首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
HSV-1 infection of the eye can cause a blinding immunoinflammatory stromal keratitis (SK) lesion. Using the mouse model, we have demonstrated that angiogenesis is an essential step in lesion pathogenesis because its inhibition results in diminished severity. The molecules involved in causing corneal angiogenesis are multiple and include the vascular endothelial growth factor (VEGF) family of proteins. In this report we show that application of plasmid DNA encoding IL-18 to the cornea of mice before HSV-1 ocular infection resulted in reduced angiogenesis and diminished SK immunoinflammatory lesions. The antiangiogenic effects of IL-18 treatment appeared to be mediated by inhibition of VEGF production in the cornea. We also showed that IL-18 controlled VEGF expression in vitro and also decreased CpG oligodeoxynucleotide induced VEGF-dependent neovascularization. In addition the administration of IL-18-binding protein, an IL-18 antagonist, into the inflammatory eye resulted in elevated angiogenesis and increased VEGF expression. Our results indicate that IL-18 is an important endogenous negative regulator of HSV-induced angiogenesis resulting in reduced SK lesion severity. Our results could mean that IL-18 administration may represent a useful approach to manage unwanted angiogenesis.  相似文献   

2.
Stromal keratitis (SK) is an immunoinflammatory eye lesion caused by HSV-1 infection. One essential step in the pathogenesis is neovascularization of the normally avascular cornea, a process that involves the vascular endothelial growth factor (VEGF) family of proteins. In this report, we targeted the proliferating vascular endothelial cells expressing VEGFR-2 in the SK cornea by immunization with recombinant Salmonella typhimurium containing a plasmid encoding murine VEGFR-2. This form of DNA immunization resulted in diminished angiogenesis and delayed development of SK caused by HSV-1 infection and also reduced angiogenesis resulting from corneal implantation with rVEGF. CTL responses against endothelial cells expressing VEGFR-2 were evident in the VEGFR-2-immunized group and in vivo CD8+ T cell depletion resulted in the marked reduction of the antiangiogenic immune response. These results indicate a role for CD8+ T cells in the antiangiogenic effects. Our results may also imply that the anti-VEGFR-2 vaccination approach might prove useful to control pathological ocular angiogenesis and its consequences.  相似文献   

3.
Stromal keratitis (SK) is a chronic immunopathological lesion of the eye caused by HSV-1 infection and a common cause of blindness in humans. The inflammatory lesions are primarily perpetuated by neutrophils with the active participation of CD4(+) T cells. Therefore, targeting these immune cell types represents a potentially valuable form of therapy to reduce the severity of disease. Resolvin E1 (RvE1), an endogenous lipid mediator, was shown to promote resolution in several inflammatory disease models. In the current report, we determined whether RvE1 administration begun at different times after ocular infection of mice with HSV could influence the severity of SK lesions. Treatment with RvE1 significantly reduced the extent of angiogenesis and SK lesions that occurred. RvE1-treated mice had fewer numbers of inflammatory cells that included Th1 and Th17 cells as well as neutrophils in the cornea. The mechanisms by which RvE1 acts appear to be multiple. These included reducing the influx of neutrophils and pathogenic CD4(+) T cells, increasing production of the anti-inflammatory cytokine IL-10, and inhibitory effects on the production of proinflammatory mediators and molecules, such as IL-6, IFN-γ, IL-17, KC, VEGF-A, MMP-2, and MMP-9, that are involved in corneal neovascularization and SK pathogenesis. These findings are, to our knowledge, the first to show that RvE1 treatment could represent a novel approach to control lesion severity in a virally induced immunopathological disease.  相似文献   

4.
Two prominent anti-inflammatory mechanisms involved in controlling HSV-1-induced corneal immunopathology (stromal keratitis or SK) are the production of the cytokine IL-10 and the activity of natural regulatory T cells (nTregs). It is not known whether, under in vivo conditions, IL-10 and nTregs influence the corneal pathology independently or in concert. In the current study using wild-type and IL-10(-/-) animals, we have assessed the activity of nTregs in the absence of IL-10 both under in vitro and in vivo conditions. The IL-10(-/-) animals depleted of nTregs before ocular infection showed more severe SK lesions as compared with the undepleted IL-10(-/-) animals. In addition, nTregs purified from naive WT and IL-10(-/-) animals were equally able to suppress the proliferation and the cytokine production from anti-CD3-stimulated CD4(+)CD25(-) T cells in vitro. Furthermore, intracellular cytokine staining results indicated that nonregulatory cells expressing B220 and CD25 markers were the major IL-10-producing cell types in the lymphoid tissues of HSV-infected mice. In contrast, in the infected corneas, cells with the CD11b(+)Gr1(+) phenotype along with a minor population of Foxp3(-)CD4(+) and a few F4/80(+) cells produced IL-10. Our current investigations indicate that at least two independent anti-inflammatory mechanisms are involved in limiting the corneal lesions in SK, both of which may need to be modulated to control SK therapeutically.  相似文献   

5.
Herpetic stromal keratitis (SK), a frequent cause of visual impairment, is considered to represent an immune-mediated inflammatory response to persistent herpes simplex virus virions or subcomponents within the corneal stroma. The experimental disease in mice involves the essential participation of T lymphocytes, but the role of T-lymphocyte subsets in either mediating or controlling the disease is uncertain. In this report, rat monoclonal antibodies were used to selectively deplete mice in vivo of CD4+ (helper-inducer) and CD8+ (cytotoxic-suppressor) T-cell populations and the effect on herpetic SK was evaluated. As measured by flow cytometry, mice treated with anti-CD4 monoclonal antibody (GK 1.5) were greater than 95% depleted of CD4+ T lymphocytes and mice treated with anti-CD8 monoclonal antibody (2.43) were 90% depleted of CD8+ T lymphocytes. Depleted and nonspecific mouse ascites-treated control mice were infected topically on the corneas with herpes simplex virus type 1, and the induction of various immune parameters during the acute infection was evaluated. CD4+-depleted mice failed to produce either a significant antiviral antibody or delayed-type hypersensitivity response but were capable of producing normal cytotoxic T-lymphocyte responses. In contrast, CD8+-depleted mice produced antiviral antibody and delayed-type hypersensitivity responses comparable with those in control animals, but cytotoxic T-lymphocyte responses were markedly reduced. Clinical observations of the corneas revealed that SK in CD4+-depleted mice was significantly reduced, whereas in CD8+-depleted mice SK developed more rapidly, was more severe, and involved a greater percentage of mice. These observations implicate the CD4+ T-lymphocyte subset as the principal mediators of SK and CD8+ T lymphocytes as possible regulators that control the severity of SK.  相似文献   

6.
Approximately 7 days after HSV-1 corneal infection, BALB/c mice develop tissue-destructive inflammation in the cornea termed herpes stromal keratitis (HSK), as well as periocular skin lesions that are characterized by vesicles, edema, and fur loss. CD4(+) T cells and Th1 cytokines contribute to both the immunopathology in the cornea and the eradication of viral replication in the skin. We demonstrate that disruption of CD40/CD154 signaling does not impact the initial expansion of CD4(+) T cells in the draining lymph nodes, but dramatically reduces the persistence and Th1 polarization of these cells. Despite the reduced Th1 response, CD154(-/-) mice developed HSK and periocular skin disease with similar kinetics and severity (as assessed by clinical examination) as wild-type (WT) mice. However, when the composition of the inflammatory infiltrate was examined by flow cytometric analysis, CD154(-/-) mice exhibited significantly fewer CD4(+) and CD8(+) T cells and neutrophils than WT mice at the peak of HSK. Moreover, CD4(+) T cells from infected corneas of CD154(-/-) mice produced significantly less IFN-gamma than those of WT mice when stimulated with viral Ags in vitro. The IFN-gamma production of cells from infected corneas of WT mice was not affected by addition of anti-CD154 mAb to the stimulation cultures. This suggests that CD154 signaling is required at the inductive phase, but not at the effector phase, of the Th1 response within the infected cornea. We conclude that local disruption of CD40/CD154 signaling is not likely to be a useful therapy for HSK.  相似文献   

7.
Corneal neovascularization represents a key step in the blinding inflammatory stromal keratitis (SK) lesion caused by ocular infection with herpes simplex virus (HSV). In this report, we describe a novel approach for limiting the angiogenesis caused by HSV infection of the mouse eye. We show that topical or systemic administration of the Src kinase inhibitor (TG100572) that inhibits downstream molecules involved in the vascular endothelial growth factor (VEGF) signaling pathway resulted in markedly diminished levels of HSV-induced angiogenesis and significantly reduced the severity of SK lesions. Multiple mechanisms were involved in the inhibitory effects. These included blockade of IL-8/CXCL1 involved in inflammatory cells recruitment that are a source of VEGF, diminished cellular infiltration in the cornea, and reduced proliferation and migration of CD4(+) T cells into the corneas. As multiple angiogenic factors (VEGF and basic fibroblast growth factor [bFGF]) play a role in promoting angiogenesis during SK and since Src kinases are involved in signaling by many of them, the use of Src kinase inhibition represents a promising way of limiting the severity of SK lesions the most common cause of infectious blindness in the Western world.  相似文献   

8.
The effect of combination therapy between IL-12 and soluble IL-4R (sIL-4R) on the established infection of HSV-1 in thermally injured mice (TI mice) was investigated. All of the TI mice infected with lethal amounts of HSV-1 died when IL-12 was given therapeutically at a dose of 500 U/mouse. However, 80% of these mice treated prophylactically with IL-12 survived compared with 0% survival of the same mice treated with saline. The therapeutic administration of IL-12 to TI mice currently infected with HSV-1 caused an 80% survival of these mice when the treatment was combined with sIL-4R. Although IL-12 did not stimulate IFN-gamma production in cultures of splenic T cells from TI mice, IFN-gamma was produced by stimulation with IL-12 when the producer cells were prepared from TI mice that had been treated previously with sIL-4R. After stimulation with anti-CD3 mAb, splenic T cells from TI mice with the established infection of HSV-1 produced IL-4 into their culture fluids. However, IL-4 was not produced by splenic T cells that were prepared from the same infected mice treated with IL-12 and sIL-4R in combination. The results obtained herein indicate that the efficacies of the combination therapy against the established infection of HSV-1 may result from the IFN-gamma production stimulated by IL-12 in TI mice that are treated with sIL-4R for reducing burn-associated type 2 T cell responses.  相似文献   

9.
Interleukin (IL) -21 is produced by Natural Killer T (NKT) cells and CD4+ T cells and is produced in response to virus infections, where IL-21 has been shown to be essential in adaptive immune responses. Cells from the innate immune system such as Natural Killer (NK) cells and macrophages are also important in immune protection against virus. These cells express the IL-21 receptor (IL-21R) and respond to IL-21 with increased cytotoxicity and cytokine production. Currently, however it is not known whether IL-21 plays a significant role in innate immune responses to virus infections. The purpose of this study was to investigate the role of IL-21 and IL-21R in the innate immune response to a virus infection. We used C57BL/6 wild type (WT) and IL-21R knock out (KO) mice in a murine vaginal Herpes Simplex Virus type 2 (HSV-2) infection model to show that IL-21 – IL-21R signalling is indeed important in innate immune responses against HSV-2. We found that the IL-21R was expressed in the vaginal epithelium in uninfected (u.i) WT mice, and expression increased early after HSV-2 infection. IL-21R KO mice exhibited increased vaginal viral titers on day 2 and 3 post infection (p.i.) and subsequently developed significantly higher disease scores and a lower survival rate compared to WT mice. In addition, WT mice infected with HSV-2 receiving intra-vaginal pre-treatment with murine recombinant IL-21 (mIL-21) had decreased vaginal viral titers on day 2 p.i., significantly lower disease scores, and a higher survival rate compared to infected untreated WT controls. Collectively our data demonstrate the novel finding that the IL-21R plays a critical role in regulating innate immune responses against HSV-2 infection.  相似文献   

10.
Herpes simplex virus (HSV) infection of the cornea culminates in an immunopathological lesion (stromal keratitis--SK) that impairs vision. This report shows that HSV infection results in IL-23 up-regulation, but if this response fails to occur, as was noted in p19-/- mice, the severity of lesions, their incidence and the level of viral induced angiogenesis were significantly increased compared to wild-type (WT) animals (p<0.05). The higher disease severity in p19-/- mice appeared to be the consequence of an increased IL-12 response that in turn led to the induction of higher numbers of IFN-gamma producing CD4(+)T cells, the principal orchestrators of SK. Our results indicate that the severity of HSV induced immunopathological lesions may be mainly the consequence of IL-12 driven Th1 T cell reactions rather than the action of IL-17 producing cells controlled by IL-23.  相似文献   

11.
The effectiveness of a combination using IL-12 and soluble IL-4 receptor (sIL-4R) to treat severe infections of herpes simplex virus type 1 (HSV-1) and Candida albicans in thermally injured mice was investigated. Although sIL-4R decreased burn-associated type 2 T-cell responses, the effect of sIL-4R was minimal on the morbidity and mortality of thermally injured mice exposed to 250 times LD50 of HSV-1 or 10 times LD50 of C. albicans. Compared with 100% mortality in control mice, mortality for HSV-1 and C. albicans was 40 and 20%, respectively, in thermally injured mice that received IL-12 and sIL-4R in combination. After stimulation with anti-CD3 monoclonal antibody, splenic T cells from thermally injured mice exposed to large amounts of HSV-1 or C. albicans did not produce gamma interferon (IFN-gamma) into their culture fluids. However, IFN-gamma was produced by splenic T cells from thermally injured and infected mice treated with IL-12 and sIL-4R in combination. These results suggest that therapeutic treatment with a combination of IL-12 and sIL-4R may be effective by inducing type 1 T-cell responses in thermally injured mice exposed to large amounts of HSV-1 or C. albicans.  相似文献   

12.
Ocular HSV-1 infection is a major cause of eye disease and innate and adaptive immunity both play a role in protection and pathology associated with ocular infection. Previously we have shown that M1-type macrophages are the major and earliest infiltrates into the cornea of infected mice. We also showed that HSV-1 infectivity in the presence and absence of M2-macrophages was similar to wild-type (WT) control mice. However, it is not clear whether the absence of M1 macrophages plays a role in protection and disease in HSV-1 infected mice. To explore the role of M1 macrophages in HSV-1 infection, we used mice lacking M1 activation (M1-/- mice). Our results showed that macrophages from M1-/- mice were more susceptible to HSV-1 infection in vitro than were macrophages from WT mice. M1-/- mice were highly susceptible to ocular infection with virulent HSV-1 strain McKrae, while WT mice were refractory to infection. In addition, M1-/- mice had higher virus titers in the eyes than did WT mice. Adoptive transfer of M1 macrophages from WT mice to M1-/- mice reduced death and rescued virus replication in the eyes of infected mice. Infection of M1-/- mice with avirulent HSV-1 strain KOS also increased ocular virus replication and eye disease but did not affect latency-reactivation seen in WT control mice. Severity of virus replication and eye disease correlated with significantly higher inflammatory responses leading to a cytokine storm in the eyes of M1-/- infected mice that was not seen in WT mice. Thus, for the first time, our study illustrates the importance of M1 macrophages specifically in primary HSV-1 infection, eye disease, and survival but not in latency-reactivation.  相似文献   

13.
The ability of the pleotropic, proinflammatory cytokine interleukin-6 (IL-6) to affect the replication, latency, and reactivation of herpes simplex virus type 1 (HSV-1) in cell culture and in IL-6 knockout (KO) mice was studied. In initial studies, we found no effect of exogenous IL-6, monoclonal antibodies to IL-6, or monoclonal antibody to the IL-6 coreceptor, gp130, on HSV-1 replication in vitro by plaque assay or reactivation ex vivo by explant cocultivation of latently infected murine trigeminal ganglia (TG). Compared with the wild-type (WT) mice, the IL-6 KO mice were less able to survive an ocular challenge with 10(5) PFU of HSV-1 (McKrae) (40% survival of WT and 7% survival KO mice; P = 0.01). There was a sixfold higher 50% lethal dose of HSV-1 in WT than IL-6 KO mice (1.7 x 10(4) and 2.7 x 10(3) PFU, respectively). No differences were observed in titers of virus recovered from the eyes, TG, or brains or in the rates of virus reactivation by explant cocultivation of TG from latently infected WT or KO mice. Exposure of latently infected mice to UV light resulted in comparable rates of reactivation and in the proportions of WT and KO animals experiencing reactivation. Moreover, quantitative PCR assays showed nearly identical numbers of HSV-1 genomes in latently infected WT and IL-6 KO mice. These studies indicate that while IL-6 plays a role in the protection of mice from lethal HSV infection, it does not substantively influence HSV replication, spread to the nervous system, establishment of latency, or reactivation.  相似文献   

14.
HSV type 1 (HSV-1) infection of the mouse cornea results in a tissue-destructive inflammatory reaction in the cornea, but little or no disease in the skin surrounding the eye. Depleting T lymphocytes from mice before HSV-1 corneal infection prevents the corneal inflammation but severely exacerbates the periocular skin lesions. Studies described in this communication investigated the role of T cell cytokines in the corneal and periocular skin disease induced by HSV-1 corneal infection. Mice received weekly i.p. injections of rat mAb specific for IL-2, IL-4, or IFN-gamma beginning 1 day before (day -1) or 6 days after (day +6) corneal infection with the RE strain of HSV-1. The severity of corneal inflammation and the area of periocular skin involvement were measured. Treatment with anti-IFN-gamma or anti-IL-2 significantly reduced the incidence and severity of corneal inflammation. Treatment was equally effective when initiated on day -1 (before T cell activation) or day +6 (after T cell activation but before the initiation of corneal inflammation). Treatment with anti-IL-4 had no effect. The histologic features of corneal inflammation in mock-treated mice included neovascularization, corneal edema, and cellular infiltration. Corneas of anti-IL-2-treated mice that developed inflammation had similar but less severe histologic features. Corneas of anti-IFN-gamma-treated mice that developed inflammation had neovascularization and edema but minimal cellular infiltration. Treatment with anti-IFN-gamma or anti-IL-2 significantly exacerbated periocular skin lesions when initiated at day -1, but not when initiated at day +6. Anti-IL-4 treatment had no effect on skin lesions. Treatment with either anti-IFN-gamma or anti-IL-2, when initiated at day -1, significantly inhibited the delayed-type hypersensitivity response to HSV Ag, but when treatment was begun at day +6 only anti-IFN-gamma significantly inhibited the delayed-type hypersensitivity response. Our findings suggest that IFN-gamma and IL-2 are important elements in both an immunopathologic T-lymphocyte response to HSV-1 Ag in the cornea and a protective T lymphocyte response in the skin.  相似文献   

15.
Although Epstein-Barr virus (EBV)-associated malignancies are primarily composed of cells with one of the latent forms of EBV infection, a small subset of tumor cells containing the lytic form of infection is often observed. Whether the rare lytically infected tumor cells contribute to the growth of the latently infected tumor cells is unclear. Here we have investigated whether the lytically infected subset of early-passage lymphoblastoid cell lines (LCLs) could potentially contribute to tumor growth through the production of angiogenesis factors. We demonstrate that supernatants from early-passage LCLs infected with BZLF1-deleted virus (Z-KO LCLs) are highly impaired in promoting endothelial cell tube formation in vitro compared to wild-type (WT) LCL supernatants. Furthermore, expression of the BZLF1 gene product in trans in Z-KO LCLs restored angiogenic capacity. The supernatants of Z-KO LCLs, as well as supernatants from LCLs derived with a BRLF1-deleted virus (R-KO LCLs), contained much less vascular endothelial growth factor (VEGF) in comparison to WT LCLs. BZLF1 gene expression in Z-KO LCLs restored the VEGF level in the supernatant. However, the cellular level of VEGF mRNA was similar in Z-KO, R-KO, and WT LCLs, suggesting that lytic infection may enhance VEGF translation or secretion. Interestingly, a portion of the vasculature in LCL tumors in SCID mice was derived from the human LCLs. These results suggest that lytically infected cells may contribute to the growth of EBV-associated malignancies by enhancing angiogenesis. In addition, as VEGF is a pleiotropic factor with effects other than angiogenesis, lytically induced VEGF secretion may potentially contribute to viral pathogenesis.  相似文献   

16.
Ocular infection with herpes simplex virus (HSV) results in a blinding immunoinflammatory stromal keratitis (SK) lesion. Early preclinical events include polymorphonuclear neutrophil (PMN) infiltration and neovascularization in the corneal stroma. We demonstrate here that HSV infection of the cornea results in the upregulation of the cyclooxygenase 2 (COX-2) enzyme. Early after infection, COX-2 was produced from uninfected stromal fibroblasts as an indirect effect of virus infection. Subsequently, COX-2 may also be produced from other inflammatory cells that infiltrate the cornea. The induction of COX-2 is a critical event, since inhibition of COX-2 with a selective inhibitor was shown to reduce corneal angiogenesis and SK severity. The administration of a COX-2 inhibitor resulted in compromised PMN infiltration into the cornea, as well as diminished corneal vascular endothelial growth factor levels, likely accounting for the reduced angiogenic response. COX-2 stimulation by HSV infection represents a critical early event accessible for therapy and the control of SK severity.  相似文献   

17.
This report analyzes the role of vascular endothelial growth factor (VEGF)-induced angiogenesis in the immunoinflammatory lesion stromal keratitis induced by ocular infection with herpes simplex virus (HSV). Our results show that infection with replication-competent, but not mutant, viruses results in the expression of VEGF mRNA and protein in the cornea. This a rapid event, with VEGF mRNA detectable by 12 h postinfection (p.i.) and proteins detectable by 24 h p.i. VEGF production occurred both in the virus-infected corneal epithelium and in the underlying stroma, in which viral antigens were undetectable. In the stroma, VEGF was produced by inflammatory cells; these initially were predominantly polymorphonuclear leukocytes (PMN), but at later time points both PMN and macrophage-like cells were VEGF producers. In the epithelium, the major site of VEGF-expressing cells in early infection, the infected cells themselves were usually negative for VEGF. Similarly, in vitro infection studies indicated that the cells which produced VEGF were not those which expressed virus. Attesting to the possible role of VEGF-induced angiogenesis in the pathogenesis of herpetic stromal keratitis were experiments showing that VEGF inhibition with mFlt(1-3)-immunoglobulin G diminished angiogenesis and the severity of lesions after HSV infection. These observations are the first to evaluate VEGF-induced angiogenesis in the pathogenesis of stromal keratitis. Our results indicate that the control of angiogenesis represents a useful adjunct to therapy of herpetic ocular disease, an important cause of human blindness.  相似文献   

18.
Y H Su  J E Oakes    R N Lausch 《Journal of virology》1990,64(5):2187-2192
BALB/c mice infected on the scarified cornea with herpes simplex virus type 1 strain 35 [HSV-1(35)] rarely developed ocular disease even at challenge doses as high as 10(7) PFU per eye. In contrast, HSV-1(RE) consistently induced stromal keratitis at an inoculum of 2 x 10(4) PFU. The goal of this study was to determine the reason for the difference in virulence between the two HSV strains. Both HSV-1 strains replicated to similar titers in excised corneal "buttons." However, after in vivo infection of the cornea, the growth of strain 35 was evident only during the first 24 h postinfection, whereas the replication of strain RE persisted for at least 4 days. In vitro tests revealed that HSV-1(35) was greater than 10 times more sensitive to alpha/beta interferon (IFN-alpha/beta) than HSV-1(RE). Both strains induced comparable serum levels of IFN after intraperitoneal inoculation. The kinetics of HSV-1(35) clearance from the eye was markedly altered by treatment with rabbit anti-IFN-alpha/beta. Virus titers exceeding 10(4) PFU per eye could be demonstrated 4 to 5 days postinfection in mice given a single inoculation of antiserum 1 h after infection. Furthermore, anti-IFN treatment in 3-week-old mice infected with HSV-1(35) led to the development of clinically apparent corneal disease which subsequently progressed to stromal keratitis in the majority of recipients. These results indicate that the striking difference in the capacity of HSV-1(35) and HSV-1(RE) to induce corneal disease was related to the inherently greater sensitivity of strain 35 to IFN-alpha/beta produced by the host in response to infection.  相似文献   

19.
This study was undertaken to investigate possible immune mechanisms in fatal herpes simplex virus type 1 (HSV-1) encephalitis (HSE) after HSV-1 corneal inoculation. Susceptible 129S6 (129) but not resistant C57BL/6 (B6) mice developed intense focal inflammatory brain stem lesions of primarily F4/80(+) macrophages and Gr-1(+) neutrophils detectable by magnetic resonance imaging as early as day 6 postinfection (p.i.). Depletion of macrophages and neutrophils significantly enhanced the survival of infected 129 mice. Immunodeficient B6 (IL-7R(-/-) Kit(w41/w41)) mice lacking adaptive cells (B6-E mice) and transplanted with 129 bone marrow showed significantly accelerated fatal HSE compared to B6-E mice transplanted with B6 marrow or control nontransplanted B6-E mice. In contrast, there was no difference in ocular viral shedding in B6-E mice transplanted with 129 or B6 bone marrow. Acyclovir treatment of 129 mice beginning on day 4 p.i. (24 h after HSV-1 first reaches the brain stem) reduced nervous system viral titers to undetectable levels but did not alter brain stem inflammation or mortality. We conclude that fatal HSE in 129 mice results from widespread damage in the brain stem caused by destructive inflammatory responses initiated early in infection by massive infiltration of innate cells.  相似文献   

20.
Angiogenic factor with G patch and FHA domains 1 (AGGF1) is a newly identified proangiogenic protein, which plays an important role in vascular disease and angiogenesis. However, its role in myocardial ischemia/reperfusion (I/R) injury remains unknown. This study investigated whether AGGF1 is involved in the pathogenesis of mouse myocardial I/R injury and the underlying mechanisms. Wild-type (WT) C57BL/6 J mice were treated at 30 min prior to I/R injury with anti-AGGF1 neutralizing antibody (3 mg/kg) or recombinant human AGGF1 (rhAGGF1, 0.25 mg/kg). After I/R injury, the infarct size, the number of TUNEL-positive cardiomyocytes, Bax/Bcl2 ratio, inflammatory cytokine expression and angiogenesis were markedly increased as compared with sham control. Treatment of WT mice with anti-AGGF1 neutralizing antibody resulted in exaggeration of myocardial I/R injury but reducing angiogenesis. In contrast, administration of rhAGGF1 markedly reversed these effects. Furthermore, anti-AGGF1- or rhAGGF1-mediated effects on I/R-induced cardiac apoptosis, inflammation and angiogenesis were dose dependent. In addition, the protective effects of AGGF1 on cardiomyocyte apoptosis and inflammation were confirmed in cultured cardiomyocytes after I/R. Finally, these effects were associated with activation of ERK1/2, Stat3 and HIF-1α/VEGF pathways and inhibition of activation of NF-κB, p53 and JNK1/2 pathways. In conclusion, we report the first in vivo and in vitro evidence that AGGF1 reduces myocardial apoptosis and inflammation and enhances angiogenesis, leading to decreased infarct size after I/R injury. These results may provide a novel therapeutic approach for ischemic heart diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号