dairy-based compost contained sufficient nutrients for pathogen regrowth. Cultures previously adapted to low nutrient media regrew to higher populations than control cultures; however, indigenous microflora suppressed the pathogen regrowth in compost extract, especially at 35°C. 相似文献
15.
Katherine García Rafael Torres Paulina Uribe Cristina Hernández M. Luisa Rioseco Jaime Romero Romilio T. Espejo 《Applied and environmental microbiology》2009,75(23):7482-7487
Seafood consumption-related diarrhea became prevalent in Chile when the pandemic strain of Vibrio parahaemolyticus serotype O3:K6 reached a region in the south of Chile (Region de los Lagos) where approximately 80% of the country''s seafood is produced. In spite of the large outbreaks of clinical infection, the load of V. parahaemolyticus in shellfish of this region is relatively low. The pandemic strain constitutes a small but relatively stable group of a diverse V. parahaemolyticus population, composed of at least 28 genetic groups. Outbreaks in Region de los Lagos began in 2004 and reached a peak in 2005 with 3,725 clinical cases, all associated with the pandemic strain. After 2005, reported cases steadily decreased to a total of 477 cases in 2007. At that time, 40% of the clinical cases were associated with a pandemic strain of a different serotype (O3:K59), and 27% were related to V. parahaemolyticus isolates unrelated to the pandemic strain. In the results published here, we report that in the summer of 2008, when reported cases unexpectedly increased from 477 to 1,143, 98% of the clinical cases were associated with the pandemic strain serotype O3:K6, a change from 2007. Nevertheless, in 2009, when clinical cases decreased to 441, only 64% were related to the pandemic strain; the remaining cases were related to a nonpandemic tdh- and trh-negative strain first identified in shellfish in 2006. Overall, our observations indicate that the pandemic strain has become a relatively stable subpopulation and that when the number of diarrhea cases related to the pandemic strain is low, previously undetected V. parahaemolyticus pathogenic strains become evident.Diarrhea associated with seafood consumption is caused primarily by pathogenic V. parahaemolyticus. This species includes marine bacterial strains, only a few of which are pathogenic in humans (13). The load of pathogenic strains in shellfish depends on physical environmental variables, such as temperature and salinity, and on biological variables including the presence of protozoan predators, competing nonpathogenic bacteria, and bacteriophages capable of killing V. parahaemolyticus (21). Therefore, diarrhea outbreaks caused by V. parahaemolyticus are mainly an environmental problem. Records of the Public Health Institute of Chile indicate that from 1992 to 1997 diarrhea cases related to seafood consumption were not widespread in Chile in spite of the large consumption of raw shellfish. Cases of seafood-related diarrhea increased greatly with the arrival of the pandemic strain O3:K6, originally observed in Southeast Asia (9). This strain corresponds to a clonal complex. The clonal nature of the V. parahaemolyticus pandemic isolates obtained worldwide has been ascertained by the high degree of similarity among their genomes. This comparison includes the presence of specific genetic markers and similarity of the restriction patterns of their genomes, demonstrated by genome restriction fragment length polymorphism-pulsed-field gel electrophoresis (22), direct genome restriction enzyme analysis (DGREA) (8), arbitrarily primed PCR (15, 18), and multilocus sequence typing (6, 10). Characteristics of isolates of the O3:K6 pandemic clone are the O3:K6 antigens, a distinctive toxRS sequence (toxRSnew) (15), orf8 (17) and tdh genes, and the absence of the trh gene found in some pathogenic strains. However, numerous serovariants have apparently emerged since 1996 (16). Genome sequencing of the RIMD 2210633 pandemic strain revealed two sets of gene clusters encoding a type III secretion system apparatus, one in each of its two chromosomes (14).Since 2004, we have characterized the strains of V. parahaemolyticus in both clinical cases and shellfish in a southern region of Chile (Region de los Lagos) in an effort to understand the proliferation of the pathogenic strains in the environment (7, 8, 11). Region de los Lagos extends from 40°13′S to 44°3′S and produces approximately 80% of the seafood in Chile (Anuario 2008 Sernapesca [http://www.sernapesca.cl]). It is generally accepted that the seafood from this region causes most of the clinical cases of V. parahaemolyticus-associated diarrhea observed in the entire country. The large diarrhea outbreaks related to seafood consumption started in this region in 2004. In 2005, cases reported by the Ministry of Health reached a peak of 3,600 and 10,984 in Region de los Lagos and the whole country, respectively. Since then, the number of cases has oscillated between 450 and 1,100 cases annually in Region de los Lagos and between 1,500 and 3,500 in the country as a whole (19).Until 2007, more than 95% of the cases were related to the classical pandemic V. parahaemolyticus strain O3:K6 (7, 8). Variants of the pandemic strain were recovered in the summer of 2007, when the outbreaks diminished to 477 reported cases in Region de los Lagos. That year, many cases were caused by a new serovar of the pandemic strain, O3:K59 (11). This same year, a larger percentage of cases analyzed (27%) were due to nonpandemic strains. Some of these last cases corresponded to a strain apparently generated by transference of the pathogenicity island containing the type III secretion island from the pandemic clone to an indigenous V. parahaemolyticus strain (11). Another example of interactions between the pandemic strain and native microflora is the finding of variants containing a 42-kb plasmid corresponding to a telomeric temperate phage (24). The observations in 2007 suggested that the changes in the epidemiology of seafood-related diarrhea represented an inflection point in outbreak trends and a decreased prevalence of the pandemic strain in clinical cases. We present here the results of the analysis of V. parahaemolyticus in clinical cases and shellfish samples obtained during the summer of 2008, when reported cases unexpectedly increased from 477 to 1,143, and the summer of 2009, when clinical cases decreased to 441 (http://epi.minsal.cl/epi/html/elvigia/elvigia.htm). The number of cases observed in 2009 was the lowest since the beginning of large outbreaks in 2004. Overall, our observations illustrate the dynamics of V. parahaemolyticus population in outbreaks of diarrhea. They show the following: (i) that the pandemic strain has become a relatively stable subpopulation of the V. parahaemolyticus population in shellfish, (ii) that pandemic strain variants have emerged, and (iii) that V. parahaemolyticus pathogenic strains unrelated to the pandemic strains become evident when the number of diarrhea cases due to the pandemic strain are low. These data will be helpful in the understanding of V. parahaemolyticus ecology and improving the risk analysis of seafood related diarrhea. 相似文献
16.
17.
Francisco A. Cubillos Oliver Stegle Cécile Grondin Matthieu Canut Sébastien Tisné Isabelle Gy Olivier Loudet 《The Plant cell》2014,26(11):4298-4310
cis- and trans-acting factors affect gene expression and responses to environmental conditions. However, for most plant systems, we lack a comprehensive map of these factors and their interaction with environmental variation. Here, we examined allele-specific expression (ASE) in an F1 hybrid to study how alleles from two Arabidopsis thaliana accessions affect gene expression. To investigate the effect of the environment, we used drought stress and developed a variance component model to estimate the combined genetic contributions of cis- and trans-regulatory polymorphisms, environmental factors, and their interactions. We quantified ASE for 11,003 genes, identifying 3318 genes with consistent ASE in control and stress conditions, demonstrating that cis-acting genetic effects are essentially robust to changes in the environment. Moreover, we found 1618 genes with genotype x environment (GxE) interactions, mostly cis x E interactions with magnitude changes in ASE. We found fewer trans x E interactions, but these effects were relatively less robust across conditions, showing more changes in the direction of the effect between environments; this confirms that trans-regulation plays an important role in the response to environmental conditions. Our data provide a detailed map of cis- and trans-regulation and GxE interactions in A. thaliana, laying the ground for mechanistic investigations and studies in other plants and environments. 相似文献
18.
19.
J. Pickford Marsden 《BMJ (Clinical research ed.)》1948,1(4544):275-276
20.
Coastal zones encompass a complex spectrum of environmental gradients that each impact the composition of bacterioplankton
communities. Few studies have attempted to address these gradients comprehensively. We generated a synoptic, 16S rRNA gene-based
bacterioplankton community profile of a coastal zone by applying the fingerprinting technique denaturing gradient gel electrophoresis
to water samples collected from the Columbia River, estuary, and plume, and along coastal transects covering 360 km of the
Oregon and Washington coasts and extending to the deep ocean (>2,000 m). Communities were found to cluster into five distinct
groups based on location in the system (ANOSIM, p < 0.003): estuary, plume, epipelagic, shelf bottom (depth < 150 m), and slope bottom (depth > 650 m). Across all environments,
abiotic factors (salinity, temperature, depth) explained most of the community variability (ρ = 0.734). But within each coastal environment, biotic factors explained most of the variability. Thus, structuring physical
factors in coastal zones, such as salinity and temperature, define the boundaries of many distinct microbial habitats, but
within these habitats variability in microbial communities is explained by biological gradients in primary and secondary productivity. 相似文献