共查询到20条相似文献,搜索用时 51 毫秒
1.
W. Ray Waters Mitchell V. Palmer Brian J. Nonnecke Tyler C. Thacker D. Mark Estes Michelle H. Larsen William R. Jacobs Jr Peter Andersen James McNair F. C. Minion Konstantin P. Lyashchenko R. Glyn Hewinson H. Martin Vordermeier Randy E. Sacco 《PloS one》2009,4(7)
Background
Early secretory antigenic target-6 (ESAT-6) and culture filtrate protein-10 (CFP-10) are co-secreted proteins of Mycobacterium tuberculosis complex mycobacteria (includes M. bovis, the zoonotic agent of bovine tuberculosis) involved in phagolysosome escape of the bacillus and, potentially, in the efficient induction of granulomas. Upon tuberculosis infection, multi-nucleate giant cells are elicited, likely as a response aimed at containing mycobacteria. In tissue culture models, signal regulatory protein (SIRP)α (also referred to as macrophage fusion receptor or CD172a) is essential for multi-nucleate giant cell formation.Methodology/Principal Findings
In the present study, ESAT-6/CFP-10 complex and SIRPα interactions were evaluated with samples obtained from calves experimentally infected with M. bovis. Peripheral blood CD172a+ (SIRPα-expressing) cells from M. bovis-infected calves proliferated upon in vitro stimulation with ESAT-6/CFP-10 (either as a fusion protein or a peptide cocktail), but not with cells from animals receiving M. bovis strains lacking ESAT-6/CFP-10 (i.e, M. bovis BCG or M. bovis ΔRD1). Sorted CD172a+ cells from these cultures had a dendritic cell/macrophage morphology, bound fluorescently-tagged rESAT-6:CFP-10, bound and phagocytosed live M. bovis BCG, and co-expressed CD11c, DEC-205, CD44, MHC II, CD80/86 (a subset also co-expressed CD11b or CD8α). Intradermal administration of rESAT-6:CFP-10 into tuberculous calves elicited a delayed type hypersensitive response consisting of CD11c+, CD172a+, and CD3+ cells, including CD172a-expressing multi-nucleated giant cells.Conclusions/Significance
These findings demonstrate the ability of ESAT-6/CFP-10 to specifically expand CD172a+ cells, bind to CD172a+ cells, and induce multi-nucleated giant cells expressing CD172a. 相似文献2.
Cecilia Koskinen Emelie Persson Paul Baldock ?sa Stenberg Ingrid Bostr?m Takashi Matozaki Per-Arne Oldenborg Pernilla Lundberg 《The Journal of biological chemistry》2013,288(41):29333-29344
Here, we investigated whether the cell surface glycoprotein CD47 was required for normal formation of osteoblasts and osteoclasts and to maintain normal bone formation activity in vitro and in vivo. In parathyroid hormone or 1α,25(OH)2-vitamin D3 (D3)-stimulated bone marrow cultures (BMC) from CD47−/− mice, we found a strongly reduced formation of multinuclear tartrate-resistant acid phosphatase (TRAP)+ osteoclasts, associated with reduced expression of osteoclastogenic genes (nfatc1, Oscar, Trap/Acp, ctr, catK, and dc-stamp). The production of M-CSF and RANKL (receptor activator of nuclear factor κβ ligand) was reduced in CD47−/− BMC, as compared with CD47+/+ BMC. The stromal cell phenotype in CD47−/− BMC involved a blunted expression of the osteoblast-associated genes osterix, Alp/Akp1, and α-1-collagen, and reduced mineral deposition, as compared with that in CD47+/+ BMC. CD47 is a ligand for SIRPα (signal regulatory protein α), which showed strongly reduced tyrosine phosphorylation in CD47−/− bone marrow stromal cells. In addition, stromal cells lacking the signaling SIRPα cytoplasmic domain also had a defect in osteogenic differentiation, and both CD47−/− and non-signaling SIRPα mutant stromal cells showed a markedly reduced ability to support osteoclastogenesis in wild-type bone marrow macrophages, demonstrating that CD47-induced SIRPα signaling is critical for stromal cell support of osteoclast formation. In vivo, femoral bones of 18- or 28-week-old CD47−/− mice showed significantly reduced osteoclast and osteoblast numbers and exhibited an osteopenic bone phenotype. In conclusion, lack of CD47 strongly impairs SIRPα-dependent osteoblast differentiation, deteriorate bone formation, and cause reduced formation of osteoclasts. 相似文献
3.
Chia Chi M. Ho Nan Guo Jonathan T. Sockolosky Aaron M. Ring Kipp Weiskopf Engin ?zkan Yasuo Mori Irving L. Weissman K. Christopher Garcia 《The Journal of biological chemistry》2015,290(20):12650-12663
CD47 is a cell surface protein that transmits an anti-phagocytic signal, known as the “don''t-eat-me” signal, to macrophages upon engaging its receptor signal regulatory protein α (SIRPα). Molecules that antagonize the CD47-SIRPα interaction by binding to CD47, such as anti-CD47 antibodies and the engineered SIRPα variant CV1, have been shown to facilitate macrophage-mediated anti-tumor responses. However, these strategies targeting CD47 are handicapped by large antigen sinks in vivo and indiscriminate cell binding due to ubiquitous expression of CD47. These factors reduce bioavailability and increase the risk of toxicity. Here, we present an alternative strategy to antagonize the CD47-SIRPα pathway by engineering high affinity CD47 variants that target SIRPα, which has restricted tissue expression. CD47 proved to be refractive to conventional affinity maturation techniques targeting its binding interface with SIRPα. Therefore, we developed a novel engineering approach, whereby we augmented the existing contact interface via N-terminal peptide extension, coined “Velcro” engineering. The high affinity variant (Velcro-CD47) bound to the two most prominent human SIRPα alleles with greatly increased affinity relative to wild-type CD47 and potently antagonized CD47 binding to SIRPα on human macrophages. Velcro-CD47 synergizes with tumor-specific monoclonal antibodies to enhance macrophage phagocytosis of tumor cells in vitro, with similar potency as CV1. Finally, Velcro-CD47 interacts specifically with a subset of myeloid-derived cells in human blood, whereas CV1 binds all myeloid, lymphoid, and erythroid populations interrogated. This is consistent with the restricted expression of SIRPα compared with CD47. Herein, we have demonstrated that “Velcro” engineering is a powerful protein-engineering tool with potential applications to other systems and that Velcro-CD47 could be an alternative adjuvant to CD47-targeting agents for cancer immunotherapy. 相似文献
4.
Nicole E. Brown Devrishi Goswami Mary Rose Branch Suneela Ramineni Eric A. Ortlund Patrick R. Griffin John R. Hepler 《The Journal of biological chemistry》2015,290(14):9037-9049
RGS14 contains distinct binding sites for both active (GTP-bound) and inactive (GDP-bound) forms of Gα subunits. The N-terminal regulator of G protein signaling (RGS) domain binds active Gαi/o-GTP, whereas the C-terminal G protein regulatory (GPR) motif binds inactive Gαi1/3-GDP. The molecular basis for how RGS14 binds different activation states of Gα proteins to integrate G protein signaling is unknown. Here we explored the intramolecular communication between the GPR motif and the RGS domain upon G protein binding and examined whether RGS14 can functionally interact with two distinct forms of Gα subunits simultaneously. Using complementary cellular and biochemical approaches, we demonstrate that RGS14 forms a stable complex with inactive Gαi1-GDP at the plasma membrane and that free cytosolic RGS14 is recruited to the plasma membrane by activated Gαo-AlF4−. Bioluminescence resonance energy transfer studies showed that RGS14 adopts different conformations in live cells when bound to Gα in different activation states. Hydrogen/deuterium exchange mass spectrometry revealed that RGS14 is a very dynamic protein that undergoes allosteric conformational changes when inactive Gαi1-GDP binds the GPR motif. Pure RGS14 forms a ternary complex with Gαo-AlF4− and an AlF4−-insensitive mutant (G42R) of Gαi1-GDP, as observed by size exclusion chromatography and differential hydrogen/deuterium exchange. Finally, a preformed RGS14·Gαi1-GDP complex exhibits full capacity to stimulate the GTPase activity of Gαo-GTP, demonstrating that RGS14 can functionally engage two distinct forms of Gα subunits simultaneously. Based on these findings, we propose a working model for how RGS14 integrates multiple G protein signals in host CA2 hippocampal neurons to modulate synaptic plasticity. 相似文献
5.
Dan-Qing Liu Li-Min Li Ya-Lan Guo Rui Bai Chen Wang Zhen Bian Chen-Yu Zhang Ke Zen 《PloS one》2008,3(9)
Background
Signal regulate protein α (SIRPα) is involved in many functional aspects of monocytes. Here we investigate the role of SIRPα in regulating β2 integrin-mediated monocyte adhesion, transendothelial migration (TEM) and phagocytosis.Methodology/Principal Findings
THP-1 monocytes/macropahges treated with advanced glycation end products (AGEs) resulted in a decrease of SIRPα expression but an increase of β2 integrin cell surface expression and β2 integrin-mediated adhesion to tumor necrosis factor-α (TNFα)–stimulated human microvascular endothelial cell (HMEC-1) monolayers. In contrast, SIRPα overexpression in THP-1 cells showed a significant less monocyte chemotactic protein-1 (MCP-1)–triggered cell surface expression of β2 integrins, in particular CD11b/CD18. SIRPα overexpression reduced β2 integrin-mediated firm adhesion of THP-1 cells to either TNFα–stimulated HMEC-1 monolayers or to immobilized intercellular adhesion molecule-1 (ICAM-1). SIRPα overexpression also reduced MCP-1–initiated migration of THP-1 cells across TNFα–stimulated HMEC-1 monolayers. Furthermore, β2 integrin-mediated THP-1 cell spreading and actin polymerization in response to MCP-1, and phagocytosis of bacteria were both inhibited by SIRPα overexpression.Conclusions/Significance
SIRPα negatively regulates β2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis, thus may serve as a critical molecule in preventing excessive activation and accumulation of monocytes in the arterial wall during early stage of atherosclerosis. 相似文献6.
Rama Krishna Gurram Weshely Kujur Sudeep K. Maurya Javed N. Agrewala 《The Journal of biological chemistry》2014,289(25):17515-17528
Cytokines play a very important role in the regulation of immune homeostasis. Regulatory T cells (Tregs) responsible for the generation of peripheral tolerance are under the tight regulation of the cytokine milieu. In this study, we report a novel role of a bipyridyl compound, Caerulomycin A (CaeA), in inducing the generation of Tregs. It was observed that CaeA substantially up-regulated the pool of Tregs, as evidenced by an increased frequency of CD4+ Foxp3+ cells. In addition, CaeA significantly suppressed the number of Th1 and Th17 cells, as supported by a decreased percentage of CD4+/IFN-γ+ and CD4+/IL-17+ cells, respectively. Furthermore, we established the mechanism and observed that CaeA interfered with IFN-γ-induced STAT1 signaling by augmenting SOCS1 expression. An increase in the TGF-β-mediated Smad3 activity was also noted. Furthermore, CaeA rescued Tregs from IFN-γ-induced inhibition. These results were corroborated by blocking Smad3 activity, which abolished the CaeA-facilitated generation of Tregs. In essence, our results indicate a novel role of CaeA in inducing the generation of Tregs. This finding suggests that CaeA has enough potential to be considered as a potent future drug for the treatment of autoimmunity. 相似文献
7.
8.
Depletion of Histone Deacetylase I Protein: A Common Consequence of Inflammatory Cytokine Signaling?
《Cell cycle (Georgetown, Tex.)》2013,12(23):2738-2743
The dynamics of histone acetylation and deacetylation have long been known to influence gene expression by cellular signaling pathways. However, the mechanisms that regulate histone acetyl transferases (HATs) and histone deacetylases (HDACs) by these pathways have only recently become the focus of scientific investigation, spurred by increasing knowledge that HDACs can promote cancer growth. We recently reported that pro-inflammatory signals such as tumor necrosis factor α (TNFα) induce HDAC1 ubiquitination and proteasomal degradation through the IκB kinase IKKβ. The resulting depletion of cellular HDAC1 levels lead to a consequent depletion of HDAC1 associated with the CDKN1A gene promoter and increased expression of its protein product, p21WAF1/CIP1. This phenomenon heralds a unique mechanism of HDAC regulation that modulates the pro-inflammatory activity of TNFα and other cytokines at the level of gene expression. Here we discuss the current knowledge of pro-inflammatory cytokine-induced regulation of gene expression, emphasizing the involvement of HDAC1, and its possible implications in inflammation, cancer, and their therapy. 相似文献
9.
LX Li SM Atif SE Schmiel SJ Lee SJ McSorley 《Journal of immunology (Baltimore, Md. : 1950)》2012,189(5):2537-2544
Recent studies have shed light on the connection between elevated erythropoetin production/spleen erythropoiesis and increased susceptibility to Salmonella infection. In this article, we provide another mouse model, the SIRPα-deficient (Sirpα(-/-)) mouse, that manifests increased erythropoiesis as well as heightened susceptibility to Salmonella infection. Sirpα(-/-) mice succumbed to systemic infection with attenuated Salmonella, possessing significantly higher bacterial loads in both the spleen and the liver. Moreover, Salmonella-specific Ab production and Ag-specific CD4 T cells were reduced in Sirpα(-/-) mice compared with wild-type controls. To further characterize the potential mechanism underlying SIRPα-dependent Ag-specific CD4 T cell priming, we demonstrate that lack of SIRPα expression on dendritic cells results in less efficient Ag processing and presentation in vitro. Collectively, these findings demonstrate an indispensable role of SIRPα for protective immunity to Salmonella infection. 相似文献
10.
Jundong Zhou Shuyu Zhang Jing Xue Jori Avery Jinchang Wu Stuart E. Lind Wei-Qun Ding 《The Journal of biological chemistry》2012,287(42):35161-35169
Activation of peroxisome proliferator-activated receptor α (PPARα) has been demonstrated to inhibit tumor growth and angiogenesis, yet the mechanisms behind these actions remain to be characterized. In this study, we examined the effects of PPARα activation on the hypoxia-inducible factor-1α (HIF-1α) signaling pathway in human breast (MCF-7) and ovarian (A2780) cancer cells under hypoxia. Incubation of cancer cells under 1% oxygen for 16 h significantly induced HIF-1α expression and activity as assayed by Western blotting and reporter gene analysis. Treatment of the cells with PPARα agonists, but not a PPARγ agonist, prior to hypoxia diminished hypoxia-induced HIF-1α expression and activity, and addition of a PPARα antagonist attenuated the suppression of HIF-1α signaling. Activation of PPARα attenuated hypoxia-induced HA-tagged HIF-1α protein expression without affecting the HA-tagged HIF-1α mutant protein level, indicating that PPARα activation promotes HIF-1α degradation in these cells. This was further confirmed using proteasome inhibitors, which reversed PPARα-mediated suppression of HIF-1α expression under hypoxia. Using the co-immunoprecipitation technique, we found that activation of PPARα enhances the binding of HIF-1α to von Hippel-Lindau tumor suppressor (pVHL), a protein known to mediate HIF-1α degradation through the ubiquitin-proteasome pathway. Following PPARα-mediated suppression of HIF-1α signaling, VEGF secretion from the cancer cells was significantly reduced, and tube formation by endothelial cells was dramatically impaired. Taken together, these findings demonstrate for the first time that activation of PPARα suppresses hypoxia-induced HIF-1α signaling in cancer cells, providing novel insight into the anticancer properties of PPARα agonists. 相似文献
11.
Cytokine modulation of the endothelium is considered an important contributor to the inflammation response. TNFα is an early response gene during the initiation of inflammation. However, the detailed mechanism by which TNFα induces proinflammatory gene expression is not completely understood. In this report, we demonstrate that silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) represses the expression of a subset of TNFα target genes in human umbilical vein endothelial cells. Upon TNFα stimulation, we observed an increase in the E3 ubiquitin ligase β-TrCP1 and a decrease in SMRT protein levels. We show that β-TrCP1 interacts with SMRT in a phosphorylation-independent manner and cooperates with the E2 ubiquitin-conjugating enzyme E2D2 to promote ubiquitination-dependent SMRT degradation. Knockdown of β-TrCP1 increases SMRT protein accumulation, increases SMRT association with its targeted promoters, and decreases SMRT target gene expression. Taken together, our results support a model in which TNFα-induced β-TrCP1 accumulation promotes SMRT degradation and the subsequent induction of proinflammatory gene expression. 相似文献
12.
Susanne Zeilinger Barbara Reithner Valeria Scala Isabel Peissl Matteo Lorito Robert L. Mach 《Applied microbiology》2005,71(3):1591-1597
Trichoderma species are used commercially as biocontrol agents against a number of phytopathogenic fungi due to their mycoparasitic characterisitics. The mycoparasitic response is induced when Trichoderma specifically recognizes the presence of the host fungus and transduces the host-derived signals to their respective regulatory targets. We made deletion mutants of the tga3 gene of Trichoderma atroviride, which encodes a novel G protein α subunit that belongs to subgroup III of fungal Gα proteins. Δtga3 mutants had changes in vegetative growth, conidiation, and conidial germination and reduced intracellular cyclic AMP levels. These mutants were avirulent in direct confrontation assays with Rhizoctonia solani or Botrytis cinerea, and mycoparasitism-related infection structures were not formed. When induced with colloidal chitin or N-acetylglucosamine in liquid culture, the mutants had reduced extracellular chitinase activity even though the chitinase-encoding genes ech42 and nag1 were transcribed at a significantly higher rate than they were in the wild type. Addition of exogenous cyclic AMP did not suppress the altered phenotype or restore mycoparasitic overgrowth, although it did restore the ability to produce the infection structures. Thus, T. atroviride Tga3 has a general role in vegetative growth and can alter mycoparasitism-related characteristics, such as infection structure formation and chitinase gene expression. 相似文献
13.
14.
Yu-Bo Wang Bo Tan Rui Mu Yan Chang Min Wu Hai-Qing Tu Yu-Cheng Zhang Sai-Sai Guo Xuan-He Qin Tao Li Wei-Hua Li Ai-Ling Li Xue-Min Zhang Hui-Yan Li 《The Journal of biological chemistry》2015,290(16):10395-10405
Excessive nuclear factor κB (NF-κB) activation should be precisely controlled as it contributes to multiple immune and inflammatory diseases. However, the negative regulatory mechanisms of NF-κB activation still need to be elucidated. Various types of polyubiquitin chains have proved to be involved in the process of NF-κB activation. Many negative regulators linked to ubiquitination, such as A20 and CYLD, inhibit IκB kinase activation in the NF-κB signaling pathway. To find new NF-κB signaling regulators linked to ubiquitination, we used a small scale siRNA library against 51 ubiquitin-associated domain-containing proteins and screened out UBXN1, which contained both ubiquitin-associated and ubiquitin regulatory X (UBX) domains as a negative regulator of TNFα-triggered NF-κB activation. Overexpression of UBXN1 inhibited TNFα-triggered NF-κB activation, although knockdown of UBXN1 had the opposite effect. UBX domain-containing proteins usually act as valosin-containing protein (VCP)/p97 cofactors. However, knockdown of VCP/p97 barely affected UBXN1-mediated NF-κB inhibition. At the same time, we found that UBXN1 interacted with cellular inhibitors of apoptosis proteins (cIAPs), E3 ubiquitin ligases of RIP1 in the TNFα receptor complex. UBXN1 competitively bound to cIAP1, blocked cIAP1 recruitment to TNFR1, and sequentially inhibited RIP1 polyubiquitination in response to TNFα. Therefore, our findings demonstrate that UBXN1 is an important negative regulator of the TNFα-triggered NF-κB signaling pathway by mediating cIAP recruitment independent of VCP/p97. 相似文献
15.
16.
Masato Maesako Maiko Uemura Yoshitaka Tashiro Kazuki Sasaki Kiwamu Watanabe Yasuha Noda Karin Ueda Megumi Asada-Utsugi Masakazu Kubota Katsuya Okawa Masafumi Ihara Shun Shimohama Kengo Uemura Ayae Kinoshita 《PloS one》2015,10(9)
Obesity and type 2 diabetes are risk factors of Alzheimer’s disease (AD). We reported that a high fat diet (HFD) promotes amyloid precursor protein (APP) cleavage by β-site APP cleaving enzyme 1 (BACE1) without increasing BACE1 levels in APP transgenic mice. However, the detailed mechanism had remained unclear. Here we demonstrate that HFD promotes BACE1/Adaptor protein-2 (AP-2)/clathrin complex formation by increasing AP-2 levels in APP transgenic mice. In Swedish APP overexpressing Chinese hamster ovary (CHO) cells as well as in SH-SY5Y cells, overexpression of AP-2 promoted the formation of BACE1/AP-2/clathrin complex, increasing the level of the soluble form of APP β (sAPPβ). On the other hand, mutant D495R BACE1, which inhibits formation of this trimeric complex, was shown to decrease the level of sAPPβ. Overexpression of AP-2 promoted the internalization of BACE1 from the cell surface, thus reducing the cell surface BACE1 level. As such, we concluded that HFD may induce the formation of the BACE1/AP-2/clathrin complex, which is followed by its transport of BACE1 from the cell surface to the intracellular compartments. These events might be associated with the enhancement of β-site cleavage of APP in APP transgenic mice. Here we present evidence that HFD, by regulation of subcellular trafficking of BACE1, promotes APP cleavage. 相似文献
17.
Ryouhei Tsutsumi Yuko Fukata Jun Noritake Tsuyoshi Iwanaga Franck Perez Masaki Fukata 《Molecular and cellular biology》2009,29(2):435-447
The heterotrimeric G protein α subunit (Gα) is targeted to the cytoplasmic face of the plasma membrane through reversible lipid palmitoylation and relays signals from G-protein-coupled receptors (GPCRs) to its effectors. By screening 23 DHHC motif (Asp-His-His-Cys) palmitoyl acyl-transferases, we identified DHHC3 and DHHC7 as Gα palmitoylating enzymes. DHHC3 and DHHC7 robustly palmitoylated Gαq, Gαs, and Gαi2 in HEK293T cells. Knockdown of DHHC3 and DHHC7 decreased Gαq/11 palmitoylation and relocalized it from the plasma membrane into the cytoplasm. Photoconversion analysis revealed that Gαq rapidly shuttles between the plasma membrane and the Golgi apparatus, where DHHC3 specifically localizes. Fluorescence recovery after photobleaching studies showed that DHHC3 and DHHC7 are necessary for this continuous Gαq shuttling. Furthermore, DHHC3 and DHHC7 knockdown blocked the α1A-adrenergic receptor/Gαq/11-mediated signaling pathway. Together, our findings revealed that DHHC3 and DHHC7 regulate GPCR-mediated signal transduction by controlling Gα localization to the plasma membrane.G-protein-coupled receptors (GPCRs) form the largest family of cell surface receptors, consisting of more than 700 members in humans. GPCRs respond to a variety of extracellular signals, including hormones and neurotransmitters, and are involved in various physiologic processes, such as smooth muscle contraction and synaptic transmission (20, 25). Heterotrimeric G proteins, composed of α, β, and γ subunits, transduce signals from GPCRs to their effectors and play a central role in the GPCR signaling pathway (13, 21, 24, 32). Although the Gα subunit seems to localize stably at the cytosolic face of the plasma membrane (PM), a recent report suggested that Gαo, a Gα isoform, shuttles rapidly between the PM and intracellular membranes (2). The PM targeting of Gα requires both interaction with the Gβγ complex and subsequent lipid palmitoylation of Gα (22). Thus, palmitoylation of Gα is a critical determinant of membrane targeting of the heterotrimer Gαβγ.Protein palmitoylation is a common posttranslational modification with lipid palmitate and regulates protein trafficking and function (7, 18). Gα is a classic and representative palmitoyl substrate (19, 38), and recent studies revealed that protein palmitoylation modifies virtually almost all the components of G-protein signaling, including GPCRs, Gα subunits, several members of the RGS (regulators of G-protein signaling) family of GTPase-activating proteins, GPCR kinase GRK6, and some small GTPases (7, 33). This common lipid modification plays an important role in compartmentalizing G-protein signaling to the specific microdomain, such as membrane caveolae and lipid raft (26). The palmitoyl thioester bond is relatively labile, and palmitates on substrates turn over rapidly, allowing proteins to shuttle between the cytoplasm/intracellular organelles and the PM (2, 3, 27). For example, binding of isoproterenol to the β-adrenergic receptor markedly accelerates the depalmitoylation of the associated Gαs, shifting Gαs to the cytoplasm (37). This receptor activation-induced depalmitoylation was also observed in a major postsynaptic PSD-95 scaffold, which anchors the AMPA (alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid)-type glutamate receptor at the excitatory postsynapse through stargazin (6). On glutamate receptor activation, accelerated depalmitoylation of PSD-95 dissociates PSD-95 from postsynaptic sites and causes AMPA receptor endocytosis (6). Thus, palmitate turnover on Gαs and PSD-95 is accelerated by receptor activation, contributing to downregulation of the signaling pathway. However, the enzymes that add palmitate to proteins (palmitoyl-acyl transferases [PATs]) and those that cleave the thioester bond (palmitoyl-protein thioesterases) were long elusive.Recent genetic studies in Saccharomyces cerevisiae identified Erf2/Erf4 (1, 40) and Akr1 (29) as PATs for yeast Ras and yeast casein kinase 2, respectively. Erf2 and Akr1 have four- to six-pass transmembrane domains and share a common domain, referred to as a DHHC domain, a cysteine-rich domain with a conserved Asp-His-His-Cys signature motif. Because the DHHC domain is essential for the PAT activity, we isolated 23 mammalian DHHC domain-containing proteins (DHHC proteins) and developed a systematic screening method to identify the specific enzyme-substrate pairs (11, 12): DHHC2, -3, -7, and -15 for PSD-95 (11); DHHC21 for endothelial NO synthase (10); and DHHC3 and -7 for GABAA receptor γ2 subunit (9). Several other groups also reported that DHHC9 with GCP16 mediates palmitoylation toward H- and N-Ras (36) and that DHHC17, also known as HIP14, palmitoylates several neuronal proteins: huntingtin (14), SNAP-25, and CSP (14, 23, 35). However, the existence of PATs for Gα has been controversial because spontaneous palmitoylation of Gα could occur in vitro (4).In this study, we screened the 23 DHHC clones to examine which DHHC proteins can palmitoylate Gα. We found that DHHC3 and -7 specifically and robustly palmitoylate Gα at the Golgi apparatus. Inhibition of DHHC3 and -7 reduces Gαq/11 palmitoylation levels and delocalizes it from the PM to the cytoplasm in HeLa cells and primary hippocampal neurons. Also, DHHC3 and -7 are necessary for the continuous Gαq shuttling between the Golgi apparatus and the PM. Finally, blocking DHHC3 and -7 inhibits the α1A-adrenergic receptor [α1A-AR]/Gαq-mediated signaling pathway, indicating that DHHC3 and -7 play an essential role in GPCR signaling by regulating Gα localization. 相似文献
18.
Ganesh S. Anand Srinath Krishnamurthy Tanushree Bishnoi Alexandr Kornev Susan S. Taylor David A. Johnson 《Molecular & cellular proteomics : MCP》2010,9(10):2225-2237
We took a discovery approach to explore the actions of cAMP and two of its analogs, one a cAMP mimic ((Sp)-adenosine cyclic 3′:5′-monophosphorothioate ((Sp)-cAMPS)) and the other a diastereoisomeric antagonist ((Rp)-cAMPS), on a model system of the type Iα cyclic AMP-dependent protein kinase holoenzyme, RIα(91–244)·C-subunit, by using fluorescence spectroscopy and amide H/2H exchange mass spectrometry. Specifically, for the fluorescence experiments, fluorescein maleimide was conjugated to three cysteine single residue substitution mutants, R92C, T104C, and R239C, of RIα(91–244), and the effects of cAMP, (Sp)-cAMPS, and (Rp)-cAMPS on the kinetics of R-C binding and the time-resolved anisotropy of the reporter group at each conjugation site were measured. For the amide exchange experiments, ESI-TOF mass spectrometry with pepsin proteolytic fragmentation was used to assess the effects of (Rp)-cAMPS on amide exchange of the RIα(91–244)·C-subunit complex. We found that cAMP and its mimic perturbed at least parts of the C-subunit interaction Sites 2 and 3 but probably not Site 1 via reduced interactions of the linker region and αC of RIα(91–244). Surprisingly, (Rp)-cAMPS not only increased the affinity of RIα(91–244) toward the C-subunit by 5-fold but also produced long range effects that propagated through both the C- and R-subunits to produce limited unfolding and/or enhanced conformational flexibility. This combination of effects is consistent with (Rp)-cAMPS acting by enhancing the internal entropy of the R·C complex. Finally, the (Rp)-cAMPS-induced increase in affinity of RIα(91–244) toward the C-subunit indicates that (Rp)-cAMPS is better described as an inverse agonist because it decreases the fractional dissociation of the cyclic AMP-dependent protein kinase holoenzyme and in turn its basal activity.Cyclic AMP-dependent protein kinase (PKA)1 plays a crucial role in a plethora of cellular functions. All isoforms of PKA are composed of two catalytic (C) subunits and homodimeric regulatory (R) subunits (1–3). As the name implies, cAMP is a major PKA regulator (4). Much progress has been made in the last decade in delineating the molecular basis of action of cAMP. An important tactic in this endeavor has been through the comparison of the effects of cAMP with those of two phosphorothioate cAMP analogs: (Sp)-cAMPS (a cAMP mimic) and (Rp)-cAMPS (an antagonist and a diastereoisomer of (Sp)-cAMPS). Although the importance of geometry of the sulfur substitution is critical in determining the pharmacological properties of the two phosphorothioate cAMP analogs, the molecular basis for this behavior is not fully understood. To date, these comparisons have only been made using either wild-type or truncated mutants of the type Iα regulatory subunit (RIα) that are free in solution, not complexed to the C-subunit. X-ray spectroscopic examination of ligand-bound RIα(92–379) complexes reveals few differences between ligand-bound complexes, but the (Rp)-cAMPS complex is structurally “looser” with higher thermal factors than complexes formed with either cAMP or (Sp)-cAMPS (5). This is consistent with the observation that both cAMP and (Sp)-cAMPS, but not (Rp)-cAMPS, raise the urea concentration required for wild-type RIα unfolding (6). Further insight into the structural basis of cAMP action stems from NMR spectroscopic comparison of the effects of (Rp)-cAMPS, cAMP, and (Sp)-cAMPS on chemical shifts and 15N relaxation of the RIα(119–244) mutant (7). In addition to producing fewer significant chemical shift changes than either cAMP or (Sp)-cAMPS, (Rp)-cAMPS binding is associated with enhanced millisecond to microsecond time scale backbone motions of a β-turn (β2,3 loop) and around the phosphate-binding cassette (PBC) (7).Further insight into the molecular basis of actions of cAMP and its analogs should come from the analysis of ligand-bound R·C complexes. Unfortunately, the large size of even the heterodimeric R·C complex (∼95 kDa) and the difficulty of preparing (Rp)-cAMPS·R·C-subunit crystals currently preclude the use of both NMR spectroscopy and x-ray crystallography. Consequently, we took two alternative lower resolution approaches to this issue. One approach involves the use of site-directed labeling combined with fluorescence spectroscopy to examine both the effects of cAMP and its analogs on R-C subunit binding kinetics and on the conformational dynamics of RIα(91–244). RIα(91–244) includes the “A” cyclic nucleotide binding (CNB) domain, the pseudosubstrate, and linker domains and represents the minimal segments necessary for high affinity C-subunit binding (Fig. 1) (8). The other approach involves an examination of the effects of cAMP and its analogs on solvent exposure/conformational flexibility of RIα(91–244)·C-subunit complex using H/2H amide exchange measured with a combination of mass spectrometry (ESI-Q-TOF) and proteolytic fragmentation. In the first approach, fluorescein maleimide (FM) was conjugated to three cysteine substitution mutants with the substitution sites located near or within the pseudosubstrate sequence, the linker domain, or αC (R92C, T104C, and R239C, respectively) of RIα(91–244) (Fig. 1). The time-resolved fluorescence anisotropy results suggest that cAMP and (Sp)-cAMPS reduce the interaction of the RIα linker domain and αC with the two peripheral R-C interaction sites on the C-subunit (so-called Sites 2 and 3) without affecting the interaction of the pseudosubstrate sequence with the active site cleft (so-called Site 1). Because of limitations of the amide H/2H exchange experiments, only the effects of (Rp)-cAMPS on H/2H amide exchange in RIα(91–244)·C-subunit complex could be investigated. The results showed that (Rp)-cAMPS induces a relatively widespread increase in amide exchange, indicating limited unfolding and/or enhanced conformational flexibility that is propagated almost globally through the C-subunit and, at least, part of RIα. These conformational changes were accompanied by a 5-fold increase in the affinity of RIα(91–244) toward C-subunit, suggesting that, at least, some of the (Rp)-cAMPS effects are mediated by an increase in internal entropy. Finally, the (Rp)-cAMPS-induced increase in R-C affinity indicates that (Rp)-cAMPS is better described as an inverse agonist because the basal activity of the PKA holoenzyme should be decreased by (Rp)-cAMPS.Open in a separate windowFig. 1.Overview of PKA structure and cAMP analogs. A, domain organization of RIα showing the domain boundaries of RIα(91–244) where the pseudosubstrate in green is connected to CNB-A domain in blue by a linker segment. B, structure of RIα(91–244) in the C-subunit-bound conformation (Protein Data Bank code 1U7E (23)) showing the pseudosubstrate in green, linker in yellow, and helical subdomain comprising helices αN, αA, αB, and αC in blue and β-subdomain in tan. The PBC is in red. C, structure of the C·RIα(91–244) holoenzyme showing the C-subunit in tan and RIα(91–244) in blue. Sites for introduction of cysteines by site-directed mutagenesis are represented by red circles. The cAMP binding site (PBC) is in red. D, structure of cAMP showing the 2′-OH group and 3′–5′ phosphodiester bond. The exocyclic oxygens upon replacement with sulfur atoms to generate the (Sp)-cAMPS and (Rp)-cAMPS diastereomers are highlighted. 相似文献
19.
20.
Mark R. Nance Barry Kreutz Valerie M. Tesmer Rachel Sterne-Marr Tohru Kozasa John J.G. Tesmer 《Structure (London, England : 1993)》2013,21(3):438-448
Highlights? Two structures of the RGS2-Gαq complex were determined by X-ray crystallography ? RGS2 binds Gαq in a manner distinct from how other RGS proteins bind Gαi/o ? In its distinct pose, RGS2 forms extensive contacts with the α-helical domain of Gαq ? Helical domain contacts contribute to binding affinity and GAP potency of RGS2 相似文献