首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
目的:通过丘脑底核脑深部电刺激术治疗帕金森病,观察其肌肉僵直、静止性震颤、运动迟缓等症状的改善情况。方法:选取以丘脑底核为刺激靶点收治的帕金森病患者8例,对比手术前后患者肌强直、静止性震颤、运动迟缓等症状的改善情况,并进行UPDRS评分。结果:接受丘脑底核脑深部电刺激术治疗帕金森病6个月后,患者肌肉僵直、静止性震颤、运动迟缓等临床主症的改善上效果良好;与手术前相比,患者术后UPDRS评分均有所降低,差异具有统计学意义(P0.05);患者术后美多巴服用量显著减少,差异具有统计学意义(P0.05);患者术后没有产生永久性的并发症以及较明显的临床症状;但对大量油脂性渗出及典型面具性面容的治疗上未见明显疗效。结论:丘脑底核脑深部电刺激术治疗帕金森氏病,可以使帕金森病主要临床症状肌肉僵直、静止震颤及运动迟缓得到明显改善,显著减少美多巴服药量,具有安全可靠的疗效,对临床具有指导意义,值得临床推广应用。  相似文献   

2.
目的:观察和比较丘脑底核高频电刺激与低频电刺激治疗帕金森病(PD)的临床效果。方法:对入选的31名PD患者行双侧丘脑底核电刺激手术,术后1个月,在高频刺激条件下,进行UPDRS运动评分,同时对震颤、强直、运动迟缓、中轴症状进行评分;术后6个月,在关闭刺激、高频刺激和低频刺激三种刺激条件,同样进行相关评分。结果:术后1个月和术后6个月,除中轴症状外,UPDRS运动评分和震颤、强直、运动迟缓评分均较术前明显降低(P0.05)。术后6个月,HFS、LFS刺激条件下,UPDRS运动评分和震颤、强直、运动迟缓评分均较OFF降低(P0.05),但中轴症状评分无明显降低(P0.05)。术后6个月,LFS较HFS,各项评分均无明显差异。结论:丘脑底核高频和低频电刺激均能改善PD的运动功能,对震颤、强直和运动迟缓疗效明显,但对中轴症状均无明显治疗效果。  相似文献   

3.
4.
Elucidating patterns of neuronal connectivity has been a challenge for both clinical and basic neuroscience. Electrophysiology has been the gold standard for analyzing patterns of synaptic connectivity, but paired electrophysiological recordings can be both cumbersome and experimentally limiting. The development of optogenetics has introduced an elegant method to stimulate neurons and circuits, both in vitro1 and in vivo2,3. By exploiting cell-type specific promoter activity to drive opsin expression in discrete neuronal populations, one can precisely stimulate genetically defined neuronal subtypes in distinct circuits4-6. Well described methods to stimulate neurons, including electrical stimulation and/or pharmacological manipulations, are often cell-type indiscriminate, invasive, and can damage surrounding tissues. These limitations could alter normal synaptic function and/or circuit behavior. In addition, due to the nature of the manipulation, the current methods are often acute and terminal. Optogenetics affords the ability to stimulate neurons in a relatively innocuous manner, and in genetically targeted neurons. The majority of studies involving in vivo optogenetics currently use a optical fiber guided through an implanted cannula6,7; however, limitations of this method include damaged brain tissue with repeated insertion of an optical fiber, and potential breakage of the fiber inside the cannula. Given the burgeoning field of optogenetics, a more reliable method of chronic stimulation is necessary to facilitate long-term studies with minimal collateral tissue damage. Here we provide our modified protocol as a video article to complement the method effectively and elegantly described in Sparta et al.8 for the fabrication of a fiber optic implant and its permanent fixation onto the cranium of anesthetized mice, as well as the assembly of the fiber optic coupler connecting the implant to a light source. The implant, connected with optical fibers to a solid-state laser, allows for an efficient method to chronically photostimulate functional neuronal circuitry with less tissue damage9 using small, detachable, tethers. Permanent fixation of the fiber optic implants provides consistent, long-term in vivo optogenetic studies of neuronal circuits in awake, behaving mice10 with minimal tissue damage.  相似文献   

5.
In order to visualize the global and downstream neuronal responses to deep brain stimulation (DBS) at various targets, we have developed a protocol for using blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) to image rodents with simultaneous DBS. DBS fMRI presents a number of technical challenges, including accuracy of electrode implantation, MR artifacts created by the electrode, choice of anesthesia and paralytic to minimize any neuronal effects while simultaneously eliminating animal motion, and maintenance of physiological parameters, deviation from which can confound the BOLD signal. Our laboratory has developed a set of procedures that are capable of overcoming most of these possible issues. For electrical stimulation, a homemade tungsten bipolar microelectrode is used, inserted stereotactically at the stimulation site in the anesthetized subject. In preparation for imaging, rodents are fixed on a plastic headpiece and transferred to the magnet bore. For sedation and paralysis during scanning, a cocktail of dexmedetomidine and pancuronium is continuously infused, along with a minimal dose of isoflurane; this preparation minimizes the BOLD ceiling effect of volatile anesthetics. In this example experiment, stimulation of the subthalamic nucleus (STN) produces BOLD responses which are observed primarily in ipsilateral cortical regions, centered in motor cortex. Simultaneous DBS and fMRI allows the unambiguous modulation of neural circuits dependent on stimulation location and stimulation parameters, and permits observation of neuronal modulations free of regional bias. This technique may be used to explore the downstream effects of modulating neural circuitry at nearly any brain region, with implications for both experimental and clinical DBS.  相似文献   

6.
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) or the internal segment of the globus pallidus (GPi) has recently been recognized as an important form of intervention for alleviating motor symptoms associated with Parkinson's disease, but the mechanism underlying its effectiveness remains unknown. Using a computational model, this paper considers the hypothesis that DBS works by replacing pathologically rhythmic basal ganglia output with tonic, high frequency firing. In our simulations of parkinsonian conditions, rhythmic inhibition from GPi to the thalamus compromises the ability of thalamocortical relay (TC) cells to respond to depolarizing inputs, such as sensorimotor signals. High frequency stimulation of STN regularizes GPi firing, and this restores TC responsiveness, despite the increased frequency and amplitude of GPi inhibition to thalamus that result. We provide a mathematical phase plane analysis of the mechanisms that determine TC relay capabilities in normal, parkinsonian, and DBS states in a reduced model. This analysis highlights the differences in deinactivation of the low-threshold calcium T -current that we observe in TC cells in these different conditions. Alternative scenarios involving convergence of thalamic signals in the cortex are also discussed, and predictions associated with these results, including the occurrence of rhythmic rebound bursts in certain TC cells in parkinsonian states and their drastic reduction by DBS, are stated. These results demonstrate how DBS could work by increasing firing rates of target cells, rather than shutting them down.  相似文献   

7.
Investigation into the use of virus-mediated gene transfer to arrest or reverse hearing loss has largely been relegated to the peripheral auditory system. Few studies have examined gene transfer to the central auditory system. The dorsal cochlear nucleus (DCN) of the brainstem, which contains second order neurons of the auditory pathway, is a potential site for gene transfer. In this protocol, a technique for direct and maximal exposure of the murine DCN via a posterior fossa approach is demonstrated. This approach allows for either acute or survival surgery. Following direct visualization of the DCN, a host of experiments are possible, including injection of opsins into the cochlear nucleus and subsequent stimulation by an optical fiber coupled to a blue light laser. Other neurophysiology experiments, such as electrical stimulation and neural injector tracings are also feasible. The level of visualization and the duration of stimulation achievable make this approach applicable to a wide range of experiments.  相似文献   

8.
Many behavioral functions in mammals, including rodents and humans, are mediated principally by discrete brain regions. A common method for discerning the function of various brain regions for behavior or other experimental outcomes is to implement a localized ablation of function. In humans, patient populations with localized brain lesions are often studied for deficits, in hopes of revealing the underlying function of the damaged area. In rodents, one can experimentally induce lesions of specific brain regions.Lesion can be accomplished in several ways. Electrolytic lesions can cause localized damage but will damage a variety of cell types as well as traversing fibers from other brain regions that happen to be near the lesion site. Inducible genetic techniques using cell-type specific promoters may also enable site-specific targeting. These techniques are complex and not always practical depending on the target brain area. Excitotoxic lesion using stereotaxic surgery, by contrast, is one of the most reliable and practical methods of lesioning excitatory neurons without damaging local glial cells or traversing fibers.Here, we present a protocol for stereotaxic infusion of the excitotoxin, N-methyl-D-aspartate (NMDA), into the basolateral amygdala complex. Using anatomical indications, we apply stereotaxic coordinates to determine the location of our target brain region and lower an injection needle in place just above the target. We then infuse our excitotoxin into the brain, resulting in excitotoxic death of nearby neurons. While our experimental subject of choice is a rat, the same methods can be applied to other mammals, with the appropriate adjustments in equipment and coordinates.This method can be used on a variety of brain regions, including the basolateral amygdala1-6, other amygdala nuclei6, 7, hippocampus8, entorhinal cortex9 and prefrontal cortex10. It can also be used to infuse biological compounds such as viral vectors1, 11. The basic stereotaxic technique could also be adapted for implantation of more permanent osmotic pumps, allowing more prolonged exposure to a compound of interest.  相似文献   

9.
Play fighting in the rat involves attack and defense of the nape of the neck, which if contacted, is gently nuzzled with the snout. Because the movements of one animal are countered by the actions of its partner, play fighting is a complex, dynamic interaction. This dynamic complexity raises methodological problems about what to score for experimental studies. We present a scoring schema that is sensitive to the correlated nature of the actions performed. The frequency of play fighting can be measured by counting the number of playful nape attacks occurring per unit time. However, playful defense, as it can only occur in response to attack, is necessarily a contingent measure that is best measured as a percentage (#attacks defended/total # attacks X 100%). How a particular attack is defended against can involve one of several tactics, and these are contingent on defense having taken place; consequently, the type of defense is also best expressed contingently as a percentage. Two experiments illustrate how these measurements can be used to detect the effect of brain damage on play fighting even when there is no effect on overall playfulness. That is, the schema presented here is designed to detect and evaluate changes in the content of play following an experimental treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号