首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous research has shown that loading information on working memory affects selective attention. However, whether the load effect on selective attention is domain-general or domain-specific remains unresolved. The domain-general effect refers to the findings that load in one content (e.g. phonological) domain in working memory influences processing in another content (e.g., visuospatial) domain. Attentional control supervises selection regardless of information domain. The domain-specific effect refers to the constraint of influence only when maintenance and processing operate in the same domain. Selective attention operates in a specific content domain. This study is designed to resolve this controversy. Across three experiments, we manipulated the type of representation maintained in working memory and the type of representation upon which the participants must exert control to resolve conflict and select a target into the focus of attention. In Experiments 1a and 1b, participants maintained digits and nonverbalized objects, respectively, in working memory while selecting a target in a letter array. In Experiment 2, we presented auditory digits with a letter flanker task to exclude the involvement of resource competition within the same input modality. In Experiments 3a and 3b, we replaced the letter flanker task with an object flanker task while manipulating the memory load on object and digit representation, respectively. The results consistently showed that memory load modulated distractibility only when the stimuli of the two tasks were represented in the same domain. The magnitude of distractor interference was larger under high load than under low load, reflecting a lower efficacy of information prioritization. When the stimuli of the two tasks were represented in different domains, memory load did not modulate distractibility. Control of processing priority in selective attention demands domain-specific resources.  相似文献   

2.
Shuman M  Kanwisher N 《Neuron》2004,44(3):557-569
Behavioral evidence suggests that human adults have a single system for representing the numerical magnitude of both symbolic numbers (e.g., Arabic digits) and nonsymbolic number stimuli (e.g., dot arrays). Brain imaging studies have implicated a specific parietal region in symbolic number processing, leading to the influential hypothesis that this region is the locus of a dedicated, domain-specific number system. Here we evaluated a prediction of this hypothesis, that this region should be activated not only by symbolic but also nonsymbolic number processing. Using nonsymbolic stimuli, we tested for higher parietal activations for number than for nonnumber comparison tasks (experiment 1), fMRI adaptation for numerosity repetition (experiment 2), and greater fMRI increases with increasing task difficulty for number than nonnumber tasks (experiment 3). None of these predictions were supported by the data, posing a serious challenge to the hypothesis that a single, domain-specific parietal region underlies both symbolic and nonsymbolic number representation.  相似文献   

3.
Piazza M  Pinel P  Le Bihan D  Dehaene S 《Neuron》2007,53(2):293-305
Activation of the horizontal segment of the intraparietal sulcus (hIPS) has been observed in various number-processing tasks, whether numbers were conveyed by symbolic numerals (digits, number words) or by nonsymbolic displays (dot patterns). This suggests an abstract coding of numerical magnitude. Here, we critically tested this hypothesis using fMRI adaptation to demonstrate notation-independent coding of numerical quantity in the hIPS. Once subjects were adapted either to dot patterns or to Arabic digits, activation in the hIPS and in frontal regions recovered in a distance-dependent fashion whenever a new number was presented, irrespective of notation changes. This remained unchanged when analyzing the hIPS peaks from an independent localizer scan of mental calculation. These results suggest an abstract coding of approximate number common to dots, digits, and number words. They support the idea that symbols acquire meaning by linking neural populations coding symbol shapes to those holding nonsymbolic representations of quantities.  相似文献   

4.
How are numerical operations implemented within the human brain? It has been suggested that there are at least three different codes for representing number: a verbal code that is used to manipulate number words and perform mental numerical operations (e.g., multiplication), a visual code that is used to decode frequently used visual number forms (e.g., Arabic digits), and an abstract analog code that may be used to represent numerical quantities. Furthermore, each of these codes is associated with a different neural substrate. We extend these studies using dense-sensor event-related EEG recording techniques to investigate the temporal pattern of notation-specific effects observed in a parity judgement (odd versus even) task in which single numbers were presented in one of four different numerical notations. Contrasts between different notations demonstrated clear modulations in the visual evoked potentials (VEP) recorded. We observed increased amplitudes for the P1 and N1 components of the VEP that were specific to Arabic numerals and to dot configurations but differed for random and recognizable (die-face) dot configurations. These results demonstrate clear, notation-specific differences in the time course of numerical information processing and provide electrophysiological support for the triple-code model of numerical representation.  相似文献   

5.
We propose a neural circuit model of changes in amount of information maintained in short-term memory depending on stimuli relationships. The relationships between stimuli are represented by the synchronous firings of overlapping neuronal groups for semantically related stimuli and the excitatory mutual connections for semantically unrelated but simultaneously presented stimuli. We conduct computer simulations to confirm our proposed neural circuit model. The resultant numbers of stored informational input patterns are almost consistent with the maximum numbers in the psychological experiments for both semantically related and unrelated stimuli. This agreement with the psychological experiments suggests that the structure and informational representation of the proposed model are appropriate.  相似文献   

6.
7.
Are the information processing steps that support short-term sensory memory common to all the senses? Systematic, psychophysical comparison requires identical experimental paradigms and comparable stimuli, which can be challenging to obtain across modalities. Participants performed a recognition memory task with auditory and visual stimuli that were comparable in complexity and in their neural representations at early stages of cortical processing. The visual stimuli were static and moving Gaussian-windowed, oriented, sinusoidal gratings (Gabor patches); the auditory stimuli were broadband sounds whose frequency content varied sinusoidally over time (moving ripples). Parallel effects on recognition memory were seen for number of items to be remembered, retention interval, and serial position. Further, regardless of modality, predicting an item's recognizability requires taking account of (1) the probe's similarity to the remembered list items (summed similarity), and (2) the similarity between the items in memory (inter-item homogeneity). A model incorporating both these factors gives a good fit to recognition memory data for auditory as well as visual stimuli. In addition, we present the first demonstration of the orthogonality of summed similarity and inter-item homogeneity effects. These data imply that auditory and visual representations undergo very similar transformations while they are encoded and retrieved from memory.  相似文献   

8.
Recalling information from visual short-term memory (VSTM) involves the same neural mechanisms as attending to an actually perceived scene. In particular, retrieval from VSTM has been associated with orienting of visual attention towards a location within a spatially-organized memory representation. However, an open question concerns whether spatial attention is also recruited during VSTM retrieval even when performing the task does not require access to spatial coordinates of items in the memorized scene. The present study combined a visual search task with a modified, delayed central probe protocol, together with EEG analysis, to answer this question. We found a temporal contralateral negativity (TCN) elicited by a centrally presented go-signal which was spatially uninformative and featurally unrelated to the search target and informed participants only about a response key that they had to press to indicate a prepared target-present vs. -absent decision. This lateralization during VSTM retrieval (TCN) provides strong evidence of a shift of attention towards the target location in the memory representation, which occurred despite the fact that the present task required no spatial (or featural) information from the search to be encoded, maintained, and retrieved to produce the correct response and that the go-signal did not itself specify any information relating to the location and defining feature of the target.  相似文献   

9.
Exploring the cortical evidence of a sensory-discrimination process   总被引:1,自引:0,他引:1  
Humans and monkeys have similar abilities to discriminate the difference in frequency between two consecutive mechanical vibrations applied to their fingertips. This task can be conceived as a chain of neural operations: encoding the two consecutive stimuli, maintaining the first stimulus in working memory, comparing the second stimulus with the memory trace left by the first stimulus and communicating the result of the comparison to the motor apparatus. We studied this chain of neural operations by recording and manipulating neurons from different areas of the cerebral cortex while monkeys performed the task. The results indicate that neurons of the primary somatosensory cortex (S1) generate a neural representation of vibrotactile stimuli which correlates closely with psychophysical performance. Discrimination based on microstimulation patterns injected into clusters of S1 neurons is indistinguishable from that produced by natural stimuli. Neurons from the secondary somatosensory cortex (S2), prefrontal cortex and medial premotor cortex (MPC) display at different times the trace of the first stimulus during the working-memory component of the task. Neurons from S2 and MPC appear to show the comparison between the two stimuli and correlate with the behavioural decisions. These neural operations may contribute to the sensory-discrimination process studied here.  相似文献   

10.
A memory system in the monkey   总被引:9,自引:0,他引:9  
A neural model is presented, based largely on evidence from studies in monkeys, postulating that coded representation of stimuli are stored in the higher-order sensory (i.e. association) areas of the cortex whenever stimulus activation of these areas also triggers a cortico-limbo-thalamo-cortical circuit. This circuit, which could act as either an imprinting or rehearsal mechanism, may actually consist of two parallel circuits, one involving the amygdala and the dorsomedial nucleus of the thalamus, and the other the hippocampus and the anterior nuclei. The stimulus representation stored in cortex by action of these circuits is seen as mediating three different memory processes: recognition, which occurs when the stored representation is reactivated via the original sensory pathway; recall, when it is reactivated via any other pathway; and association, when it activates other stored representations (sensory, affective, spatial, motor) via the outputs of the higher-order sensory areas to the relevant structures.  相似文献   

11.
The representation of actions within the action-observation network is thought to rely on a distributed functional organization. Furthermore, recent findings indicate that the action-observation network encodes not merely the observed motor act, but rather a representation that is independent from a specific sensory modality or sensory experience. In the present study, we wished to determine to what extent this distributed and ‘more abstract’ representation of action is truly supramodal, i.e. shares a common coding across sensory modalities. To this aim, a pattern recognition approach was employed to analyze neural responses in sighted and congenitally blind subjects during visual and/or auditory presentation of hand-made actions. Multivoxel pattern analyses-based classifiers discriminated action from non-action stimuli across sensory conditions (visual and auditory) and experimental groups (blind and sighted). Moreover, these classifiers labeled as ‘action’ the pattern of neural responses evoked during actual motor execution. Interestingly, discriminative information for the action/non action classification was located in a bilateral, but left-prevalent, network that strongly overlaps with brain regions known to form the action-observation network and the human mirror system. The ability to identify action features with a multivoxel pattern analyses-based classifier in both sighted and blind individuals and independently from the sensory modality conveying the stimuli clearly supports the hypothesis of a supramodal, distributed functional representation of actions, mainly within the action-observation network.  相似文献   

12.
In this controlled experiment we examined whether there are content effects in verbal short-term memory and working memory for verbal stimuli. Thirty-seven participants completed forward and backward digit and letter recall tasks, which were constructed to control for distance effects between stimuli. A maximum-likelihood mixed-effects logistic regression revealed main effects of direction of recall (forward vs backward) and content (digits vs letters). There was an interaction between type of recall and content, in which the recall of digits was superior to the recall of letters in verbal short-term memory but not in verbal working memory. These results demonstrate that the recall of information from verbal short-term memory is content-specific, whilst the recall of information from verbal working memory is content-general.  相似文献   

13.
The maximum amount of information that can be stored, on the average, in each storage element, according to an associative scheme, has been measured for the memory model proposed by the author (Bottini 1980). In this model, the (binary) items being stored are coded by noise-like keys and the memory traces formed in this way are superimposed, by algebraic addition, on the same many-level storage elements. It is shown that the problem of measuring the information retrieved from the memory in a single recall and the problem — concerning the data-communication field —of measuring the information transmitted over a noisy channel are formally similar. In particular, the Shannon noisy-channel coding theorem can find an application also in our case of an associative memory. Finally, it is evidenced that the so-called matrix model of an associative memory has the same storage capacity as the model studied here.  相似文献   

14.
The ability to map between non-symbolic numerical magnitudes and Arabic numerals has been put forward as a key factor in children’s mathematical development. This mapping ability has been mainly examined indirectly by looking at children’s performance on a symbolic magnitude comparison task. The present study investigated mapping in a more direct way by using a task in which children had to choose which of two choice quantities (Arabic digits or dot arrays) matched the target quantity (dot array or Arabic digit), thereby focusing on small quantities ranging from 1 to 9. We aimed to determine the development of mapping over time and its relation to mathematics achievement. Participants were 36 first graders (M = 6 years 8 months) and 46 third graders (M = 8 years 8 months) who all completed mapping tasks, symbolic and non-symbolic magnitude comparison tasks and standardized timed and untimed tests of mathematics achievement. Findings revealed that children are able to map between non-symbolic and symbolic representations and that this mapping ability develops over time. Moreover, we found that children’s mapping ability is related to timed and untimed measures of mathematics achievement, over and above the variance accounted for by their numerical magnitude comparison skills.  相似文献   

15.
We sought to determine the effect of time and temperature of blood sample storage before preparation of human peripheral blood mononuclear cells (PBMCs) by Ficoll-hypaque density gradient centrifugation. Blood samples from healthy donors were stored at room temperature (RT) or refrigerated at 4°C before preparation of PBMCs. Cell yield and viability, and proportions of major cell populations within PBMCs, as determined by fluorescence flow cytometry, were assessed for both fresh and cryopreserved samples. Highly multiparametric mass cytometry was performed on cryopreserved PBMCs. We found that refrigeration had marked negative effects on subsequent PBMC yield. Storage at RT led to co-purification of low density neutrophils with PBMCs, but had no detectable effects on the proportions of multiple cell subsets including, but not limited to, monocytes, NK cells, B cells, Treg cells, and naïve, central memory and effector memory CD4+ and CD8+ T cells and CD45RA-positive terminal effector CD8+ T cells. Expression of a number of cell surface receptors, including CXCR5, CCR6, CXCR3 and TIGIT, but not CD247 was reduced after RT storage before PBMC preparation, and this effect correlated with the degree of low density neutrophil contamination. As such, when PBMC preparation cannot be undertaken immediately after blood draw, storage at RT is far superior to refrigeration. RT storage leads to neutrophil activation, but does not compromise measurement of PBMC subset distribution. However caution must be applied to interpretation of cytometric measurements of surface molecules such as chemokine receptors.  相似文献   

16.
CD4+ central memory T cells play a critical role in the pathogenesis of simian immunodeficiency virus disease, and the CCR5 density on the surface of CD4 T cells is an important factor in human immunodeficiency virus (HIV)-1 disease progression. We hypothesized that quantifying central memory cells and CCR5 expression in the early stages of HIV-infection could provide useful prognostic information. We enrolled two different groups of acute HIV-infected subjects. One group progressed to CD4 T cell numbers below 250 cells/µl within 2 years (CD4 Low group), while the other group maintained CD4 cell counts above 450 cells/µl over 2 years (CD4 High group). We compared the CCR5 levels and percentage of CD4 subsets between the two groups during the 1st year of HIV infection. We found no differences between the two groups regarding the percentage of naïve, central memory and effector memory subsets of CD4 cells during the 1st year of HIV-1 infection. CCR5 levels on CD4+ CM subset was higher in the CD4 Low group compared with the CD4 High group during the 1st year of HIV-1 infection. High CCR5 levels on CD4 central memory cells in acute HIV infection are mostly associated with rapid disease progression. Our data suggest that low CCR5 expression on CD4 central memory cells protects CD4 cells from direct virus infection and favors the preservation of CD4+ T cell homeostasis.  相似文献   

17.
Sorting objects and events into categories and concepts is an important cognitive prerequisite that spares an individual the learning of every object or situation encountered in its daily life. Accordingly, specific items are classified in general groups that allow fast responses to novel situations. The present study assessed whether bamboo sharks Chiloscyllium griseum and Malawi cichlids Pseudotropheus zebra can distinguish sets of stimuli (each stimulus consisting of two abstract, geometric objects) that meet two conceptual preconditions, i.e., (1) “sameness” versus “difference” and (2) a certain spatial arrangement of both objects. In two alternative forced choice experiments, individuals were first trained to choose two different, vertically arranged objects from two different but horizontally arranged ones. Pair discriminations were followed by extensive transfer test experiments. Transfer tests using stimuli consisting of (a) black and gray circles and (b) squares with novel geometric patterns provided conflicting information with respect to the learnt rule “choose two different, vertically arranged objects”, thereby investigating (1) the individuals’ ability to transfer previously gained knowledge to novel stimuli and (2) the abstract relational concept(s) or rule(s) applied to categorize these novel objects. Present results suggest that the level of processing and usage of both abstract concepts differed considerably between bamboo sharks and Malawi cichlids. Bamboo sharks seemed to combine both concepts—although not with equal but hierarchical prominence—pointing to advanced cognitive capabilities. Conversely, Malawi cichlids had difficulties in discriminating between symbols and failed to apply the acquired training knowledge on new sets of geometric and, in particular, gray-level transfer stimuli.  相似文献   

18.
Buchsbaum BR  Olsen RK  Koch P  Berman KF 《Neuron》2005,48(4):687-697
To hear a sequence of words and repeat them requires sensory-motor processing and something more-temporary storage. We investigated neural mechanisms of verbal memory by using fMRI and a task designed to tease apart perceptually based ("echoic") memory from phonological-articulatory memory. Sets of two- or three-word pairs were presented bimodally, followed by a cue indicating from which modality (auditory or visual) items were to be retrieved and rehearsed over a delay. Although delay-period activation in the planum temporale (PT) was insensible to the source modality and showed sustained delay-period activity, the superior temporal gyrus (STG) activated more vigorously when the retrieved items had arrived to the auditory modality and showed transient delay-period activity. Functional connectivity analysis revealed two topographically distinct fronto-temporal circuits, with STG co-activating more strongly with ventrolateral prefrontal cortex and PT co-activating more strongly with dorsolateral prefrontal cortex. These argue for separate contributions of ventral and dorsal auditory streams in verbal working memory.  相似文献   

19.
In this article, we tested, using a 1-year longitudinal design, whether symbolic numerical magnitude processing or children’s numerical representation of Arabic digits, is as important to arithmetic as phonological awareness is to reading. Children completed measures of symbolic comparison, phonological awareness, arithmetic, reading at the start of third grade and the latter two were retested at the start of fourth grade. Cross-sectional and longitudinal correlations indicated that symbolic comparison was a powerful domain-specific predictor of arithmetic and that phonological awareness was a unique predictor of reading. Crucially, the strength of these independent associations was not significantly different. This indicates that symbolic numerical magnitude processing is as important to arithmetic development as phonological awareness is to reading and suggests that symbolic numerical magnitude processing is a good candidate for screening children at risk for developing mathematical difficulties.  相似文献   

20.
It was examined whether stimulus modality (auditory vs. visual) affects the retrieval of subjective duration from memory. In two experiments the temporal generalization paradigm was used. Participants had to decide whether the previously learned standard duration (400 ms) occurred in the context of comparison stimuli. Two major results were found. (1) Discrimination was more accurate if the training and testing stimuli were of the same modality than if they were of opposite modalities. (2) If both modality of learning and modality of testing were different, subjects systematically underestimated the test durations, i.e. temporal generalization gradients (the proportion of identifications of a stimulus as the standard, plotted against stimulus duration) shifted to the right. The observed shift is interpreted as a result of a delayed timing process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号