首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Neurotrophins comprise a group of neuronal growth factors that are essential for the development and maintenance of the nervous system. However, the immature pro-neurotrophins promote apoptosis by engaging in a complex with sortilin and the p75 neurotrophin receptor (p75NTR). To identify the interaction site between sortilin and p75NTR, we analyzed binding between chimeric receptor constructs and truncated p75NTR variants by co-immunoprecipitation experiments, surface plasmon resonance analysis, and FRET. We found that complex formation between sortilin and p75NTR relies on contact points in the extracellular domains of the receptors. We also determined that the interaction critically depends on an extracellular juxtamembrane 23-amino acid sequence of p75NTR. Functional studies further revealed an important regulatory function of the sortilin intracellular domain in p75NTR-regulated intramembrane proteolysis and apoptosis. Thus, although the intracellular domain of sortilin does not contribute to p75NTR binding, it does regulate the rates of p75NTR cleavage, which is required to mediate pro-neurotrophin-stimulated cell death.  相似文献   

2.
Proneurotrophins mediate neuronal apoptosis using a dual receptor complex of sortilin and p75NTR. Although p75NTR is highly expressed on the plasma membrane and accessible to proneurotrophin ligands, sortilin is primarily localized to intracellular membranes, limiting the formation of a cell surface co‐receptor complex. Here, we show that the mammalian p75NTR homologue NRH2 critically regulates the expression of sortilin on the neuronal cell surface and promotes p75NTR and sortilin receptor complex formation, rendering cells responsive to proneurotrophins. This is accomplished by interactions between the cytoplasmic domains of NRH2 and sortilin that impair lysosomal degradation of sortilin. In proneurotrophin‐responsive neurons, acute silencing of endogenous NRH2 significantly reduces cell surface‐expressed sortilin and abolishes proneurotrophin‐induced neuronal death. Thus, these data suggest that NRH2 acts as a trafficking switch to impair lysosomal‐dependant sortilin degradation and to redistribute sortilin to the cell surface, rendering p75NTR‐expressing cells susceptible to proneurotrophin‐induced death.  相似文献   

3.

Background

Sortilin, a member of the Vps10p-domain receptor family, has been demonstrated a key regulator in mediating cellular response to pro-neurotrophins. In the present study, we investigated the role of sortilin in the apoptotic pathway of vascular smooth muscle cells.

Methods and Principal Findings

Immunohistochemistry revealed that sortilin was barely detectable in human and rat normal young vessels, while its expression was increased in human fibroatheromatous plaques. Sortilin immunodetection was also marked in the neointima of the rat aorta fifteen days after ballooning. In vitro, rat aortic intimal cells expressed higher sortilin levels than normal media SMCs; sortilin was distributed in the cytoplasm and in correspondence of the cell membrane. After 48 h, pro-nerve growth factor (proNGF) induced the strong dose-dependent increase of intimal cell apoptosis and the accumulation of sortilin protein. ProNGF was a more potent apoptotic inducer than equimolar or even higher concentration of NGF, whereas brain derived neutrotrophic factor was ineffective. Targeted interfering RNA-mediated sortilin reduction counteracted proNGF-induced apoptosis without affecting p75NTR expression. ProNGF-induced apoptosis was associated to NF-κB down-regulation and bax increase. Inhibition of NF-κB activity increased intimal cell apoptosis that did not further increase with the addition of proNGF.

Conclusions

Our results indicate that sortilin expression characterizes human atheromatous lesions and rat aortic post-injury neointima, and suggest that sortilin represents an important regulator of proNGF-induced SMC apoptosis and arterial remodeling.  相似文献   

4.
Our previous studies showed positive correlation between accumulation of proNGF, activation of RhoA and neuronal death in diabetic models. Here, we examined the neuroprotective effects of selective inhibition of RhoA kinase in the diabetic rat retina and in a model that stably overexpressed the cleavage-resistance proNGF plasmid in the retina. Male Sprague-Dawley rats were rendered diabetic using streptozotosin or stably express cleavage-resistant proNGF plasmid. The neuroprotective effects of the intravitreal injection of RhoA kinase inhibitor Y27632 were examined in vivo. Effects of proNGF were examined in freshly isolated primary retinal ganglion cell (RGC) cultures and RGC-5 cell line. Retinal neurodegeneration was assessed by counting TUNEL-positive and Brn-3a positive retinal ganglion cells. Expression of proNGF, p75NTR, cleaved-PARP, caspase-3 and p38MAPK/JNK were examined by Western-blot. Activation of RhoA was assessed by pull-down assay and G-LISA. Diabetes and overexpression of proNGF resulted in retinal neurodegeneration as indicated by 9- and 6-fold increase in TUNEL-positive cells, respectively. In vitro, proNGF induced 5-fold cell death in RGC-5 cell line, and it induced >10-fold cell death in primary RGC cultures. These effects were associated with significant upregulation of p75NTR and activation of RhoA. While proNGF induced TNF-α expression in vivo, it selectively activated RhoA in primary RGC cultures and RGC-5 cell line. Inhibiting RhoA kinase with Y27632 significantly reduced diabetes- and proNGF-induced activation of proapoptotic p38MAPK/JNK, expression of cleaved-PARP and caspase-3 and prevented retinal neurodegeneration in vivo and in vitro. Taken together, these results provide compelling evidence for a causal role of proNGF in diabetes-induced retinal neurodegeneration through enhancing p75NTR expression and direct activation of RhoA and p38MAPK/JNK apoptotic pathways.  相似文献   

5.
Amyloid β (Aβ) aggregates are the primary component of senile plaques in Alzheimer disease (AD) patient’s brain. Aβ is known to bind p75 neurotrophin receptor (p75NTR) and mediates Aβ-induced neuronal death. Recently, we showed that NGF leads to p75NTR polyubiquitination, which promotes neuronal cell survival. Here, we demonstrate that Aβ stimulation impaired the p75NTR polyubiquitination. TRAF6 and p62 are required for polyubiquitination of p75NTR on NGF stimulation. Interestingly, we found that overexpression of TRAF6/p62 restored p75NTR polyubiquitination upon Aβ/NGF treatment. Aβ significantly reduced NF-κB activity by attenuating the interaction of p75NTR with IKKβ. p75NTR increased NF-κB activity by recruiting TRAF6/p62, which thereby mediated cell survival. These findings indicate that TRAF6/p62 abrogated the Aβ-mediated inhibition of p75NTR polyubiquitination and restored neuronal cell survival.  相似文献   

6.
ProNGF and p75NTR are upregulated and induce cell death following status epilepticus (SE) in rats. However, less is known about the proneurotrophin response to SE in mice, a more genetically tractable species where mechanisms can be more readily dissected. We evaluated the temporal- and cell-specific induction of the proneurotrophins and their receptors, including p75NTR, sortilin, and sorCS2, following mild SE induced with kainic acid (KA) or severe SE induced by pilocarpine. We found that mature NGF, p75NTR, and proBDNF were upregulated following SE, while proNGF was not altered, indicating potential mechanistic differences between rats and mice. ProBDNF was localized to mossy fibers and microglia following SE. p75NTR was transiently induced primarily in axons and axon terminals following SE, as well as in neuron and astrocyte cell bodies. ProBDNF and p75NTR increased independently of cell death and their localization was different depending on the severity of SE. We also examined the expression of proneurotrophin co-receptors, sortilin and sorCS2. Following severe SE, sorCS2, but not sortilin, was elevated in neurons and astrocytes. These data indicate that important differences exist between rat and mouse in the proneurotrophin response following SE. Moreover, the proBDNF and p75NTR increase after seizures in the absence of significant cell death suggests that proneurotrophin signaling may play other roles following SE.  相似文献   

7.
Mature neurotrophins as well as their pro forms are critically involved in the regulation of neuronal functions. They are signaling through three distinct types of receptors: tropomyosin receptor kinase family (TrkA/B/C), p75 neurotrophin receptor (p75NTR) and sortilin. Aberrant expression of p75NTR in the CNS is implicated in a variety of neurodegenerative diseases, including Alzheimer’s disease. The goal of this work was to evaluate one of the very few reported p75NTR small molecule ligands as a lead compound for development of novel PET radiotracers for in vivo p75NTR imaging. Here we report that previously described ligand LM11A-24 shows significant inhibition of carbachol-induced persistent firing (PF) of entorhinal cortex (EC) pyramidal neurons in wild-type mice via selective interaction with p75NTR. Based on this electrophysiological assay, the compound has very high potency with an EC50 <10 nM. We optimized the radiosynthesis of [11C]LM11A-24 as the first attempt to develop PET radioligand for in vivo imaging of p75NTR. Despite some weak interaction with CNS tissues, the radiolabeled compound showed unfavorable in vivo profile presumably due to high hydrophilicity.  相似文献   

8.
The nerve growth factor precursor (proNGF) activates p75NTR receptor and promotes cell death in different tissues, yet this pathophysiological effect is not fully described in the bladder. The aim of this study was to identify the biological effect of proNGF/p75NTR activation on urothelial and smooth muscle (SM) cells of rodents' bladder. Cell viability was assessed by MTT assay which showed a significant reduction in urothelial viability after 24 h of incubation with proNGF in culture medium [5 or 10 nM], an effect not seen in SM cells. Western blot analysis on cellular protein extracts showed increased expression of the transmembrane TNF-α and activation of RhoA in urothelial cells exposed to proNGF with no evidence of a nuclear translocation of NF-κB assessed by western blotting on nuclear extracts and immunofluorescence. The activation of p75NTR-death domain related pathways in urothelial cells such as TNF-α or RhoA had a downstream effect on NO release and the junctional protein occludin, as estimated respectively by colorimetric and western blotting. On the other hand, proNGF did not induce TNF-α or RhoA expression in SM cells, but induced a significant NF-κB nuclear translocation. ProNGF had a different impact on SM as evidenced by a significant dose- and time-dependent increase in SM proliferation and migration examined by MTT test and cell migration assay. Together, our results indicate that activation of proNGF/p75NTR axis induces degenerative changes to the urothelial layer impacting its barrier and signaling integrity, while promoting adaptive proliferative changes in detrusor SM cells that can interfere with the contractile phenotype essential for proper bladder function.  相似文献   

9.
Both proNGF and the neurotrophin receptor p75 (p75(NTR)) are known to regulate photoreceptor cell death caused by exposure of albino mice to intense illumination. ProNGF-induced apoptosis requires the participation of sortilin as a necessary p75(NTR) co-receptor, suggesting that sortilin may participate in the photoreceptor degeneration triggered by intense lighting. We report here that light-exposed albino mice showed sortilin, p75(NTR), and proNGF expression in the outer nuclear layer, the retinal layer where photoreceptor cell bodies are located. In addition, cone progenitor-derived 661W cells subjected to intense illumination expressed sortilin and p75(NTR) and released proNGF into the culture medium. Pharmacological blockade of sortilin with either neurotensin or the "pro" domain of proNGF (pro-peptide) favored the survival of 661W cells subjected to intense light. In vivo, the pro-peptide attenuated retinal cell death in light-exposed albino mice. We propose that an auto/paracrine proapoptotic mechanism based on the interaction of proNGF with the receptor complex p75(NTR)/sortilin participates in intense light-dependent photoreceptor cell death. We therefore propose sortilin as a putative target for intervention in hereditary retinal dystrophies.  相似文献   

10.
Sortilin, a Golgi sorting protein and a member of the VPS10P family, is the co‐receptor for proneurotrophins, regulates protein trafficking, targets proteins to lysosomes, and regulates low density lipoprotein metabolism. The aim of this study was to investigate the expression and regulation of sortilin in Alzheimer's disease (AD). A significantly increased level of sortilin was found in human AD brain and in the brains of 6‐month‐old swedish‐amyloid precursor protein/PS1dE9 transgenic mice. Aβ42 enhanced the protein and mRNA expression levels of sortilin in a dose‐ and time‐dependent manner in SH‐SY5Y cells, but had no effect on sorLA. In addition, proBDNF also significantly increased the protein and mRNA expression of sortilin in these cells. The recombinant extracellular domain of p75NTR (P75ECD‐FC), or the antibody against the extracellular domain of p75NTR, blocked the up‐regulation of sortilin induced by Amyloid‐β protein (Aβ), suggesting that Aβ42 increased the expression level of sortilin and mRNA in SH‐SY5Y via the p75NTR receptor. Inhibition of ROCK, but not Jun N‐terminal kinase, suppressed constitutive and Aβ42‐induced expression of sortilin. In conclusion, this study shows that sortilin expression is increased in the AD brain in human and mice and that Aβ42 oligomer increases sortilin gene and protein expression through p75NTR and RhoA signaling pathways, suggesting a potential physiological interaction of Aβ42 and sortilin in Alzheimer's disease.

  相似文献   


11.
Nerve growth factor (NGF) is generated from a precursor, proNGF, that is proteolytically processed. NGF preferentially binds a trophic tyrosine kinase receptor, TrkA, while proNGF binds a neurotrophin receptor (NTR), p75NTR, that can have neurotoxic activity. Previously, we along with others showed that the soluble protein α2-macroglobulin (α2M) is neurotoxic. Toxicity is due in part to α2M binding to NGF and inhibiting trophic activity, presumably by preventing NGF binding to TrkA. However, the mechanisms remained unclear. Here, we show ex vivo and in vivo three mechanisms for α2M neurotoxicity. First, unexpectedly the α2M-NGF complexes do bind TrkA receptors but do not induce TrkA dimerization or activation, resulting in deficient trophic support. Second, α2M makes stable complexes with proNGF, conveying resistance to proteolysis that results in more proNGF and less NGF. Third, α2M-proNGF complexes bind p75NTR and are more potent agonists than free proNGF, inducing tumor necrosis factor alpha (TNF-α) production. Hence, α2M regulates proNGF/p75NTR positively and mature NGF/TrkA negatively, causing neuronal death ex vivo. These three mechanisms are operative in vivo, and α2M causes neurodegeneration in a p75NTR- and proNGF-dependent manner. α2M could be exploited as a therapeutic target, or as a modifier of neurotrophin signals.  相似文献   

12.
Neurotrophins and their receptors are known to play a role in the proliferation and survival of many different cell types of neuronal and non-neuronal lineages. In addition, there is much evidence in the literature showing that the p75 neurotrophin receptor (p75NTR), alone or in association with members of the family of Trk receptors, is expressed in a wide variety of stem cells, although its role in such cells has not been completely elucidated. In the present work we have investigated the expression of p75NTR and Trks in totipotent and pluripotent cells, the mouse pre-implantation embryo and embryonic stem and germ cells (ES and EG cells). p75NTR and TrkA can be first detected in the blastocyst from which ES cell lines are derived. Mouse ES cells retain p75NTR/TrkA expression. Nerve growth factor is the only neurotrophin able to stimulate ES cell growth in culture, without affecting the expression of stem cell markers, alkaline phosphatase, Oct4 and Nanog. Such proliferation effect was blocked by antagonizing either p75NTR or TrkA. Interestingly, immunoreactivity to anti-p75NTR antibodies is lost upon ES cell differentiation. The expression pattern of neurotrophin receptors in murine ES cells differs from human ES cells, that only express TrkB and C, and do not respond to NGF. In this paper we also show that, while primordial germ cells (PGC) do not express p75NTR, when they are made to revert to an ES-like phenotype, becoming EG cells, expression of p75NTR is turned on.  相似文献   

13.
The plasticity mechanisms in the nervous system that are important for learning and memory are greatly impacted during aging. Notably, hippocampal‐dependent long‐term plasticity and its associative plasticity, such as synaptic tagging and capture (STC), show considerable age‐related decline. The p75 neurotrophin receptor (p75NTR) is a negative regulator of structural and functional plasticity in the brain and thus represents a potential candidate to mediate age‐related alterations. However, the mechanisms by which p75NTR affects synaptic plasticity of aged neuronal networks and ultimately contribute to deficits in cognitive function have not been well characterized. Here, we report that mutant mice lacking the p75NTR were resistant to age‐associated changes in long‐term plasticity, associative plasticity, and associative memory. Our study shows that p75NTR is responsible for age‐dependent disruption of hippocampal homeostatic plasticity by modulating several signaling pathways, including BDNF, MAPK, Arc, and RhoA‐ROCK2‐LIMK1‐cofilin. p75NTR may thus represent an important therapeutic target for limiting the age‐related memory and cognitive function deficits.  相似文献   

14.
Amyloid β (Aβ) aggregates are the primary component of senile plaques in Alzheimer disease (AD) patient’s brain. Aβ is known to bind p75 neurotrophin receptor (p75NTR) and mediates Aβ-induced neuronal death. Recently, we showed that NGF leads to p75NTR polyubiquitination, which promotes neuronal cell survival. Here, we demonstrate that Aβ stimulation impaired the p75NTR polyubiquitination. TRAF6 and p62 are required for polyubiquitination of p75NTR on NGF stimulation. Interestingly, we found that overexpression of TRAF6/p62 restored p75NTR polyubiquitination upon Aβ/NGF treatment. Aβ significantly reduced NF-κB activity by attenuating the interaction of p75NTR with IKKβ. p75NTR increased NF-κB activity by recruiting TRAF6/p62, which thereby mediated cell survival. These findings indicate that TRAF6/p62 abrogated the Aβ-mediated inhibition of p75NTR polyubiquitination and restored neuronal cell survival.  相似文献   

15.
The precursor of nerve growth factor (proNGF) has been described as a biologically active polypeptide able to induce apoptosis in neuronal cells, via the neurotrophin receptor p75(NTR) and the sortilin receptor. Herein, it is shown that proNGF is produced and secreted by breast cancer cells, stimulating their invasion. Using Western blotting and mass spectrometry, proNGF was detected in a panel of breast cancer cells as well as in their conditioned media. Immunohistochemical analysis indicated an overproduction of proNGF in breast tumors, when compared with benign and normal breast biopsies, and a relationship to lymph node invasion in ductal carcinomas. Interestingly, siRNA against proNGF induced a decrease of breast cancer cell invasion that was restored by the addition of non-cleavable proNGF. The activation of TrkA, Akt, and Src, but not the MAP kinases, was observed. In addition, the proNGF invasive effect was inhibited by the Trk pharmacological inhibitor K252a, a kinase-dead TrkA, and siRNA against TrkA sortilin, neurotensin, whereas siRNA against p75(NTR) and the MAP kinase inhibitor PD98059 had no impact. These data reveal the existence of an autocrine loop stimulated by proNGF and mediated by TrkA and sortilin, with the activation of Akt and Src, for the stimulation of breast cancer cell invasion.  相似文献   

16.
17.
The p75 neurotrophin receptor (p75NTR) is a critical mediator of neuronal death and tissue remodeling and has been implicated in various neurodegenerative diseases and cancers. The death domain (DD) of p75NTR is an intracellular signaling hub and has been shown to interact with diverse adaptor proteins. In breast cancer cells, binding of the adaptor protein TRADD to p75NTR depends on nerve growth factor and promotes cell survival. However, the structural mechanism and functional significance of TRADD recruitment in neuronal p75NTR signaling remain poorly understood. Here we report an NMR structure of the p75NTR-DD and TRADD-DD complex and reveal the mechanism of specific recognition of the TRADD-DD by the p75NTR-DD mainly through electrostatic interactions. Furthermore, we identified spatiotemporal overlap of p75NTR and TRADD expression in developing cerebellar granule neurons (CGNs) at early postnatal stages and discover the physiological relevance of the interaction between TRADD and p75NTR in the regulation of canonical NF-κB signaling and cell survival in CGNs. Our results provide a new structural framework for understanding how the recruitment of TRADD to p75NTR through DD interactions creates a membrane-proximal platform, which can be efficiently regulated by various neurotrophic factors through extracellular domains of p75NTR, to propagate downstream signaling in developing neurons.  相似文献   

18.
Human periodontal ligament stem cells (hPDLSCs) are a promising source in regenerative medicine. Due to the complexity and heterogeneity of hPDLSCs, it is critical to isolate homogeneous hPDLSCs with high regenerative potential. In this study, p75 neurotrophin receptor (p75NTR) was used to isolate p75NTR+ and p75NTR? hPDLSCs by fluorescence‐activated cell sorting. Differences in osteogenic differentiation among p75NTR+, p75NTR? and unsorted hPDLSCs were observed. Differential gene expression profiles between p75NTR+ and p75NTR? hPDLSCs were analysed by RNA sequencing. α1 Integrin (ITGA1) small interfering RNA and ITGA1‐overexpressing adenovirus were used to transfect p75NTR+ and p75NTR? hPDLSCs. The results showed that p75NTR+ hPDLSCs demonstrated superior osteogenic capacity than p75NTR? and unsorted hPDLSCs. Differentially expressed genes between p75NTR+ and p75NTR? hPDLSCs were highly involved in the extracellular matrix‐receptor interaction signalling pathway, and p75NTR+ hPDLSCs expressed higher ITGA1 levels than p75NTR? hPDLSCs. ITGA1 silencing inhibited the osteogenic differentiation of p75NTR+ hPDLSCs, while ITGA1 overexpression enhanced the osteogenic differentiation of p75NTR? hPDLSCs . These findings indicate that p75NTR optimizes the osteogenic potential of hPDLSCs by up‐regulating ITGA1 expression, suggesting that p75NTR can be used as a novel cell surface marker to identify and purify hPDLSCs to promote their applications in regenerative medicine.  相似文献   

19.
Nerve growth factor (NGF) is critical for the proliferation, differentiation, and survival of neurons through its binding to the p75NTR and TrkA receptors. Dysregulation of NGF has been implicated in several pathologies, including neurodegeneration (i.e., Parkinson's and Alzheimer's diseases) and both inflammatory and neuropathic pain states. Therefore, small molecule inhibitors that block NGF–receptor interactions have significant therapeutic potential. Small molecule antagonists ALE-0540, PD90780, Ro 08-2750, and PQC 083 have all been reported to inhibit NGF from binding the TrkA receptor. Interestingly, the characterization of the ability of these molecules to block NGF–p75NTR interactions has not been performed. In addition, the inhibitory action of these molecules has never been evaluated using surface plasmon resonance (SPR) spectroscopy, which has been proven to be highly useful in drug discovery applications. In the current study, we used SPR biosensors to characterize the binding of NGF to the p75NTR receptor in addition to characterizing the inhibitory potential of the known NGF antagonists. The results of this study provide the first evaluation of the ability of these compounds to block NGF binding to p75NTR receptor. In addition, only PD90780 was effective at inhibiting the interaction of NGF with p75NTR, suggesting receptor selectivity between known NGF inhibitors.  相似文献   

20.
Rabies virus glycoprotein (RVG) is known to be the only factor that mediates rabies infection. The neurotrophin receptor (p75NTR), through its cysteine-rich domain 1, is a specific receptor for RVG and neutralizes virus infectivity, but its role in virus infection has remained obscure. We used adult mouse dorsal root ganglion (DRG) neurons as a model to study the role of p75NTR in RV infection of primary neurons. We show that RV infects around 20% of DRG neurons, of which more than 80% are p75NTR positive, have large diameters, and are capsaicin insensitive. Surprisingly, RV binding and infection are absent in about half of the p75NTR-expressing DRG neurons which have small diameters and are often capsaicin sensitive. This indicates that p75NTR is not sufficient to mediate RV interaction in sensory neurons. The rate and specificity of neural infection are unchanged in RV-infected p75NTRExonIV−/− mice that lack all extracellular receptor domains and in wild-type mice infected with two independent RV mutants that lack p75NTR binding. Accordingly, the mortality rate is unchanged in the absence of RV-p75NTR interaction. We conclude that although p75NTR is a receptor for soluble RVG in transfected cells of heterologous expression systems, an RVG-p75NTR interaction is not necessary for RV infection of primary neurons. This means that other receptors are required to mediate RV infection in vivo and in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号