共查询到20条相似文献,搜索用时 15 毫秒
1.
Turning On and Off with Excitation: The Role of Spike-Timing Asynchrony and Synchrony in Sustained Neural Activity 总被引:4,自引:0,他引:4
Boris S. Gutkin Carlo R. Laing Carol. L. Colby Carson C. Chow G. Bard Ermentrout 《Journal of computational neuroscience》2001,11(2):121-134
Delay-related sustained activity in the prefrontal cortex of primates, a neurological analogue of working memory, has been proposed to arise from synaptic interactions in local cortical circuits. The implication is that memories are coded by spatially localized foci of sustained activity. We investigate the mechanisms by which sustained foci are initiated, maintained, and extinguished by excitation in networks of Hodgkin-Huxley neurons coupled with biophysical spatially structured synaptic connections. For networks with a balance between excitation and inhibition, a localized transient stimulus robustly initiates a localized focus of activity. The activity is then maintained by recurrent excitatory AMPA-like synapses. We find that to maintain the focus, the firing must be asynchronous. Consequently, inducing transient synchrony through an excitatory stimulus extinguishes the sustained activity. Such a monosynaptic excitatory turn-off mechanism is compatible with the working memory being wiped clean by an efferent copy of the motor command. The activity that codes working memories may be structured so that the motor command is both the read-out and a direct clearing signal. We show examples of data that is compatible with our theory. 相似文献
2.
Many electronic devices that we use in our daily lives provide inputs that need to be processed and integrated by our senses. For instance, ringing, vibrating, and flashing indicate incoming calls and messages in smartphones. Whether the presentation of multiple smartphone stimuli simultaneously provides an advantage over the processing of the same stimuli presented in isolation has not yet been investigated. In this behavioral study we examined multisensory processing between visual (V), tactile (T), and auditory (A) stimuli produced by a smartphone. Unisensory V, T, and A stimuli as well as VA, AT, VT, and trisensory VAT stimuli were presented in random order. Participants responded to any stimulus appearance by touching the smartphone screen using the stimulated hand (Experiment 1), or the non-stimulated hand (Experiment 2). We examined violations of the race model to test whether shorter response times to multisensory stimuli exceed probability summations of unisensory stimuli. Significant violations of the race model, indicative of multisensory processing, were found for VA stimuli in both experiments and for VT stimuli in Experiment 1. Across participants, the strength of this effect was not associated with prior learning experience and daily use of smartphones. This indicates that this integration effect, similar to what has been previously reported for the integration of semantically meaningless stimuli, could involve bottom-up driven multisensory processes. Our study demonstrates for the first time that multisensory processing of smartphone stimuli facilitates taking a call. Thus, research on multisensory integration should be taken into consideration when designing electronic devices such as smartphones. 相似文献
3.
Hueng-Chuen Fan Xuming Zhang Peter A. McNaughton 《The Journal of biological chemistry》2009,284(41):27884-27891
The TRPV4 (transient receptor potential vanilloid 4) ion channel, a member of the vanilloid subfamily of the transient receptor potential channels, is activated by membrane stretch, by non-noxious warm temperatures, and by a range of chemical activators. In the present study we examined the role of phosphorylation in modulating the activation of TRPV4. We expressed TRPV4 in HEK293 cells and activated the channel by cell swelling in a hypotonic solution. TRPV4 channel activation and serine phosphorylation were enhanced by exposure to the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate or by application of bradykinin, which activates PKC via a G-protein-coupled mechanism. The enhancement was inhibited by the PKC inhibitors staurosporine, bisindolylmaleimide I, and rottlerin or by mutation of the serine/threonine residues Ser162, Thr175, and Ser189. The adenylate cyclase activator forskolin also enhanced activation of TRPV4, and the enhancement was antagonized by the selective cyclic AMP-dependent protein kinase (PKA) inhibitor H89 or by mutation of serine residue Ser824. Sensitization of TRPV4 by both PKC and PKA depended on the scaffolding protein AKAP79, because channel activation and phosphorylation were enhanced by co-transfection of AKAP79 and were antagonized by removal of AKAP79 using small interfering RNA. We conclude that the serine/threonine kinases PKC and PKA enhance activation of the TRPV4 ion channel by phosphorylation at specific sites and that phosphorylation depends on assembly of PKC and PKA by AKAP79 into a signaling complex with TRPV4.TRPV4 was cloned from kidney, hypothalamus, and auditory epithelium and was given a number of names: OTRPC4 (Osm-9-like TRP channel 4) (1), VR-OAC (2), TRP12 (3), and VRL-2 (vanilloid receptor-like channel 2) (4). The gene for human TRPV4 is located on chromosome 12q23-q24.1 and has 15 exons, which code for a full-length protein with 871 amino acids. TRPV4 is a member of the transient receptor potential vanilloid subfamily of TRP2 channels, and like other members of this subfamily, it is a polymodal receptor activated by a wide variety of stimuli. TRPV4 is strongly expressed in kidney and is activated by hypotonicity, which has led to the suggestion that TRPV4 is an osmosensor important in regulating body fluid levels (2, 5–9). However, TRPV4 is also activated by innocuous heat with a threshold of >27 °C (6, 10, 11), by the phorbol ester 4α-phorbol 12,13-didecanoate (12, 13), by low pH (14), by endocannabinoids and arachidonic acid metabolites (15, 16), by the active compound, bisandrographolide A, of Andrographis paniculata, a Chinese herbal plant (17), and by nitric oxide (18). TRPV4 is expressed in a broad range of tissues, including lung, spleen, kidney, testis, fat, brain, cochlea, skin, smooth muscle, liver, and vascular endothelium (1–3); in the lamina terminalis of the mouse brain; in neurons of the arched vascular organ of the lamina terminalis; and in the median preoptic area, the optic chiasm, neurons of the subfornical organ, the ventral hippocampal commissure, anterior hypothalamic structures, and ependymal cells of the choroid plexus in the lateral ventricles, and dorsal root ganglia neurons (1–3). The broad spectrum of activators and the wide distribution of TRPV4 suggest that the functions of TRPV4 extend beyond osmosensation.TRPV4 has been proposed to play a role in the mechanical hyperalgesia that is generated by the concerted action of inflammatory mediators present in inflamed tissues (19). After tissue injury, inflammatory mediators such as bradykinin, prostaglandin E2, 5-hydroxytryptamine, and histamine directly sensitize primary afferent neurons, resulting in hyperalgesia (reviewed in Ref. 20). Important intracellular signaling molecules contributing to inflammatory hyperalgesia include protein kinase C (PKC) (21, 22) and cyclic AMP-dependent protein kinase (PKA) (23). For example, the activation of the Gq-coupled B1 and B2 receptors by bradykinin leads to the release of a range of potential intracellular messengers, with a substantial body of evidence favoring the idea that the temperature threshold of TRPV1 is lowered by PKCϵ-mediated phosphorylation (21, 22, 24, 25). PKA, like PKC, is a critical intracellular signaling molecule mediating inflammatory hyperalgesia (26). In sensory neurons prostaglandin E2 activates both the EP1 receptor, which is Gq-coupled and therefore activates PKC, and the EP4 receptor, which is Gs-coupled and therefore activates PKA. Cyclic AMP analogues, the adenylate cyclase activator forskolin (FSK) or phosphodiesterase inhibitors enhance the mechanical and thermal hyperalgesic effects of prostaglandin E2 (27–29). Thus PKC and PKA have vital roles to play in the process of inflammatory hyperalgesia.The speed and specificity of the action of kinases is in many cases enhanced by binding to scaffolding proteins, which preassemble the kinases into signaling complexes with their target substrates. The AKAP (a kinase-anchoring protein) family of scaffolding proteins was originally named for their ability to target PKA to appropriate substrates but are now known to assemble a wide range of kinases and phosphatases into signaling complexes with appropriate targets (30). A number of ion channels are subject to modulation by AKAPs, including glutamate receptors, calcium channels, and the M-type potassium channels (31–34). The heat-activated ion channel TRPV1, a member of the same subfamily as TRPV4, has recently been shown to be assembled into a signaling complex with PKA, PKC, and PP2B by AKAP79, and the sensitization of TRPV1 by PKC and PKA is critically reliant on binding to AKAP79 (35). The present study shows that PKC and PKA activation can sensitize TRPV4 to mechanical stimuli, identifies the relevant phosphorylation sites, and shows that the scaffolding protein AKAP79 plays a critical role in sensitization of TRPV4. 相似文献
4.
Competence for Elicitation of H2O2 in Hypocotyls of Cucumber Is Induced by Breaching the Cuticle and Is Enhanced by Salicylic Acid 总被引:2,自引:2,他引:2
To study H2O2 production, the epidermal surfaces of hypocotyl segments from etiolated seedlings of cucumber (Cucumis sativus L.) were gently abraded. Freshly abraded segments were not constitutively competent for rapid H2O2 elicitation. This capacity developed subsequent to abrasion in a time-dependent process that was greatly enhanced in segments exhibiting an acquired resistance to penetration of their epidermal cell walls by Colletotrichum lagenarium, because of root pretreatment of the respective seedlings with 2,6-dichloroisonicotinic acid. When this compound or salicylic acid was applied to abraded segments, it also greatly enhanced the induction of competence for H2O2 elicitation. This process was fully inhibited by 5 [mu]M cycloheximide or 200 [mu]M puromycin, suggesting a requirement for translational protein synthesis. Both a crude elicitor preparation and a partially purified oligoglucan mixture from Phytophthora sojae also induced, in addition to H2O2 production, a refractory state, which explains the transient nature of H2O2 elicitation. Taken together, these results suggest that the cucumber hypocotyl epidermis becomes conditioned for competence to produce H2O2 in response to elicitors by a stimulus resulting from breaching the cuticle and/or cutting segments. This conditioning process is associated with protein synthesis and is greatly enhanced when substances able to induce systemic acquired resistance are present in the tissue. 相似文献
5.
6.
Jairo R. Temerozo Rafael Joaquim Eduardo G. Regis Wilson Savino Dumith Chequer Bou-Habib 《PloS one》2013,8(6)
It is well established that host factors can modulate HIV-1 replication in macrophages, critical cells in the pathogenesis of HIV-1 infection due to their ability to continuously produce virus. The neuropeptides VIP and PACAP induce well-characterized effects on macrophages through binding to the G protein-coupled receptors VPAC1, VPAC2 and PAC1, but their influence on HIV-1 production by these cells has not been established. Here, we describe that VIP and PACAP reduce macrophage production of HIV-1, acting in a synergistic or additive manner to decrease viral growth. Using receptor antagonists, we detected that the HIV-1 inhibition promoted by VIP is dependent on its ligation to VPAC1/2, whereas PACAP decreases HIV-1 growth via activation of the VPAC1/2 and PAC1 receptors. Specific agonists of VPAC2 or PAC1 decrease macrophage production of HIV-1, whereas sole activation of VPAC1 enhances viral growth. However, the combination of specific agonists mimicking the receptor preference of the natural neuropeptides reproduces the ability of VIP and PACAP to increase macrophage resistance to HIV-1 replication. VIP and PACAP up-regulated macrophage secretion of the β-chemokines CCL3 and CCL5 and the cytokine IL-10, whose neutralization reversed the neuropeptide-induced inhibition of HIV-1 replication. Our results suggest that VIP and PACAP and the receptors VPAC2 and PAC1 could be used as targets for developing alternative therapeutic strategies for HIV-1 infection. 相似文献
7.
Attention is important for effectively comparing incoming perceptual information with the contents of visual short-term memory (VSTM), such that any differences can be detected. However, how attentional mechanisms operate upon these comparison processes remains largely unknown. Here we investigate the underlying neural mechanisms by which attention modulates the comparisons between VSTM and perceptual representations using functional magnetic resonance imaging (fMRI). Participants performed a cued change detection task. Spatial cues were presented to orient their attention either to the location of an item in VSTM prior to its comparison (retro-cues), or simultaneously (simultaneous-cues) with the probe array. A no-cue condition was also included. When attention cannot be effectively deployed in advance (i.e. following the simultaneous-cues), we observed a distributed and extensive activation pattern in the prefrontal and parietal cortices in support of successful change detection. This was not the case when participants can deploy their attention in advance (i.e. following the retro-cues). The region-of-interest analyses confirmed that neural responses for successful change detection versus correct rejection in the visual and parietal regions were significantly different for simultaneous-cues compared to retro-cues. Importantly, we found enhanced functional connectivity between prefrontal and parietal cortices when detecting changes on the simultaneous-cue trials. Moreover, we demonstrated a close relationship between this functional connectivity and d′ scores. Together, our findings elucidate the attentional and neural mechanisms by which items held in VSTM are compared with incoming perceptual information. 相似文献
8.
Umehara S Hattori A Inoue I Yasuda K 《Biochemical and biophysical research communications》2007,356(2):464-469
Knowing how individual cells respond to environmental changes helps one understand phenotypic diversity in a bacterial cell population, so we simultaneously monitored the growth and motility of isolated motile Escherichia coli cells over several generations by using a method called on-chip single-cell cultivation. Starved cells quickly stopped growing but remained motile for several hours before gradually becoming immotile. When nutrients were restored the cells soon resumed their growth and proliferation but remained immotile for up to six generations. A flagella visualization assay suggested that deflagellation underlies the observed loss of motility. This set of results demonstrates that single-cell transgenerational study under well-characterized environmental conditions can provide information that will help us understand distinct functions within individual cells. 相似文献
9.
Mona El Khatib Przemyslaw Bozko Vindhya Palagani Nisar P. Malek Ludwig Wilkens Ruben R. Plentz 《PloS one》2013,8(10)
Cholangiocacinoma (CC) is a cancer disease with rising incidence. Notch signaling has been shown to be deregulated in many cancers. However, the role of this signaling pathway in the carcinogenesis of CC is still not fully explored. In this study, we investigated the effects of Notch inhibition by γ-secretase inhibitor IX (GSI IX) in cultured human CC cell lines and we established a transgenic mouse model with liver specific expression of the intracellular domain of Notch (Notch-ICD) and inactivation of tumor suppressor p53. GSI IX treatment effectively impaired cell proliferation, migration, invasion, epithelial to mesenchymal transition and growth of softagar colonies. In vivo overexpression of Notch-ICD together with an inactivation of p53 significantly increased tumor burden and showed CC characteristics. Conclusion: Our study highlights the importance of Notch signaling in the tumorigenesis of CC and demonstrates that additional inactivation of p53 in vivo. 相似文献
10.
Yanhui Wang Michael S. Engel Jose A. Rafael Kai Dang Haoyang Wu Ying Wang Qiang Xie Wenjun Bu 《PloS one》2013,8(1)
The position of the Zoraptera remains one of the most challenging and uncertain concerns in ordinal-level phylogenies of the insects. Zoraptera have been viewed as having a close relationship with five different groups of Polyneoptera, or as being allied to the Paraneoptera or even Holometabola. Although rDNAs have been widely used in phylogenetic studies of insects, the application of the complete 28S rDNA are still scattered in only a few orders. In this study, a secondary structure model of the complete 28S rRNAs of insects was reconstructed based on all orders of Insecta. It was found that one length-variable region, D3-4, is particularly distinctive. The length and/or sequence of D3-4 is conservative within each order of Polyneoptera, but it can be divided into two types between the different orders of the supercohort, of which the enigmatic order Zoraptera and Dictyoptera share one type, while the remaining orders of Polyneoptera share the other. Additionally, independent evidence from phylogenetic results support the clade (Zoraptera+Dictyoptera) as well. Thus, the similarity of D3-4 between Zoraptera and Dictyoptera can serve as potentially valuable autapomorphy or synapomorphy in phylogeny reconstruction. The clades of (Plecoptera+Dermaptera) and ((Grylloblattodea+Mantophasmatodea)+(Embiodea+Phasmatodea)) were also recovered in the phylogenetic study. In addition, considering the other studies based on rDNAs, this study reached the highest congruence with previous phylogenetic studies of Holometabola based on nuclear protein coding genes or morphology characters. Future comparative studies of secondary structures across deep divergences and additional taxa are likely to reveal conserved patterns, structures and motifs that can provide support for major phylogenetic lineages. 相似文献
11.
The mushroom bodies, central neuropils in the arthropod brain, are involved in learning and memory and in the control of complex behavior. In most insects, the mushroom bodies receive direct olfactory input in their calyx region. In Hymenoptera, olfactory input is layered in the calyx. In ants, several layers can be discriminated that correspond to different clusters of glomeruli in the antennal lobes, perhaps corresponding to different classes of odors. Only in Hymenoptera, the mushroom body calyx also receives direct visual input from the optic lobes. In bees, six calycal layers receive input from different classes of visual interneurons, probably representing different parts of the visual field and different visual properties. Taken together, the mushroom bodies receive distinct multisensory information in many segregated input layers. 相似文献
12.
13.
Hsin-Hou Chang Ya-Wen Chiang Ting-Kai Lin Guan-Ling Lin You-Yen Lin Jyh-Hwa Kau Hsin-Hsien Huang Hui-Ling Hsu Jen-Hung Wang Der-Shan Sun 《PloS one》2014,9(11)
Anthrax lethal toxin (LT), one of the primary virulence factors of Bacillus anthracis, causes anthrax-like symptoms and death in animals. Experiments have indicated that levels of erythrocytopenia and hypoxic stress are associated with disease severity after administering LT. In this study, the granulocyte colony-stimulating factor (G-CSF) was used as a therapeutic agent to ameliorate anthrax-LT- and spore-induced mortality in C57BL/6J mice. We demonstrated that G-CSF promoted the mobilization of mature erythrocytes to peripheral blood, resulting in a significantly faster recovery from erythrocytopenia. In addition, combined treatment using G-CSF and erythropoietin tended to ameliorate B. anthracis-spore-elicited mortality in mice. Although specific treatments against LT-mediated pathogenesis remain elusive, these results may be useful in developing feasible strategies to treat anthrax. 相似文献
14.
Jean-Louis Magnard Ming Yang Yun-Chia Sophia Chen Michele Leary Sheila McCormick 《Plant physiology》2001,127(3):1157-1166
Male meiosis in higher organisms features synchronous cell divisions in a large number of cells. It is not clear how this synchrony is achieved, nor is it known whether the synchrony is linked to the regulation of cell cycle progression. Here, we describe an Arabidopsis mutant, named tardy asynchronous meiosis (tam), that exhibits a phenotype of delayed and asynchronous cell divisions during male meiosis. In Arabidopsis, two nuclear divisions occur before simultaneous cytokinesis yields a tetrad of haploid cells. In tam, cell divisions are delayed, resulting in the formation of abnormal intermediates, most frequently dyad meiotic products, or in rare cases, dyad pollen (two gametophytes within one exine wall). Temperature-shift experiments showed that the percentage of the abnormal intermediates increased at 27 degrees C. Analysis of tam and the tam/quartet1 double mutant showed that most of these abnormal intermediates could continue through the normal rounds of cell divisions and form functional pollen, though at a slower than normal pace. The asynchrony of cell division started at the G2/M transition, with cells entering metaphase at different time points, during both meiosis I and II. In addition, chromosome condensation defects and mis-segregation were sometimes observed in tam. These observations suggest that the TAM protein positively regulates cell cycle progression, perhaps by promoting the G2/M transition. We speculate that there is a signal, perhaps TAM, that couples the normal pace of cell cycle progression with the synchrony of cell division during male meiosis. 相似文献
15.
新标准“注射用克痛宁”临床应用镇痛效果观察 总被引:2,自引:0,他引:2
目的 评估按国家药品生物制品检定所修订的国家标准生产的“注射用克痛宁” (电泳纯和免疫纯 )的临床应用效果及毒副作用。方法 各种中、重度急慢性疼痛患者 92例 ,肌肉注射给药 ,70 μg/次 ,70~ 1 40 μg/天。慢性疼痛病例一般按疗程用药 ,每疗程 5天 ,急性疼痛病例及部分慢性疼痛病例疼痛消失即停药。以病人曾用过的镇痛药疗效作为历史对照。结果 总有效率 96 .7% ,总显效率 82 .6 % ,首支总有效率 93.5 %。对癌痛组的首支有效率稍低 ,为 84 .2 %。一般在肌注后 30~ 6 0 min起效 ;对急性疼痛疗效可持续 6~ 1 0 h,对慢性疼痛大多可持续 1 2 h或 2 4 h以上。对阿片类药物成瘾患者也有良好效果。少数病人出现轻度口干、恶心、头晕等不良反应。结论 新标准“注射用克痛宁”对各种急慢性疼痛均有良好的镇痛效果 ,起效快、镇痛作用强而持久、不成瘾、毒副作用小 ,且具有潜在的戒毒作用。优于原地方标准的“克痛宁”。 相似文献
16.
Maria L. Knudsen Daniel X. Johansson Linda Kostic Eva K. L. Nordstr?m Karin Tegerstedt Anna Pasetto Steven E. Applequist Karl Ljungberg Jean-Claude Sirard Peter Liljestr?m 《PloS one》2013,8(6)
Ligands of pattern recognition receptors (PRRs) including Toll-like receptors (TLRs) stimulate innate and adaptive immune responses and are considered as potent adjuvants. Combinations of ligands might act in synergy to induce stronger and broader immune responses compared to stand-alone ligands. Alphaviruses stimulate endosomal TLRs 3, 7 and 8 as well as the cytoplasmic PRR MDA-5, resulting in induction of a strong type I interferon (IFN) response. Bacterial flagellin stimulates TLR5 and when delivered intracellularly the cytosolic PRR NLRC4, leading to secretion of proinflammatory cytokines. Both alphaviruses and flagellin have independently been shown to act as adjuvants for antigen-specific antibody responses. Here, we hypothesized that alphavirus and flagellin would act in synergy when combined. We therefore cloned the Salmonella Typhimurium flagellin (FliC) gene into an alphavirus replicon and assessed its adjuvant activity on the antibody response against co-administered antigen. In mice immunized with recombinant alphavirus, antibody responses were greatly enhanced compared to soluble FliC or control alphavirus. Both IgG1 and IgG2a/c responses were increased, indicating an enhancement of both Th1 and Th2 type responses. The adjuvant activity of FliC-expressing alphavirus was diminished but not abolished in the absence of TLR5 or type I IFN signaling, suggesting the contribution of several signaling pathways and some synergistic and redundant activity of its components. Thus, we have created a recombinant adjuvant that stimulates multiple signaling pathways of innate immunity resulting in a strong and broad antibody response. 相似文献
17.
Motherhood is associated with different forms of physiological alterations including transient hormonal changes and brain plasticity. The underlying impact of these changes on the emergence of maternal behaviors and sensory processing within the mother's brain are largely unknown. By using in?vivo cell-attached recordings in the primary auditory cortex of female mice, we discovered that exposure to pups' body odor reshapes neuronal responses to pure tones and natural auditory stimuli. This olfactory-auditory interaction appeared naturally in lactating mothers shortly after parturition and was long lasting. Naive virgins that had experience with the pups also showed an appearance of olfactory-auditory integration in A1, suggesting that multisensory integration may be experience dependent. Neurons from lactating mothers were more sensitive to sounds as compared to those from experienced mice, independent of the odor effects. These uni- and multisensory cortical changes may facilitate the detection and discrimination of pup distress calls and strengthen the bond between mothers and their neonates. VIDEO ABSTRACT: 相似文献
18.
Kalathookunnel Antony Antu Mariam Philip Riya Arvind Mishra Karunakaran S. Anilkumar Chandrasekharan K. Chandrakanth Akhilesh K. Tamrakar Arvind K. Srivastava K. Gopalan Raghu 《PloS one》2014,9(9)
The study is designed to find out the biochemical basis of antidiabetic property of Symplocos cochinchinensis (SC), the main ingredient of ‘Nisakathakadi’ an Ayurvedic decoction for diabetes. Since diabetes is a multifactorial disease, ethanolic extract of the bark (SCE) and its fractions (hexane, dichloromethane, ethyl acetate and 90% ethanol) were evaluated by in vitro methods against multiple targets relevant to diabetes such as the alpha glucosidase inhibition, glucose uptake, adipogenic potential, oxidative stress, pancreatic beta cell proliferation, inhibition of protein glycation, protein tyrosine phosphatase-1B (PTP-1B) and dipeptidyl peptidase-IV (DPP-IV). Among the extracts, SCE exhibited comparatively better activity like alpha glucosidase inhibition (IC50 value-82.07±2.10 µg/mL), insulin dependent glucose uptake (3 fold increase) in L6 myotubes, pancreatic beta cell regeneration in RIN-m5F (3.5 fold increase) and reduced triglyceride accumulation (22% decrease) in 3T3L1 cells, protection from hyperglycemia induced generation of reactive oxygen species in HepG2 cells (59.57% decrease) with moderate antiglycation and PTP-1B inhibition. Chemical characterization by HPLC revealed the superiority of SCE over other extracts due to presence and quantity of bioactives (beta-sitosterol, phloretin 2′glucoside, oleanolic acid) in addition to minerals like magnesium, calcium, potassium, sodium, zinc and manganese. So SCE has been subjected to oral sucrose tolerance test to evaluate its antihyperglycemic property in mild diabetic and diabetic animal models. SCE showed significant antihyperglycemic activity in in vivo diabetic models. We conclude that SC mediates the antidiabetic activity mainly via alpha glucosidase inhibition, improved insulin sensitivity, with moderate antiglycation and antioxidant activity. 相似文献
19.
The eyes-open (EO) and eyes-closed (EC) states have differential effects on BOLD-fMRI signal dynamics, affecting both the BOLD oscillation frequency of a single voxel and the regional homogeneity (ReHo) of several neighboring voxels. To explore how the two resting-states modulate the local synchrony through different frequency bands, we decomposed the time series of each voxel into several components that fell into distinct frequency bands. The ReHo in each of the bands was calculated and compared between the EO and EC conditions. The cross-voxel correlations between the mean frequency and the overall ReHo of each voxel’s original BOLD series in different brain areas were also calculated and compared between the two states. Compared with the EC state, ReHo decreased with EO in a wide frequency band of 0.01–0.25 Hz in the bilateral thalamus, sensorimotor network, and superior temporal gyrus, while ReHo increased significantly in the band of 0–0.01 Hz in the primary visual cortex, and in a higher frequency band of 0.02–0.1 Hz in the higher order visual areas. The cross-voxel correlations between the frequency and overall ReHo were negative in all the brain areas but varied from region to region. These correlations were stronger with EO in the visual network and the default mode network. Our results suggested that different frequency bands of ReHo showed different sensitivity to the modulation of EO-EC states. The better spatial consistency between the frequency and overall ReHo maps indicated that the brain might adopt a stricter frequency-dependent configuration with EO than with EC. 相似文献